Algorithms for Big Data (FaLL 25)

Lecture 7
HEAVY HITTERS: MISRA-GRIES, COUNTMIN AND COUNTSKETCH

ALl VAKILIAN (vakilian@vt.edu)

Algorithms

for Big Data
VIRGINIA

Frequent Items Problem (F,.-Moment)
Recall: What is F_,?

* [, is very brittle and hard to estimate with low memory.

* Even strong lower bounds even for very weak relative approximations.

Hence, we need to settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that f; > %for some fixed k.

Heavy hitters are very frequent items.

Finding Majority Element (interview question) (%

Offline: given an array/list A of m integers, is there an element that
occurs more than m/2 times in A?

Streaming: is there an i such that f; > m/2?

Boyer-Moore Voting

Lemma. If there exists a

majority item i, the algorithm
m

outputss =iandc = f; — —.

2

Why it works?

Majority (in streams):

letc « 0,s « null

foreach item ¢; in the stream do:
if e; = s then
c—c+1
elseifc =0
c—1lands < eg;
else
c—c—1
return c and s

Boyer-Moore Voting

Lemma. If there exists a " Majority (in streams):
majority item i, the algorithm letc < 0,5 « null
. m
outputs s =iand c = f; —- -
foreach item ¢; in the stream do:
if e; = s then
Why it works? c—c+1
elseifc =0
: T : c < 1lands « e;
What if no majority item exists? else an J
How to verify? c—c—1

return c and s

Extension to k Heavy Hitters

Offline: given an array/list A of m integers, is there an element that occurs
more than m/k times in A?

Streaming: is there an i such that f; > m/k?

Idea. Extending Boyer-More Voting algorithm to this more general setting.

Misra-Gries Algorithm (f; = m/k)

Space: 0 (k)

Theorem. For each i € [n],

fi—wsasfisf

= any item with f; > Zisin D.

' Misra-Gries (k):

let D be an empty array of size k
foreach item ¢; in the stream do
if e; € D then
Dlej] < D[e;] +1
else if D has less than k items
add ej to D and set D[e;] « 1
else
foreach ¥ € D do
D[¢] « D[£] — 1 (if O, remove)
foreach £ € D, set f, « D[£] (zero for rest)

Misra-Gries Algorithm (f; = m/k): Proof

Theorem. For each i € [n], f; — == < fi < f.
Proof.

* f; < f; is easy.

Misra-Gries Algorithm (f; = m/k): Proof

Theorem. For each i € [n], f; — == < fi < f.
Proof.

Alternative view of algorithm.
* maintain count C[i] for each i (initialized to 0). < k are nonzero at anytime.
" when next element e; arrives:

" jf C[ej] > 0 then increment C|e;]

" else if < k positive counters, then set C[ej] =1

= else, decrement all positive counters (exactly k of them)

= output f; = C[i] for each i

Misra-Gries Algorithm (f; = m/k): Proof

Theorem. For each i € [n], f; — == < fi < f.
Goal. f; — f; < .

* Suppose decrement all occur € times, thenfk + £ <m = £ < m

“each decrement all remove k previously added items and involves an
insertion causing this operation. (each deals with k + 1 distinct elements)”

Define & = f; — f;. It is initially zero (as both are equal to zero).
How big can it get?

Misra-Gries Algorithm (f; = m/k): Proof

Theorem. For eachi € [n], f; — == < fi < fi

Define & = f; — f;. It is initially zero (as both are equal to zero).
How big can it get?
* If ; = i and C]i] is incremented, then a stays the same.

* If ; = i and C|i] is not incremented, then « increases by one and k
counters decremented (charge to one of the £ events).

* If e; # i and C[i] is decremented, then a increases by one. This only
happens in decrement all scenario (again charge to one of the £ events).

So,a<f<m/(k+1)

Wrap-up: Deterministic vs Randomized

* Cannot improve O(k) space if one wants additive error of at most m/k.
* Somewhat rare to have a deterministic algorithm that is near-optimal.

Why may we still look for randomized solutions?
* Supporting deletions

 Extra properties of sketch-based solutions

Basic Hashing Idea
Heavy Hitters Problem: Find all items i such that f; = m/k.

* Let by, ..., by, be the k heavy hitters (at most k)
* Suppose we pick a hash function h: [n] — [ck] for some ¢ > 1
* h maps the heavy hitters into different buckets (k balls into ck bins)

* Then, ideally, we would like to use the count of items in each bucket as
an estimate for the frequency of one heavy hitters.

Repeating this idea with independent hashes improves the estimate

CountMin Sketch [Cormode-Muthukrishnan]

* k pairwise independent hash functions h, ..., h; each [n] = [w]
* Equivalently, a table C with k rows and w columns.

* Store one counter per entry in the table, which keep the aggregate
frequency of items mapped to the entry by the corresponding hash
function. C|Z, s] is the counter for bucket s in hash function h,.

* Let f € R" be the final frequency vector. For ¢ € |k],s € [w],
Cle,s] = Zi:hg(i):sfi
o For every ¥ € |k]|, C|£, hy(i)] is an over-estimate of f;.

o We have k such estimate, how good is the quality of best of them?

CountMin Sketch in Streaming

* Each of k estimates for f; is

o ' CountMin Sketch (stream):
overcounting its frequency

let iy, ..., h;, be pairwise independent
hash functions from [n] — [w]

* Picking the minimum such

estimate is reasonable foreach item e; = (i, A) in the stream do:

for Y = 1 to k do:
ClL, he(ir)] < C[€, he(ie)] + A

//frequency estimates

foreach i € [n], set f; = {gg[l?] ClZ, hp(i)]

CountMin Sketch: Main Property

Theorem. Consider strict turnstile streaming (i.e., always f = 0). Let k =
Q(log%) and w > % Then, for any fixed i € |n], f; < f;, and

Pr(f; > fi+&llfll1] < 6

e Unlike Misra-Gries, CountMin overestimates.

* |tems are not stored (can be recovered via queries).

* Handles deletion (works in strict turnstile model)

log%

* Space complexity: O(- log m) bits

&E

CountMin: Analysis

* Consider an item i and fix a row ¥.
* Define Z, = C[#, h,(i)] the value of counter in row £ that i is hashed to.

E[Z,] = fi + Xj2i Pr[he () = he(D] - f;
= fi + Zjii% - f; // pairwise independence of h,
<fi+ ellfll/2 /| w>2/e

Applying Markov, Pr[Z, — f; = €||fIl{] < 1/2

Since k hash functions are independent,

Primin Z; 2 f; + £llfll1] < =<6 //k=20(log})

N .
CountMin Sketch SPace Complexity: 0(Clognlogm) bits

Theorem. Consider strict turnstile streaming (i.e., always f = 0). Let k =
Q(log%) and w > % Then, for any fixed i € |n], f; < f;, and

Pr(f; > fi+&llfll1] < 6

* Setting § = 1/n?, a CountMin with O(logn) rows and 0(1/¢) columns,
for every i € [n],

Prif; > f; + ellfll,] < 1/n?
* By union bound over all n items, with probability = 1 — 1/n, for all i € |[n]

fi < fi+ellfll

CountMin is a Linear Sketch

ojo|o|1]|0 fi fa 0/0|0|1]|0 fi fa
0|1]|1]|0]0 xfz — P 0(171100 x L| BB | 2t/
1/0(0|0]1 fa fi+fs 1(0(0]0]|1 f3 fitfs
E 5 5 % 8 4 11001071 fa fitfs
11331 [x o[1]o[1fo} [fs fo +
o[o]1]o]o i
I 1|1]ofo]o fi+f
E E E 5§
£ £ £ £ = 0(0j111(0]"3-|-f4
olojo|o|1 fo

hash function h; as a Matrix-Vector Multiplication
Mwsam fmx CountMin as a Matrix-Vector Multiplication

l—[(k-w)xm fmxl

CountSketch

e Simialr to CountMin, keeps track
of a table of kK X w counters

* Inspired by AMS sketch, assign
u.a.r signs {—1,+1} to items

* Counters can get even negative

' CountSketch (stream):

let h{, ..., h; be pairwise independent hash
functions from [n] - [w]

let g4, ..., gi be pairwise independent hash
functions from [n] - {—1,+1}

foreach item e; = (i;, A;) in the stream do:
for £ = 1 to k do:
Cl, he(ir)] < CLE, he(i)] + 90(it) - A

//frequency estimates

foreachi € [n], set f; = m{eeC[i]ic?n{gg(l’) - C[£,he(D]} |

Why CountSkecth is a Linear Sketch?

o|o|o|-1]0 fi —f o|o|o0-1]0 f, —f
_ 0|-1|1 0 _
PP l0l e | =B LS R\ = | Lth
1{o{ofo0]1 o{o|o|1 Y
_ _ fs fitfs fa 1+ fs
x x —1{0|0|0]|1
E :5 E :5 E fa o|l1]|0|-1|0 fa —fit+/fs
2 3 3 2 Z fs ofo|-1|{0]0 fs f2—fa
2 2 2 g ¢
T E RGOS 1|-1{0 |0 |0 —f3
A o [o]-1]1 [o
o N m % in oo h—F
E E E E E —
g g g 8 8 —fs + fa
—/fs
hash function h; as a Matrix-Vector Multiplication CountMin as a Matrix-Vector Multiplication

wam fmxl l—[(k-w)xm fm><1

CountSketch: Main Property

Theorem. Consider strict turnstile streaming (i e.,always f = 0). Let k =
Q(log)and w > >. Then, for any fixed i € | [f,] = f;,and

Pr(|f; — fi| = €||f||z] <

Comparison to CountMin

* Erroris w.rt. ||f]|, instead of ||f]||{. Note ||f||, < |[f]l{, and in some cases ||f]||, < ||f]l1

* Space complexity: O(Ei2 -logn) bits

CountSketch Analysis

* Consider an item i and fix a row ¥.

 Define Z, = g,(i)C[¥, h,(i)] the value of counter in row £ that i is hashed to.

For j € [n] let Y} be the indicator rv. that is 1 if hy(i) = h,(j); i.e., i and j collide in h,
IE[Y]] = [E[YJZ] = 1/w from pairwise independence of h,

Zp=geCL,h,(D] = g,(Dfi + X2 9:DF;Y;

E[Ze] = fi + X2 Elge(Dg:(DY;] - f;
= f, // pairwise independence of g,

Since E|g,(0)g,(NY;| = Elg,() g, (D E[Y;] =0

CountSketch Analysis: Variance

 Define Z, = g,(i)C[¥£, h,(i)] the value of counter in row £ that i is hashed to.
For j € [n] let Y} be the indicator rv. that is 1 if h,(i) = h,(j); i.e., i and j collide in h,
IE[Y]] = [E[sz] = 1/w from pairwise independence of h,

= E[(Z,; — f1)?]

[: : 2

=E _(Zjiig{’(l)g{’(])yjfj)]
=E _Zjiigf(i)zg{’(j)zyjzsz + Zj,j’;tig#(i)zgf(j)gf(j,)yjyj’fjfj’]

— qutisz [E[sz]

< lIflI3/w
Using Chebyshev, Pr[|Z, — f;| = ¢lIfl,] <

Var(Z_?) 1
2|1 fll5 = 2w =1/3

Countsketch: Concentration

Var(Z_?) 1
e2|IfII5 = g2w =1/3

Using Chebyshev, Pr[|Z, — f;| = €llf|l,] <

Then, by Chernoff bound,
Pr[|median{Z,, ...,Z,} — fi| = €llfll,] < e 0 < §

	Algorithms for Big Data (Fall 25)
	Frequent Items Problem (𝐹 ∞ -Moment)
	Finding Majority Element (interview question)
	Boyer-Moore Voting
	Boyer-Moore Voting
	Extension to 𝑘 Heavy Hitters
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘)
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Wrap-up: Deterministic vs Randomized
	Basic Hashing Idea
	CountMin Sketch [Cormode-Muthukrishnan]
	CountMin Sketch in Streaming
	CountMin Sketch: Main Property
	CountMin: Analysis
	CountMin Sketch
	CountMin is a Linear Sketch
	CountSketch
	Why CountSkecth is a Linear Sketch?
	CountSketch: Main Property
	CountSketch Analysis
	CountSketch Analysis: Variance
	Countsketch: Concentration

