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Frequency Moments

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each 
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
• Let 𝑓𝑓𝑖𝑖 denotee the frequency of item 𝑖𝑖 in the stream
• Consider vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛)
The Goal: Given 𝑘𝑘 ≥ 0, compute the 𝑘𝑘-th moment of 𝒇𝒇 denoted as 

𝐹𝐹𝑘𝑘 = ∑𝑖𝑖∈[𝑛𝑛]𝑓𝑓𝑖𝑖𝑘𝑘

Example: 𝑛𝑛 = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4
• 𝐹𝐹1 = 14
• 𝐹𝐹2 = 30 𝒇𝒇 = (3,1,2,1,1,0,1,2,3)



Frequency Moments

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each 
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
• Let 𝑓𝑓𝑖𝑖 denotee the frequency of item 𝑖𝑖 in the stream
• Consider vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛)
The Goal: Given 𝑘𝑘 ≥ 0, compute the 𝑘𝑘-th moment of 𝒇𝒇 denoted as 

𝐹𝐹𝑘𝑘 = ∑𝑖𝑖∈[𝑛𝑛]𝑓𝑓𝑖𝑖𝑘𝑘 

Generalization. Estimate 𝑔𝑔(𝑆𝑆) defined as ∑𝑖𝑖∈[𝑛𝑛]𝑔𝑔𝑖𝑖(𝑓𝑓𝑖𝑖) where 𝑔𝑔𝑖𝑖:ℝ → ℝ and 𝑔𝑔𝑖𝑖 0 = 0.

 𝐹𝐹𝑘𝑘 : For every 𝑖𝑖, 𝑔𝑔𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑘𝑘

 Entropy of the stream is defined as ∑𝑖𝑖∈[𝑛𝑛] 𝑓𝑓𝑖𝑖 log 𝑓𝑓𝑖𝑖 , i.e., 𝑔𝑔𝑖𝑖 𝑥𝑥 = 𝑥𝑥 log 𝑥𝑥. 

(assume 0 log 0 = 0) 



(III) Sketching. Given 𝑘𝑘, create a small size summary (sketch) of the frequency vector providing 
point query (or other statistics), in one pass over the stream.

(II) Sampling. Given 𝑘𝑘, sample an item 𝑖𝑖 proportional to 𝑓𝑓𝑖𝑖𝑘𝑘/𝐹𝐹𝑘𝑘 using small memory in one pass 
over the stream.

(I) Estimation. Given 𝑘𝑘, estimate 𝐹𝐹𝑘𝑘 exactly/approximately using small memory in one pass over 
the stream.

Frequency Moments: Questions



(II) Sampling. Sample an item 𝑖𝑖 proportional to 𝑓𝑓𝑖𝑖2/𝐹𝐹2 using small memory in one pass over the 
stream.

(I) Estimation. Estimate 𝐹𝐹2 exactly/approximately using small memory in one pass over the 
stream.

𝐹𝐹2 Estimation

To compute 𝐹𝐹2 exactly, we need to keep track of 𝑓𝑓𝑖𝑖 for all 𝑖𝑖 ∈ [𝑛𝑛].

However, we afford to keep track of the frequency of a single (or few) item.

Let’s try it …



(Recap) When Variance is Small Enough?

If we want to apply Chebyshev’s inequality,

Pr 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 > 𝑐𝑐𝔼𝔼 𝑋𝑋 ≤
Var[𝑋𝑋]

𝑐𝑐2 𝔼𝔼[𝑋𝑋] 2

So, we will get (𝜖𝜖,𝑂𝑂(1))-relative estimate if 

 Var 𝑋𝑋 = 𝔼𝔼[𝑋𝑋2] − 𝔼𝔼 𝑋𝑋 2 ≤ 𝜖𝜖2𝔼𝔼 𝑋𝑋 2

Which holds when

 𝔼𝔼 𝑋𝑋2 ≤ 𝜖𝜖2 ⋅ 𝔼𝔼 𝑋𝑋 2 

by Averaging & Median 
Trick

We can boost it to
(𝜖𝜖, 𝛿𝛿)-relative estimate, in 
𝑂𝑂(1/𝜖𝜖2 log 1/𝛿𝛿) space



𝐹𝐹𝑘𝑘-Estimation (Simple Algorithm)

• Let 𝑍𝑍 = 𝑛𝑛 ⋅ 𝑓𝑓𝑖𝑖𝑘𝑘

Is it an unbiased estimation?

𝔼𝔼 𝑍𝑍 = 1
𝑛𝑛
⋅ ∑𝑖𝑖∈ 𝑛𝑛 𝑛𝑛 ⋅ 𝑓𝑓𝑖𝑖𝑘𝑘 

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖∈[𝑛𝑛] 𝑓𝑓𝑖𝑖𝑘𝑘 = 𝐹𝐹𝑘𝑘

Though, the issue is its Variance:
Var 𝑍𝑍 = 𝑛𝑛 ⋅ 𝐹𝐹2𝑘𝑘 − 𝐹𝐹𝑘𝑘2 

• it can get as large as 𝑂𝑂(𝑛𝑛𝐹𝐹𝑘𝑘2)
• The averaging technique will need 𝑂𝑂(𝑛𝑛) repetitions which is not good!

Simple Sampling Approach:
sample 𝑖𝑖 ∈ [𝑛𝑛] uniformly at random
𝑓𝑓𝑖𝑖 ← 0
while an item 𝑒𝑒 in stream arrives:
 if 𝑒𝑒 = 𝑖𝑖 then
  𝑓𝑓𝑖𝑖 ← 𝑓𝑓𝑖𝑖 + 1
return 𝑛𝑛 ⋅ 𝑓𝑓𝑖𝑖𝑘𝑘  



𝐹𝐹2-Estimation via Sampling

• It’s more natural to sample an item proportional to its frequency 
(Importance/Weighted Sampling)

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖∈ 𝑛𝑛
𝑓𝑓𝑖𝑖
𝐹𝐹1
⋅ (𝐹𝐹1⋅ 𝑓𝑓𝑖𝑖𝑘𝑘−1) 

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖∈[𝑛𝑛] 𝑓𝑓𝑖𝑖𝑘𝑘 = 𝐹𝐹𝑘𝑘

𝔼𝔼 𝑍𝑍2 = 𝐹𝐹1𝐹𝐹2𝑘𝑘−1
Exercise. 𝐹𝐹1𝐹𝐹2𝑘𝑘−1 ≤ 𝑛𝑛1−

1
𝑘𝑘 ⋅ (𝐹𝐹𝑘𝑘)2

Importance Sampling Approach:

sample 𝑖𝑖 ∈ [𝑛𝑛] at random ∝ 𝒇𝒇𝒊𝒊
𝑭𝑭𝟏𝟏

𝑓𝑓𝑖𝑖 ← 0
while an item 𝑒𝑒 in stream arrives:
 if 𝑒𝑒 = 𝑖𝑖 then
  𝑓𝑓𝑖𝑖 ← 𝑓𝑓𝑖𝑖 + 1
return 𝑭𝑭𝟏𝟏 ⋅ 𝑓𝑓𝑖𝑖𝑘𝑘−1 

𝑂𝑂 𝜖𝜖−2𝑛𝑛1/𝑘𝑘  samples suffices to get 

𝔼𝔼 𝑍𝑍avg2 ≤ 𝜖𝜖2𝔼𝔼 𝑍𝑍avg
2 But, how to perform this sampling?



Reservoir Sampling?

• We only get a random sample by the end of the stream, not at the beginning

• Still, it has some nice properties, useful for us:

• sample is u.a.r among the stream seen so far 
ReservoirSample (stream):
    sample ← ∅, 𝑡𝑡 ← 0
    foreach item 𝑥𝑥 in stream:
        𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝟏𝟏

𝒕𝒕

        if RandomUniform(0,1) < 1
𝑡𝑡
:

             sample ← 𝑥𝑥
    return sample

Sampling technique known as 
AMS Sampling



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆
𝑅𝑅𝑡𝑡
𝐶𝐶

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1
𝑅𝑅𝑡𝑡 1
𝐶𝐶 1

𝑻𝑻 = 𝟏𝟏

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 2
𝑅𝑅𝑡𝑡 1 2
𝐶𝐶 1 1

𝑻𝑻 = 𝟐𝟐

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 2 2
𝑅𝑅𝑡𝑡 1 2 2
𝐶𝐶 1 1 1

𝑻𝑻 = 𝟑𝟑

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 2 2 2
𝑅𝑅𝑡𝑡 1 2 2 2
𝐶𝐶 1 1 1 1

𝑻𝑻 = 𝟒𝟒

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2

𝒆𝒆 1 2 2 2 2
𝑅𝑅𝑡𝑡 1 2 2 2 2
𝐶𝐶 1 1 1 1 2

𝑻𝑻 = 𝟓𝟓

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 2 2 2 2 2
𝑅𝑅𝑡𝑡 1 2 2 2 2 2
𝐶𝐶 1 1 1 1 2 3

𝑻𝑻 = 𝟔𝟔

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆
𝑅𝑅𝑡𝑡
𝐶𝐶

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)

Another run



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1
𝑅𝑅𝑡𝑡 1
𝐶𝐶 1

𝑻𝑻𝑻 = 𝟏𝟏

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 1
𝑅𝑅𝑡𝑡 1 1
𝐶𝐶 1 1

𝑻𝑻𝑻 = 𝟐𝟐

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 1 1
𝑅𝑅𝑡𝑡 1 1 3
𝐶𝐶 1 1 1

𝑻𝑻𝑻 = 𝟑𝟑

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

• 𝑀𝑀 is the length of the stream
• 𝒆𝒆 is the value of the sample by 

Reservoir Sampling, so far.
• 𝑅𝑅𝑡𝑡 is the index of the sample by 

Reservoir Sampling, so far.
• 𝐶𝐶 is the number of times item 𝒆𝒆 is 

seen in the stream after index 𝑅𝑅𝑡𝑡
𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6
1 2 1 3 2 2

𝒆𝒆 1 1 1 1
𝑅𝑅𝑡𝑡 1 1 3 3
𝐶𝐶 1 1 1 1

𝑻𝑻𝑻 = 𝟒𝟒

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)



AMS Sampling

Observations.
• 𝑀𝑀 =

• ∀𝑖𝑖 ∈ 𝑛𝑛 , Pr 𝑅𝑅𝑀𝑀 = 𝑖𝑖 =

Theorem. The estimate 𝑍𝑍 returned by AMS-
Sample is an unbiased estimate of 𝐹𝐹𝑘𝑘

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0, 𝑒𝑒 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

Let 𝑡𝑡 be the last time (i.e., 𝑅𝑅𝑀𝑀 = 𝑡𝑡) the reservoir sampling gets updated:
• i.e., 𝑅𝑅𝑀𝑀 = 𝑡𝑡, and at the end of the stream, 𝒆𝒆 = 𝑒𝑒𝑡𝑡
• conditioned on 𝒆𝒆 be the value at the end of the stream, the index 𝑡𝑡 (i.e., 

the value of 𝑅𝑅𝑀𝑀) is uniformly distributed among the 𝑓𝑓𝒆𝒆 choices of 𝒆𝒆
 why? 
 by the property of reservoir sampling (any index is sampled w.p. 1/𝑀𝑀)
 if 𝑅𝑅𝑀𝑀 = 𝒆𝒆, the value of 𝐶𝐶 is equally likely to be any of {1, … ,𝑓𝑓𝒆𝒆}

Theorem. The estimate 𝑍𝑍 returned by AMS-
Sample is an unbiased estimate of 𝐹𝐹𝑘𝑘



AMS Sampling: Expectation Analysis

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖=1𝑛𝑛 Pr 𝑅𝑅𝑀𝑀 = 𝑖𝑖 ⋅ ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 Pr 𝐶𝐶 = 𝑡𝑡 ⋅ 𝑀𝑀 ⋅ 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘  

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖
𝐹𝐹1
⋅ ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 1
𝑓𝑓𝑖𝑖
⋅ 𝐹𝐹1 ⋅ 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘  

𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘  

telescopes to 𝑓𝑓𝑖𝑖𝑘𝑘

= 𝑭𝑭𝒌𝒌

Theorem. The estimate 𝑍𝑍 returned by AMS-
Sample is an unbiased estimate of 𝐹𝐹𝑘𝑘

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

𝔼𝔼 𝑍𝑍2 = ∑𝑖𝑖=1𝑛𝑛 Pr 𝑅𝑅𝑀𝑀 = 𝑖𝑖 ⋅ ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 Pr 𝐶𝐶 = 𝑡𝑡 ⋅ 𝑀𝑀2 ⋅ 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 2

 

𝔼𝔼 𝑍𝑍  = ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖
𝐹𝐹1
⋅ ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 1
𝑓𝑓𝑖𝑖
⋅ 𝐹𝐹12 ⋅ 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1 2

 

𝔼𝔼 𝑍𝑍  = 𝐹𝐹1 ⋅ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
 

𝔼𝔼 𝑍𝑍  ≤ 𝐹𝐹1 ⋅ 𝑘𝑘𝐹𝐹2𝑘𝑘−1 

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ⋅ (𝑘𝑘𝑡𝑡𝑘𝑘−1) 

𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 = ∑𝑖𝑖=0𝑘𝑘−1 𝑡𝑡𝑘𝑘−𝑖𝑖−1 ⋅ 𝑡𝑡 − 1 𝑖𝑖 ≤ ∑𝑖𝑖=0𝑘𝑘−1 𝑡𝑡𝑘𝑘−1 = 𝑘𝑘𝑡𝑡𝑘𝑘−1 

Mean Value Theorem. 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ≤ 𝑘𝑘𝑡𝑡𝑘𝑘−1

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ⋅ (𝑘𝑘𝑡𝑡𝑘𝑘−1) 

𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 = ∑𝑖𝑖=0𝑘𝑘−1 𝑡𝑡𝑘𝑘−𝑖𝑖−1 ⋅ 𝑡𝑡 − 1 𝑖𝑖 ≤ ∑𝑖𝑖=0𝑘𝑘−1 𝑡𝑡𝑘𝑘−1 = 𝑘𝑘𝑡𝑡𝑘𝑘−1 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑘𝑘 ⟹ 𝑓𝑓 𝑡𝑡 − 𝑓𝑓 𝑡𝑡 − 1 ≤ 𝑓𝑓′ 𝑡𝑡

Mean Value Theorem. 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ≤ 𝑘𝑘𝑡𝑡𝑘𝑘−1

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ⋅ (𝑘𝑘𝑡𝑡𝑘𝑘−1) 

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ 𝑘𝑘 ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖𝑘𝑘−1 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘  

telescopes to 𝑓𝑓𝑖𝑖𝑘𝑘

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 ⋅ (𝑘𝑘𝑡𝑡𝑘𝑘−1) 

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ 𝑘𝑘 ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖𝑘𝑘−1 ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘  

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
≤ 𝑘𝑘 ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖𝑘𝑘−1𝑓𝑓𝑖𝑖𝑘𝑘  

∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
= 𝒌𝒌𝑭𝑭𝟐𝟐𝟐𝟐−𝟏𝟏  

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling: Expectation Analysis

𝔼𝔼 𝑍𝑍2 = ∑𝑖𝑖=1𝑛𝑛 Pr 𝑅𝑅𝑀𝑀 = 𝑖𝑖 ⋅ ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 Pr 𝐶𝐶 = 𝑡𝑡 ⋅ 𝑀𝑀2 ⋅ 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘 2

 

𝔼𝔼 𝑍𝑍  = ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖
𝐹𝐹1
⋅ ∑𝑡𝑡=1

𝑓𝑓𝑖𝑖 1
𝑓𝑓𝑖𝑖
⋅ 𝐹𝐹12 ⋅ 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1 2

 

𝔼𝔼 𝑍𝑍  = 𝐹𝐹1 ⋅ ∑𝑖𝑖=1𝑛𝑛 ∑𝑡𝑡=1
𝑓𝑓𝑖𝑖 𝑡𝑡𝑘𝑘 − (𝑡𝑡 − 1)𝑘𝑘

2
 

𝔼𝔼 𝑍𝑍  ≤ 𝐹𝐹1 ⋅ 𝑘𝑘𝐹𝐹2𝑘𝑘−1 

𝔼𝔼 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 

Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−
1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 



AMS Sampling

Theorem. The estimate 𝑍𝑍 returned by AMS-
Sample is an unbiased estimate of 𝐹𝐹𝑘𝑘

AMS-Sample (stream):
    𝑀𝑀 ← 0,𝐶𝐶 ← 0,𝒆𝒆 ←⊥
    foreach item 𝑒𝑒𝑡𝑡 in the stream:
        𝑀𝑀 ← 𝑀𝑀 + 1
 Maintain 𝑅𝑅𝑡𝑡 via Reservoir Sampling 
 if 𝑅𝑅𝑡𝑡 is kept the same as 𝑅𝑅𝑡𝑡−1 then
  if 𝑒𝑒𝑡𝑡 = 𝒆𝒆 then 𝐶𝐶 ← 𝐶𝐶 + 1
 else
  𝒆𝒆 ← 𝑒𝑒𝑡𝑡 , 𝑅𝑅𝑡𝑡 ← 𝑡𝑡 and 𝐶𝐶 ← 1
    return 𝑀𝑀(𝐶𝐶𝑘𝑘 − (𝐶𝐶 − 1)𝑘𝑘)Theorem. Var 𝑍𝑍 ≤ 𝑘𝑘 ⋅ 𝑛𝑛1−

1
𝑘𝑘 ⋅ 𝐹𝐹𝑘𝑘 2 

By averaging Ω( 1
𝜖𝜖2
𝑘𝑘𝑛𝑛1−1/𝑘𝑘) estimators, and applying Chebyshev’s inequality:

 we get (1 ± 𝜖𝜖) estimate to 𝐹𝐹𝑘𝑘 with constant probability. 



AMS-Estimator Wrap-Up

• AMS-Estimator gives a (1 ± 𝜖𝜖)-estimation of 𝐹𝐹𝑘𝑘 in 𝑂𝑂 1
𝜖𝜖2
⋅ 𝑛𝑛1−

1
𝑘𝑘  space.

Is it tight? Can we do better?
• For 𝑘𝑘 > 2, it is known to be tight.
• What about 𝐹𝐹2?



Estimating 𝐹𝐹2
Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each 
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
• Let 𝑓𝑓𝑖𝑖 denotee the frequency of item 𝑖𝑖 in the stream
• Consider vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛)

The Goal: Compute 𝐹𝐹2

The generic AMS estimator gives (1 ± 𝜖𝜖)-estimation in 𝑂𝑂( 1
𝜖𝜖2

𝑛𝑛) space. 
Can we do better?
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