Algorithms for Big Data (FALL 25)

Lecture 5
FREQUENCY MOMENTS AND AMS SAMPLER/ESTIMATOR

ALI VAKILIAN (vakilian@vt.edu)

Frequency Moments

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Given $k \geq 0$, compute the k-th moment of f denoted as

$$F_k = \sum_{i \in [n]} f_i^k$$

Example: n = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4

- $F_1 = 14$
- $F_2 = 30$

$$f = (3,1,2,1,1,0,1,2,3)$$

Frequency Moments

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Given $k \geq 0$, compute the k-th moment of f denoted as

$$F_k = \sum_{i \in [n]} f_i^k$$

Generalization. Estimate g(S) defined as $\sum_{i \in [n]} g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ and $g_i(0) = 0$.

- $\succ F_k$: For every $i, g_i(x) = x^k$
- Entropy of the stream is defined as $\sum_{i \in [n]} f_i \log f_i$, i.e., $g_i(x) = x \log x$. (assume $0 \log 0 = 0$)

Frequency Moments: Questions

- (I) Estimation. Given k, estimate F_k exactly/approximately using small memory in one pass over the stream.
- (II) Sampling. Given k, sample an item i proportional to f_i^k/F_k using small memory in one pass over the stream.
- (III) Sketching. Given k, create a small size summary (sketch) of the frequency vector providing point query (or other statistics), in one pass over the stream.

F_2 Estimation

(I) Estimation. Estimate F_2 exactly/approximately using small memory in one pass over the stream.

(II) Sampling. Sample an item i proportional to f_i^2/F_2 using small memory in one pass over the stream.

- To compute F_2 exactly, we need to keep track of f_i for all $i \in [n]$.
- However, we afford to keep track of the frequency of a single (or few) item.

Let's try it ...

(Recap) When Variance is Small Enough?

If we want to apply Chebyshev's inequality,

$$\Pr[|X - \mathbb{E}[X]| > c\mathbb{E}[X]] \le \frac{\operatorname{Var}[X]}{c^2(\mathbb{E}[X])^2}$$

So, we will get $(\epsilon, O(1))$ -relative estimate if

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \le \epsilon^2 \mathbb{E}[X]^2$$

Which holds when

$$\mathbb{E}[X^2] \le \epsilon^2 \cdot \mathbb{E}[X]^2$$

by Averaging & Median

Trick

We can boost it to (ϵ, δ) -relative estimate, in $O(1/\epsilon^2 \log 1/\delta)$ space

F_k -Estimation (Simple Algorithm)

• Let
$$Z = n \cdot f_i^k$$

Is it an unbiased estimation?

$$\mathbb{E}[Z] = \frac{1}{n} \cdot \sum_{i \in [n]} n \cdot f_i^k$$
$$= \sum_{i \in [n]} f_i^k = F_k$$

Though, the issue is its Variance:

$$Var[Z] = n \cdot F_{2k} - F_k^2$$

- it can get as large as $O(nF_k^2)$
- The averaging technique will need O(n) repetitions which is not good!

Simple Sampling Approach:

sample $i \in [n]$ uniformly at random $f_i \leftarrow 0$ while an item e in stream arrives: if e = i then $f_i \leftarrow f_i + 1$ return $n \cdot f_i^k$

F_2 -Estimation via Sampling

• It's more natural to sample an item proportional to its frequency

(Importance/Weighted Sampling)

$$\mathbb{E}[Z] = \sum_{i \in [n]} \frac{f_i}{F_1} \cdot (F_1 \cdot f_i^{k-1})$$
$$= \sum_{i \in [n]} f_i^k = F_k$$

$$\mathbb{E}[Z^2] = F_1 F_{2k-1}$$

Exercise. $F_1 F_{2k-1} \le n^{1-\frac{1}{k}} \cdot (F_k)^2$

But, how to perform this sampling?

Importance Sampling Approach:

sample
$$i \in [n]$$
 at random $\propto \frac{f_i}{F_1}$

$$f_i \leftarrow 0$$
while an item e in stream arrives:
if $e = i$ then
$$f_i \leftarrow f_i + 1$$
return $F_1 \cdot f_i^{k-1}$

$$O(\epsilon^{-2}n^{1/k})$$
 samples suffices to get $\mathbb{E}[Z_{\mathrm{avg}}^2] \le \epsilon^2 \mathbb{E}[Z_{\mathrm{avg}}]^2$

Reservoir Sampling?

- We only get a *random sample* by the end of the stream, not at the beginning
- Still, it has some nice properties, useful for us:
 - sample is u.a.r among the stream seen so far

Sampling technique known as **AMS Sampling**

ReservoirSample (stream):

sample
$$\leftarrow \emptyset$$
, $t \leftarrow 0$

foreach item *x* in stream:

$$t \leftarrow t + 1$$

// Replace with probability $\frac{1}{t}$

if RandomUniform
$$(0,1) < \frac{1}{t}$$
:

sample
$$\leftarrow x$$

return sample

- *M* is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- *M* is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

	e_1	e_2	e_3	e_4	e_5	e_6
	1	2	1	3	2	2
e						
R_t						
С						

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

$$T = 2$$
 e_1
 e_2
 e_3
 e_4
 e_5
 e_6

 1
 2
 1
 3
 2
 2

 e
 1
 2
 0
 0

 R_t
 1
 2
 0
 0

 C
 1
 1
 0
 0

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \perp$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \perp$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

$$e_1$$
 e_2
 e_3
 e_4
 e_5
 e_6

 1
 2
 1
 3
 2
 2

 e
 1
 2
 2
 2
 2
 2

 R_t
 1
 2
 2
 2
 2
 2

 C
 1
 1
 1
 1
 2
 3

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- *M* is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

Another run		e_1	e_2	e_3	e_4	e_5	e_6
		1	2	1	3	2	2
	e						
	R_t						
	С						

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \perp$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \perp$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

- M is the length of the stream
- *e* is the value of the sample by Reservoir Sampling, so far.
- R_t is the index of the sample by Reservoir Sampling, so far.
- C is the number of times item e is seen in the stream after index R_t

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = \mathbf{e}$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

Theorem. The estimate Z returned by **AMS-Sample** is an unbiased estimate of F_k

Theorem.
$$Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$$

Observations.

•
$$M =$$

•
$$\forall i \in [n]$$
, $\Pr[R_M = i] =$

AMS-Sample (stream):

$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$

foreach item e_t in the stream:

$$M \leftarrow M + 1$$

Maintain R_t via Reservoir Sampling if R_t is kept the same as R_{t-1} then if $e_t = e$ then $C \leftarrow C + 1$

$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$

return $M(C^k - (C-1)^k)$

Let t be the last time (i.e., $R_M = t$) the reservoir sampling gets updated:

- i.e., $R_M = t$, and at the end of the stream, $\boldsymbol{e} = e_t$
- conditioned on e be the value at the end of the stream, the index t (i.e., the value of R_M) is uniformly distributed among the f_e choices of e
 - why?
 - by the property of reservoir sampling (any index is sampled w.p. 1/M)
 - if $R_M = e$, the value of C is equally likely to be any of $\{1, ..., f_e\}$

Theorem. The estimate Z returned by **AMS-Sample** is an unbiased estimate of F_k

$$\mathbb{E}[Z] = \sum_{i=1}^{n} \Pr[R_{M} = i] \cdot \sum_{t=1}^{f_{i}} \Pr[C = t] \cdot M \cdot (t^{k} - (t-1)^{k})$$

$$= \sum_{i=1}^{n} \frac{f_{i}}{F_{1}} \cdot \sum_{t=1}^{f_{i}} \frac{1}{f_{i}} \cdot F_{1} \cdot (t^{k} - (t-1)^{k})$$

$$= \sum_{i=1}^{n} \sum_{t=1}^{f_{i}} (t^{k} - (t-1)^{k}) = \mathbf{F}_{k}$$

telescopes to f_i^k

Theorem. The estimate Z returned by **AMS-Sample** is an unbiased estimate of F_k

Theorem. $Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$

$$\mathbb{E}[Z^{2}] = \sum_{i=1}^{n} \Pr[R_{M} = i] \cdot \sum_{t=1}^{f_{i}} \Pr[C = t] \cdot M^{2} \cdot (t^{k} - (t-1)^{k})^{2}$$

$$= \sum_{i=1}^{n} \frac{f_{i}}{F_{1}} \cdot \sum_{t=1}^{f_{i}} \frac{1}{f_{i}} \cdot F_{1}^{2} \cdot (t^{k} - t^{k-1})^{2}$$

$$= F_{1} \cdot \sum_{i=1}^{n} \sum_{t=1}^{f_{i}} (t^{k} - (t-1)^{k})^{2}$$

$$\leq F_{1} \cdot kF_{2k-1}$$

Theorem.
$$Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$$

$$\sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right)^2 \le \sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right) \cdot \left(kt^{k-1} \right)$$

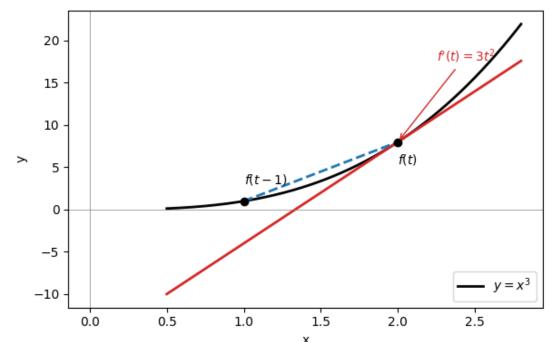
Mean Value Theorem. $(t^k - (t-1)^k) \le kt^{k-1}$

$$a^k - b^k = (a - b) \sum_{i=0}^{k-1} a^{k-1-i} b^i$$

$$a^{k} - b^{k} = (a - b) \sum_{i=0}^{k-1} a^{k-1-i} b^{i} \left(t^{k} - (t-1)^{k} \right) = \sum_{i=0}^{k-1} t^{k-i-1} \cdot (t-1)^{i} \le \sum_{i=0}^{k-1} t^{k-1} = kt^{k-1}$$

Theorem. $Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$

$$\sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right)^2 \le \sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right) \cdot \left(kt^{k-1} \right)$$



Mean Value Theorem. $(t^k - (t-1)^k) \le kt^{k-1}$

$$\binom{k}{k} = \sum_{i=0}^{k-1} t^{k-i-1} \cdot (t-1)^i \le \sum_{i=0}^{k-1} t^{k-1} = kt^{k-1}$$

$$f(x) = x^k \Longrightarrow f(t) - f(t-1) \le f'(t)$$

Theorem.
$$Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$$

$$\sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right)^2 \le \sum_{i=1}^{n} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right) \cdot (kt^{k-1})$$

$$\le k \sum_{i=1}^{n} f_i^{k-1} \sum_{t=1}^{f_i} \left(t^k - (t-1)^k \right)$$

Theorem. $Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$

telescopes to f_i^k

$$\sum_{i=1}^{n} \sum_{t=1}^{f_i} (t^k - (t-1)^k)^2 \le \sum_{i=1}^{n} \sum_{t=1}^{f_i} (t^k - (t-1)^k) \cdot (kt^{k-1})$$

$$\le k \sum_{i=1}^{n} f_i^{k-1} \sum_{t=1}^{f_i} (t^k - (t-1)^k)$$

$$\le k \sum_{i=1}^{n} f_i^{k-1} f_i^k$$

$$= k \mathbf{F}_{2k-1}$$

Theorem.
$$Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$$

$$\mathbb{E}[Z^{2}] = \sum_{i=1}^{n} \Pr[R_{M} = i] \cdot \sum_{t=1}^{f_{i}} \Pr[C = t] \cdot M^{2} \cdot (t^{k} - (t-1)^{k})^{2}$$

$$= \sum_{i=1}^{n} \frac{f_{i}}{F_{1}} \cdot \sum_{t=1}^{f_{i}} \frac{1}{f_{i}} \cdot F_{1}^{2} \cdot (t^{k} - t^{k-1})^{2}$$

$$= F_1 \cdot \sum_{i=1}^n \sum_{t=1}^{f_i} (t^k - (t-1)^k)$$

$$\leq F_1 \cdot kF_{2k-1}$$

$$\leq k \cdot n^{1 - \frac{1}{k}} \cdot (F_k)^2$$

Theorem. $Var[Z] \leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$

Theorem. The estimate Z returned by **AMS**-**Sample** is an unbiased estimate of F_k

Theorem.
$$Var[Z] \le k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2$$

AMS-Sample (stream):

foreach item
$$e_t$$
 in the stream:
$$M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot$$
foreach item e_t in the stream:
$$M \leftarrow M + 1$$
Maintain R_t via Reservoir Sampling
if R_t is kept the same as R_{t-1} then
if $e_t = e$ then $C \leftarrow C + 1$
else
$$e \leftarrow e_t, R_t \leftarrow t \text{ and } C \leftarrow 1$$
return $M(C^k - (C - 1)^k)$

By averaging $\Omega(\frac{1}{c^2}kn^{1-1/k})$ estimators, and applying Chebyshev's inequality:

we get $(1 \pm \epsilon)$ estimate to F_k with constant probability.

AMS-Estimator Wrap-Up

• AMS-Estimator gives a $(1 \pm \epsilon)$ -estimation of F_k in $O\left(\frac{1}{\epsilon^2} \cdot n^{1-\frac{1}{k}}\right)$ space.

Is it tight? Can we do better?

- For k > 2, it is known to be tight.
- What about F_2 ?

Estimating F_2

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Compute F_2

The generic AMS estimator gives $(1 \pm \epsilon)$ -estimation in $O(\frac{1}{\epsilon^2}\sqrt{n})$ space.

Can we do better?