
Algorithms for Big Data (FALL 25)
Lecture 7

HEAVY HITTERS: MISRA-GRIES, COUNTMIN AND COUNTSKETCH

ALI VAKILIAN (vakilian@vt.edu)

Frequent Items Problem (𝐹𝐹∞-Moment)

Recall: What is 𝐹𝐹∞?

• 𝐹𝐹∞ is very brittle and hard to estimate with low memory.
• Even strong lower bounds even for very weak relative approximations.

Hence, we need to settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 > 𝑚𝑚
𝑘𝑘

for some fixed 𝑘𝑘.
Heavy hitters are very frequent items.

Finding Majority Element (interview question)

Offline: given an array/list 𝑨𝑨 of 𝑚𝑚 integers, is there an element that
occurs more than 𝑚𝑚/2 times in 𝑨𝑨?
Streaming: is there an 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 > 𝑚𝑚/2?

Boyer-Moore Voting

Lemma. If there exists a
majority item 𝑖𝑖, the algorithm
outputs 𝑠𝑠 = 𝑖𝑖 and 𝑐𝑐 ≥ 𝑓𝑓𝑖𝑖 −

𝑚𝑚
2

.

Why it works?

Majority (in streams):
 let 𝑐𝑐 ← 0, 𝑠𝑠 ← 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 foreach item 𝑒𝑒𝑗𝑗 in the stream do:
 if 𝒆𝒆𝒋𝒋 = 𝑠𝑠 then
 𝑐𝑐 ← 𝑐𝑐 + 1
 else if 𝑐𝑐 = 0
 𝑐𝑐 ← 1 and 𝑠𝑠 ← 𝒆𝒆𝒋𝒋
 else
 𝑐𝑐 ← 𝑐𝑐 − 1
 return 𝑐𝑐 and 𝑠𝑠

Boyer-Moore Voting

Lemma. If there exists a
majority item 𝑖𝑖, the algorithm
outputs 𝑠𝑠 = 𝑖𝑖 and 𝑐𝑐 ≥ 𝑓𝑓𝑖𝑖 −

𝑚𝑚
2

.

Why it works?

What if no majority item exists?
How to verify?

Majority (in streams):
 let 𝑐𝑐 ← 0, 𝑠𝑠 ← 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 foreach item 𝑒𝑒𝑗𝑗 in the stream do:
 if 𝒆𝒆𝒋𝒋 = 𝑠𝑠 then
 𝑐𝑐 ← 𝑐𝑐 + 1
 else if 𝑐𝑐 = 0
 𝑐𝑐 ← 1 and 𝑠𝑠 ← 𝒆𝒆𝒋𝒋
 else
 𝑐𝑐 ← 𝑐𝑐 − 1
 return 𝑐𝑐 and 𝑠𝑠

Extension to 𝑘𝑘 Heavy Hitters

Offline: given an array/list 𝑨𝑨 of 𝑚𝑚 integers, is there an element that occurs
more than 𝑚𝑚/𝑘𝑘 times in 𝑨𝑨?
Streaming: is there an 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 > 𝑚𝑚/𝑘𝑘?

Idea. Extending Boyer-More Voting algorithm to this more general setting.

Misra-Gries Algorithm (𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘)

Space: 𝑂𝑂(𝑘𝑘)

Theorem. For each 𝑖𝑖 ∈ [𝑛𝑛],
𝑓𝑓𝑖𝑖 − 𝑚𝑚

𝑘𝑘+1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖

⟹ any item with 𝑓𝑓𝑖𝑖 > 𝑚𝑚
𝑘𝑘 is in 𝐷𝐷.

Misra-Gries (𝒌𝒌):
 let 𝐷𝐷 be an empty array of size 𝑘𝑘
 foreach item 𝑒𝑒𝑗𝑗 in the stream do
 if 𝒆𝒆𝒋𝒋 ∈ 𝐷𝐷 then
 𝐷𝐷[𝒆𝒆𝒋𝒋] ← 𝐷𝐷[𝒆𝒆𝒋𝒋] + 1
 else if 𝐷𝐷 has less than 𝑘𝑘 items
 add 𝒆𝒆𝒋𝒋 to 𝐷𝐷 and set 𝐷𝐷[𝒆𝒆𝒋𝒋] ← 1
 else
 foreach ℓ ∈ 𝐷𝐷 do
 𝐷𝐷 ℓ ← 𝐷𝐷 ℓ − 1 (if 0, remove)
 foreach ℓ ∈ 𝐷𝐷, set 𝑓𝑓ℓ ← 𝐷𝐷[ℓ] (zero for rest)

Misra-Gries Algorithm (𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘): Proof

Theorem. For each 𝑖𝑖 ∈ [𝑛𝑛], 𝑓𝑓𝑖𝑖 − 𝑚𝑚
𝑘𝑘+1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 .

Proof.
• 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 is easy.

Misra-Gries Algorithm (𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘): Proof

Theorem. For each 𝑖𝑖 ∈ [𝑛𝑛], 𝑓𝑓𝑖𝑖 − 𝑚𝑚
𝑘𝑘+1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 .

Proof.
Alternative view of algorithm.
maintain count 𝐶𝐶[𝑖𝑖] for each 𝑖𝑖 (initialized to 0). ≤ 𝑘𝑘 are nonzero at anytime.

when next element 𝑒𝑒𝑗𝑗 arrives:
 if 𝐶𝐶 𝑒𝑒𝑗𝑗 > 0 then increment 𝐶𝐶[𝑒𝑒𝑗𝑗]
 else if < 𝑘𝑘 positive counters, then set 𝐶𝐶 𝑒𝑒𝑗𝑗 = 1
 else, decrement all positive counters (exactly 𝑘𝑘 of them)

 output 𝑓𝑓𝑖𝑖 = 𝐶𝐶[𝑖𝑖] for each 𝑖𝑖

Misra-Gries Algorithm (𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘): Proof

Theorem. For each 𝑖𝑖 ∈ [𝑛𝑛], 𝑓𝑓𝑖𝑖 − 𝑚𝑚
𝑘𝑘+1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 .

Goal. 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ≤ 𝑚𝑚
𝑘𝑘+1

• Suppose decrement all occur ℓ times, then ℓ𝑘𝑘 + ℓ ≤ 𝑚𝑚 ⟹ ℓ ≤ 𝑚𝑚
𝑘𝑘+1

“each decrement all remove 𝑘𝑘 previously added items and involves an
insertion causing this operation. (each deals with 𝑘𝑘 + 1 distinct elements)”

Define 𝛼𝛼 = 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 . It is initially zero (as both are equal to zero).
How big can it get?

Misra-Gries Algorithm (𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘): Proof

Theorem. For each 𝑖𝑖 ∈ [𝑛𝑛], 𝑓𝑓𝑖𝑖 − 𝑚𝑚
𝑘𝑘+1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 .

Define 𝛼𝛼 = 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 . It is initially zero (as both are equal to zero).
How big can it get?
• If 𝑒𝑒𝑗𝑗 = 𝑖𝑖 and 𝐶𝐶[𝑖𝑖] is incremented, then 𝛼𝛼 stays the same.
• If 𝑒𝑒𝑗𝑗 = 𝑖𝑖 and 𝐶𝐶[𝑖𝑖] is not incremented, then 𝛼𝛼 increases by one and 𝑘𝑘

counters decremented (charge to one of the ℓ events).
• If 𝑒𝑒𝑗𝑗 ≠ 𝑖𝑖 and 𝐶𝐶[𝑖𝑖] is decremented, then 𝛼𝛼 increases by one. This only

happens in decrement all scenario (again charge to one of the ℓ events).
So, 𝜶𝜶 ≤ ℓ ≤ 𝒎𝒎/(𝒌𝒌 + 𝟏𝟏)

Wrap-up: Deterministic vs Randomized

• Cannot improve 𝑂𝑂(𝑘𝑘) space if one wants additive error of at most 𝑚𝑚/𝑘𝑘.
• Somewhat rare to have a deterministic algorithm that is near-optimal.

Why may we still look for randomized solutions?
• Supporting deletions
• Extra properties of sketch-based solutions

Basic Hashing Idea

Heavy Hitters Problem: Find all items 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘.

• Let 𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 be the 𝑘𝑘 heavy hitters (at most 𝑘𝑘)
• Suppose we pick a hash function ℎ: 𝑛𝑛 → [𝑐𝑐𝑐𝑐] for some 𝑐𝑐 > 1
• ℎ maps the heavy hitters into different buckets (𝑘𝑘 balls into 𝑐𝑐𝑐𝑐 bins)
• Then, ideally, we would like to use the count of items in each bucket as

an estimate for the frequency of one heavy hitters.

Repeating this idea with independent hashes improves the estimate

• Let 𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 be the 𝑘𝑘 heavy hitters (at most 𝑘𝑘)
• Suppose we pick a hash function ℎ: 𝑛𝑛 → [𝑐𝑐𝑐𝑐] for some 𝑐𝑐 > 1
• ℎ maps the heavy hitters into different buckets (𝑘𝑘 balls into 𝑐𝑐𝑐𝑐 bins)
• Then, ideally, we would like to use the count of items in each bucket as

an estimate for the frequency of one heavy hitters.

CountMin Sketch [Cormode-Muthukrishnan]

• 𝑘𝑘 pairwise independent hash functions ℎ1, … , ℎ𝑘𝑘 ; each 𝑛𝑛 → [𝑤𝑤]
• Equivalently, a table 𝐶𝐶 with 𝑘𝑘 rows and 𝑤𝑤 columns.
• Store one counter per entry in the table, which keep the aggregate

frequency of items mapped to the entry by the corresponding hash
function. 𝐶𝐶[ℓ, 𝑠𝑠] is the counter for bucket 𝑠𝑠 in hash function ℎℓ.

• Let 𝑓𝑓 ∈ ℝ𝑛𝑛 be the final frequency vector. For ℓ ∈ 𝑘𝑘 , 𝑠𝑠 ∈ [𝑤𝑤],
𝐶𝐶 ℓ, 𝑠𝑠 = ∑𝑖𝑖:ℎℓ 𝑖𝑖 =𝑠𝑠 𝑓𝑓𝑖𝑖

o For every ℓ ∈ [𝑘𝑘], 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)] is an over-estimate of 𝑓𝑓𝑖𝑖 .
o We have 𝑘𝑘 such estimate, how good is the quality of best of them?

CountMin Sketch in Streaming

• Each of 𝑘𝑘 estimates for 𝑓𝑓𝑖𝑖 is
overcounting its frequency

• Picking the minimum such
estimate is reasonable.

CountMin Sketch (stream):
 let ℎ1, … ,ℎ𝑘𝑘 be pairwise independent

hash functions from 𝑛𝑛 → [𝑤𝑤]

 foreach item 𝑒𝑒𝑡𝑡 = (𝑖𝑖𝑡𝑡 ,Δ𝑡𝑡) in the stream do:

for ℓ = 1 to 𝑘𝑘 do:
 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖𝑡𝑡)] ← 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖𝑡𝑡)] + Δ𝑡𝑡

 //frequency estimates
 foreach 𝑖𝑖 ∈ [𝑛𝑛], set 𝑓𝑓𝑖𝑖 = min

ℓ∈[𝑘𝑘]
𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)]

CountMin Sketch: Main Property

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let
𝑘𝑘 = Ω log 1

𝛿𝛿 and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹

• Unlike Misra-Gries, CountMin overestimates.

• Items are not stored (can be recovered via queries).
• Handles deletion (works in strict turnstile model)

• Space complexity: 𝑂𝑂(
log 1

𝛿𝛿
𝜀𝜀

⋅ log𝑚𝑚) bits

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑘𝑘 =
Ω log 1

𝛿𝛿 and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹

CountMin: Analysis

• Consider an item 𝑖𝑖 and fix a row ℓ.
• Define 𝑍𝑍ℓ = 𝐶𝐶[ℓ,ℎℓ 𝑖𝑖] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 Pr[ℎℓ 𝑗𝑗 = ℎℓ(𝑖𝑖)] ⋅ 𝑓𝑓𝑗𝑗

𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖
1
𝑤𝑤
⋅ 𝑓𝑓𝑗𝑗 // pairwise independence of ℎℓ

𝔼𝔼 𝑍𝑍ℓ ≤ 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1/2 // 𝑤𝑤 > 2/𝜀𝜀

Applying Markov, Pr[𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 1] ≤ 1/2
Since 𝑘𝑘 hash functions are independent,

Pr[min
ℓ∈ 𝑘𝑘

𝑍𝑍ℓ ≥ 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1] ≤ 1
2𝑘𝑘
≤ 𝛿𝛿 // 𝑘𝑘 = Ω log 1

𝛿𝛿

Space Complexity: 𝑂𝑂(1
𝜀𝜀

log𝑛𝑛 log𝑚𝑚) bitsCountMin Sketch

• Setting 𝛿𝛿 = 1/𝑛𝑛2, a CountMin with 𝑂𝑂(log𝑛𝑛) rows and 𝑂𝑂(1/𝜀𝜀) columns,
for every 𝑖𝑖 ∈ [𝑛𝑛],

Pr 𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1 ≤ 1/𝑛𝑛2

• By union bound over all 𝑛𝑛 items, with probability ≥ 1 − 1/𝑛𝑛, for all 𝑖𝑖 ∈ [𝑛𝑛]

𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑘𝑘 =
Ω log 1

𝛿𝛿 and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹

CountMin is a Linear Sketch

hash function ℎ𝑖𝑖 as a Matrix-Vector Multiplication
Π𝑤𝑤×𝑚𝑚 𝒇𝒇𝑚𝑚×1

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 1 0
0 1 1 0 0
1 0 0 0 1

𝑓𝑓4
𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 1 0
0 1 1 0 0
1 0 0 0 1

𝑓𝑓4
𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

𝑓𝑓1 + 𝑓𝑓5
𝑓𝑓2 + 𝑓𝑓4
𝑓𝑓3

𝑓𝑓1 + 𝑓𝑓2
𝑓𝑓3 + 𝑓𝑓4
𝑓𝑓5

CountMin as a Matrix-Vector Multiplication
Π 𝑘𝑘⋅𝑤𝑤 ×𝑚𝑚 𝒇𝒇𝑚𝑚×1

Ite
m

 1
 is

 h
as

he
d

to
 b

uc
ke

t 3

Ite
m

 2
 is

 h
as

he
d

to
 b

uc
ke

t 2

Ite
m

 3
 is

 h
as

he
d

to
 b

uc
ke

t 2

Ite
m

 4
 is

 h
as

he
d

to
 b

uc
ke

t 1

Ite
m

 5
 is

 h
as

he
d

to
 b

uc
ke

t 3

CountSketch

• Simialr to CountMin, keeps track
of a table of 𝑘𝑘 × 𝑤𝑤 counters

• Inspired by AMS sketch, assign
u.a.r signs {−1, +1} to items

• Counters can get even negative

CountSketch (stream):
 let ℎ1, … ,ℎ𝑘𝑘 be pairwise independent hash

functions from 𝑛𝑛 → [𝑤𝑤]
 let 𝑔𝑔1, … ,𝑔𝑔𝑘𝑘 be pairwise independent hash

functions from 𝑛𝑛 → {−1, +1}

 foreach item 𝑒𝑒𝑡𝑡 = (𝑖𝑖𝑡𝑡 ,Δ𝑡𝑡) in the stream do:
for ℓ = 1 to 𝑘𝑘 do:

 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖𝑡𝑡 ← 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖𝑡𝑡 + 𝑔𝑔ℓ 𝑖𝑖𝑡𝑡 ⋅ Δ𝑡𝑡

 //frequency estimates
 foreach 𝑖𝑖 ∈ [𝑛𝑛], set 𝑓𝑓𝑖𝑖 = median

ℓ∈[𝑘𝑘]
{𝑔𝑔ℓ 𝑖𝑖 ⋅ 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)]}

Why CountSkecth is a Linear Sketch?

hash function ℎ𝑖𝑖 as a Matrix-Vector Multiplication
Π𝑤𝑤×𝑚𝑚 𝒇𝒇𝑚𝑚×1

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 −1 0

0 −1 1 0 0

1 0 0 0 1

−𝑓𝑓4
−𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 −1 0

0 −1 1 0 0

1 0 0 0 1

−𝑓𝑓4
−𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

−1 0 0 0 1

0 1 0 −1 0

0 0 −1 0 0

1 −1 0 0 0

0 0 −1 1 0

0 0 0 0 −1

−𝑓𝑓1 + 𝑓𝑓5
𝑓𝑓2 − 𝑓𝑓4
−𝑓𝑓3

𝑓𝑓1 − 𝑓𝑓2
−𝑓𝑓3 + 𝑓𝑓4
−𝑓𝑓5

CountMin as a Matrix-Vector Multiplication
Π 𝑘𝑘⋅𝑤𝑤 ×𝑚𝑚 𝒇𝒇𝑚𝑚×1

Ite
m

 1
 is

 h
as

he
d

to
 b

uc
ke

t 3

Ite
m

 2
 is

 h
as

he
d

to
 b

uc
ke

t 2
 ×

 -1

Ite
m

 3
 is

 h
as

he
d

to
 b

uc
ke

t 2

Ite
m

 4
 is

 h
as

he
d

to
 b

uc
ke

t 1
 ×

 -1

Ite
m

 5
 is

 h
as

he
d

to
 b

uc
ke

t 3

CountSketch: Main Property

Comparison to CountMin
• Error is w.r.t. 𝑓𝑓 2 instead of 𝑓𝑓 1. Note 𝑓𝑓 2 ≤ 𝑓𝑓 1, and in some cases 𝑓𝑓 2 ≪ 𝑓𝑓 1

• Space complexity: 𝑂𝑂(1
𝜀𝜀2
⋅ log𝑛𝑛) bits

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑘𝑘 =
Ω log 1

𝛿𝛿 and 𝑤𝑤 > 3
𝜀𝜀2

. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝔼𝔼 �𝒇𝒇𝒊𝒊 = 𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 − 𝒇𝒇𝒊𝒊 ≥ 𝜺𝜺 𝒇𝒇 𝟐𝟐 ≤ 𝜹𝜹

CountSketch Analysis

• Consider an item 𝑖𝑖 and fix a row ℓ.
• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ
𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ
𝑍𝑍ℓ = 𝑔𝑔ℓ 𝑖𝑖 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖 = 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑗𝑗𝑌𝑌𝑗𝑗

𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝔼𝔼[𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗] ⋅ 𝑓𝑓𝑗𝑗
𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 // pairwise independence of 𝑔𝑔ℓ
Since 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝔼𝔼 𝑌𝑌𝑗𝑗 = 0

CountSketch Analysis: Variance

• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ
𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ
Var(𝑍𝑍ℓ) = 𝔼𝔼 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 2

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑓𝑓𝑗𝑗
2

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 2𝑌𝑌𝑗𝑗2𝑓𝑓𝑗𝑗2 + ∑𝑗𝑗,𝑗𝑗′≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 𝑔𝑔ℓ 𝑗𝑗′ 𝑌𝑌𝑗𝑗𝑌𝑌𝑗𝑗′𝑓𝑓𝑗𝑗𝑓𝑓𝑗𝑗′

Var(𝑍𝑍ℓ) = ∑𝑗𝑗≠𝑖𝑖 𝑓𝑓𝑗𝑗2 𝔼𝔼[𝑌𝑌𝑗𝑗2]
Var(𝑍𝑍ℓ) ≤ 𝑓𝑓 2

2/𝑤𝑤

Using Chebyshev, Pr 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ Var(𝑍𝑍_ℓ)
𝜀𝜀2 𝑓𝑓 2

2 ≤ 1
𝜀𝜀2𝑤𝑤

≤ 1/3

Countsketch: Concentration

Using Chebyshev, Pr 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ Var(𝑍𝑍_ℓ)
𝜀𝜀2 𝑓𝑓 2

2 ≤ 1
𝜀𝜀2𝑤𝑤

≤ 1/3

Then, by Chernoff bound,

Pr median 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ 𝑒𝑒−Ω(𝑘𝑘) ≤ 𝛿𝛿

	Algorithms for Big Data (Fall 25)
	Frequent Items Problem (𝐹 ∞ -Moment)
	Finding Majority Element (interview question)
	Boyer-Moore Voting
	Boyer-Moore Voting
	Extension to 𝑘 Heavy Hitters
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘)
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Misra-Gries Algorithm (𝑓 𝑖 ≥𝑚/𝑘): Proof
	Wrap-up: Deterministic vs Randomized
	Basic Hashing Idea
	CountMin Sketch [Cormode-Muthukrishnan]
	CountMin Sketch in Streaming
	CountMin Sketch: Main Property
	CountMin: Analysis
	CountMin Sketch
	CountMin is a Linear Sketch
	CountSketch
	Why CountSkecth is a Linear Sketch?
	CountSketch: Main Property
	CountSketch Analysis
	CountSketch Analysis: Variance
	Countsketch: Concentration

