Algorithms for Big Data (FALL 25)

Lecture 6

 F_2 -ESTIMATION, AMS SKETCH, HEAVY HITTERS

ALI VAKILIAN (vakilian@vt.edu)

Estimating F_2

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Compute F_2

The generic AMS estimator gives $(1 \pm \epsilon)$ -estimation in $O(\frac{1}{\epsilon^2}\sqrt{n})$ space.

Can we do better?

k-wise independence

Consider flipping two unbiassed coins, and define following three events:

- A: The first coin is Heads (Pr(A) = 1/2)
- **B:** The second coin is Heads (Pr(B) = 1/2)
- **C:** Two coins show different outcomes ($Pr(\mathbf{C}) = 1/2$)

Are they pairwise independent?

- $Pr(A \cap B) = 1/4$
- $Pr(A \cap C) = 1/4$ (and similarly $Pr(A \cap C) = 1/4$)

Are they 3-wise independent?

•
$$Pr(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}) = 0 \neq 1/8 = Pr(\mathbf{A}) \times Pr(\mathbf{B}) \times Pr(\mathbf{C})$$

Estimating F_2 (AMS data structure)

$$Z = \sum_{i=1}^{n} f_i \cdot Y_i$$

- $\mathbb{E}[Y_i] =$
- $Var[Y_i] = \mathbb{E}[Y_i^2] =$
- For $i \neq j$, $\mathbb{E}[Y_i Y_j] =$

$$Z^{2} = \sum_{i=1}^{n} f_{i}^{2} \cdot Y_{i}^{2} + 2 \sum_{i \neq j} f_{i} f_{j} Y_{i} Y_{j}$$

So,
$$\mathbb{E}[Z^2] = \sum_{i=1}^n f_i^2 = F_2$$

AMS- F_2 -Estimate (stream):

let $h: [n] \to \{-1,1\}$ be chosen from a 4-wise independent hash family \mathcal{H}

$$z \leftarrow 0$$

foreach item e_i in the stream:

$$z \leftarrow z + h(e_i)$$

return z^2

let Y_1, \dots, Y_n be 4-wise independent r.v.s

$$z \leftarrow z + Y_{e_i}$$

Variance Computation of AMS Estimator

 $Var[Z^2] = \mathbb{E}[Z^4] - (\mathbb{E}[Z^2])^2$. So, needs to bound $\mathbb{E}[Z^4]$.

$$\mathbb{E}[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell \mathbb{E}[Y_i Y_j Y_k Y_\ell]$$

4-wise independence implies $\mathbb{E}\big[Y_iY_jY_kY_\ell\big]=0$ if there is an index among i,j,ℓ,k that occurs only once; otherwise, it is 1.

$$\mathbb{E}[Z^{4}] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_{i} f_{j} f_{k} f_{\ell} \mathbb{E}[Y_{i} Y_{j} Y_{k} Y_{\ell}]$$

$$= \sum_{i \in [n]}^{F_{4}} f_{i}^{4} + 6 \cdot \sum_{i \in [n]} \sum_{j \in [i+1\cdots n]} f_{i}^{2} f_{j}^{2}$$

Variance Computation of AMS Estimator

$$\begin{aligned} \operatorname{Var}[Z^{2}] &= \mathbb{E}[Z^{4}] - \left(\mathbb{E}[Z^{2}]\right)^{2} \\ &= F_{4} + 6 \cdot \sum_{i \in [n]} \sum_{j \in [i+1 \cdots n]} f_{i}^{2} f_{j}^{2} - \left(\mathbb{E}[Z^{2}]\right)^{2} \\ &= F_{4} + 6 \cdot \sum_{i \in [n]} \sum_{j \in [i+1 \cdots n]} f_{i}^{2} f_{j}^{2} - \left(F_{4} + 2 \cdot \sum_{i \in [n]} \sum_{j \in [i+1 \cdots n]} f_{i}^{2} f_{j}^{2}\right) \\ &= 4 \cdot \sum_{i \in [n]} \sum_{j \in [i+1 \cdots n]} f_{i}^{2} f_{j}^{2} \\ &\leq 2 \cdot F_{2} \end{aligned}$$

Estimating F_2 (AMS data structure)

$$\mathbb{E}[Z^2] = F_2 \text{ and } Var[Z^2] \le 2F_2^2$$

- Averaging $\frac{8}{\epsilon^2}$ estimator
 - By Chebyshev, $(\epsilon, \frac{1}{4})$ -relative estimate
- Reduce error by median trick over $O(\log 1/\delta)$ averaged estimators,
 - By Chernoff, (ϵ, δ) -relative estimate

AMS- F_2 -Estimate (stream):

let $h: [n] \to \{-1,1\}$ be chosen from a 4-wise independent hash family \mathcal{H}

$$z \leftarrow 0$$

foreach item e_i in the stream:

$$z \leftarrow z + h(e_i)$$

return z^2

Total space is $O(\log \frac{1}{\delta} \cdot \frac{1}{\epsilon^2} \cdot \log n)$

Tug-of-War sketch

Negative Updates

• So far, we only studied the "insertion only" streaming.

- However, we can think of the setting where an item can be deleted.
 - Amazon inventory management: (items may be added to the inventory, or sold)

Bank Account Balances: (a deposit to, or withdrawal from the account)

Negative Updates

• So far, we only studied the "insertion only" streaming.

- However, we can think of the setting where an item can be deleted.
- In case of vector processing, we may allow for update $\Delta_i \in \{-1,1\}$ on item e_i
 - i.e., $f_{e_i} \leftarrow f_{e_i} + \Delta_i$
- In particular, at the end, some coordinates may have negative values.

Can we still use AMS algorithm to compute F_2 in this setting?

In **HW 1**: You'll answer this question.

Linear Sketching

Linear Sketch

A sketch of a stream S is a summary data structure sketch(S) (most relevant to our goal if it is of small size).

Does the AMS algorithm provide a **sketch** for F_2 -estimation?

A sketch is linear, if

```
sketch(S_1 \circ S_2) = \operatorname{sketch}(S_1) \circ \operatorname{sketch}(S_1)
Equivalently, sketch(S) = \Pi S (S \in \mathbb{R}^m \text{ and } \Pi \in \mathbb{R}^{k \times m})
```

Does the AMS algorithm provide a linear sketch for F_2 -estimation?

AMS as a Sketch

AMS- F_2 -Sketch:

let
$$m = c \log\left(\frac{1}{\delta}\right)/\epsilon^2$$

let Π be a $m \times n$ matrix with $\{-1, +1\}$ entries

- (i) rows are independent and
- (ii) in each row, entries are 4-wise indep.

 $z \leftarrow 0$ is a $m \times 1$ vector initialized to **0**

foreach item i_i in the stream do:

$$z \leftarrow z + Me_{i_j}$$

return z as sketch

AMS as a Sketch

- the sketch is mergeable.

$$-z_{S \cup T} = z_S + z_T$$

How to get the final estimate from the sketch *z*?

$$\hat{F}_2 = \text{median}_{g=1...k} \left(\frac{1}{t} \sum_{j \in G_g} z_j^2 \right)$$

where $G_1, ..., G_k$ are partition of the m rows (m = tk).

AMS- F_2 -Sketch:

let $m = k \times t$

let Π be a $m \times n$ matrix with $\{-1, +1\}$ entries

(i) rows are independent and

(ii) in each row, entries are 4-wise indep.

 $z \leftarrow 0$ is a $m \times 1$ vector initialized to **0**

foreach item i_i in the stream do:

$$z \leftarrow z + Me_{i_j}$$

return z as sketch

Sketching

• Sketching is a powerful algorithmic technique with broad applications in both theory and practice.

 Linear sketches are a particularly important subclass, as they naturally handle dynamic data streams that include deletions or negative updates.

 The theory of sketching is deeply connected to fundamental concepts like dimensionality reduction (the Johnson-Lindenstrauss Lemma) and subspace embeddings.

Heavy Hitters

Streaming Models: Revisit

- The goal is to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially all 0's vector.
- Each element e_j of the stream is a tuple of (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_j \in \mathbb{R}$ is the update to coordinate i_j ; i.e., this updates

$$x_{i_j} \leftarrow x_{i_j} + \Delta_j$$

- $\Delta_j > 0$ for all j: cash register, insertion only (when $\Delta_j = 1$) streams
- $\circ \Delta_i$ is arbitrary: dynamic or turnstile stream
- Δ_i is arbitrary but $x \geq 0$ at all times: strict turnstile model

Frequent Items Problem (F_{∞} -Moment)

Recall: What is F_{∞} ?

- F_{∞} is very brittle and hard to estimate with low memory.
- Even strong lower bounds even for very weak relative approximations.

Hence, we need to settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that $f_i > \frac{m}{k}$ for some fixed k. Heavy hitters are **very** frequent items.

Finding Majority Element (interview question)

Offline: given an array/list A of m integers, is there an element that occurs more than m/2 times in A?

Streaming: is there an i such that $f_i > m/2$?

Boyer-Moore Voting

Lemma. If there exists a majority item i, the algorithm outputs s = i and $c \ge f_i - \frac{m}{2}$.

Why it works?

```
Majority (in streams):
   let c \leftarrow 0, s \leftarrow null
   foreach item e_i in the stream do:
         if e_i = s then
            c \leftarrow c + 1
         else if c = 0
            c \leftarrow 1 and s \leftarrow e_i
         else
            c \leftarrow c - 1
   return c and s
```

Boyer-Moore Voting

Lemma. If there exists a majority item i, the algorithm outputs s = i and $c \ge f_i - \frac{m}{2}$.

Why it works?

What if no majority item exists? How to verify?

```
Majority (in streams):
   let c \leftarrow 0, s \leftarrow null
   foreach item e_i in the stream do:
         if e_i = s then
            c \leftarrow c + 1
         else if c = 0
            c \leftarrow 1 and s \leftarrow e_i
         else
            c \leftarrow c - 1
   return c and s
```