
Algorithms for Big Data (FALL 25)
Lecture 4

FREQUENCY MOMENT ESTIMATION IN STREAMING

ALI VAKILIAN (vakilian@vt.edu)

Intro to Frequency Moments

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
Setting: Streaming; the algorithm has 𝐵𝐵 tokens of memory (𝐵𝐵 ≪ 𝑁𝑁)

The Goal: Compute some norm of the observed vector; a fundamental class of
problems [Alon, Matias, Szegedy’99].

Example: 𝑛𝑛 = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4

Frequency Moments

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
• Let 𝑓𝑓𝑖𝑖 denotee the frequency of item 𝑖𝑖 in the stream
• Consider vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛)
The Goal: Given 𝑘𝑘 ≥ 0, compute the 𝑘𝑘-th moment of 𝒇𝒇 denoted as

𝐹𝐹𝑘𝑘 = ∑𝑖𝑖∈[𝑛𝑛]𝑓𝑓𝑖𝑖𝑘𝑘

(similarly, we can also consider ℓ𝑘𝑘 norm of 𝑓𝑓 which is 𝐹𝐹𝑘𝑘 1/𝑘𝑘)

Example: 𝑛𝑛 = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4
• 𝐹𝐹1 = 14
• 𝐹𝐹2 = 30 𝒇𝒇 = (3,1,2,1,1,0,1,2,3)

Frequency Moments

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), that are seen one by one, where each
𝑒𝑒𝑖𝑖 ∈ [𝑛𝑛] (for known 𝑛𝑛 or an upper bound on 𝑛𝑛).
• Let 𝑓𝑓𝑖𝑖 denotee the frequency of item 𝑖𝑖 in the stream
• Consider vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛)
The Goal: Given 𝑘𝑘 ≥ 0, compute the 𝑘𝑘-th moment of 𝒇𝒇 denoted as

𝐹𝐹𝑘𝑘 = ∑𝑖𝑖∈[𝑛𝑛]𝑓𝑓𝑖𝑖𝑘𝑘
(similarly, we can also consider ℓ𝑘𝑘 norm of 𝑓𝑓 which is 𝐹𝐹𝑘𝑘 1/𝑘𝑘)

Important Regimes
𝐹𝐹0: number of distinct elements
𝐹𝐹1: length of stream

𝐹𝐹2: fundamental function (MSE, distance in ,…)
𝐹𝐹∞: maximum frequency (heavy hitters)

𝐹𝐹𝑘𝑘 for 0 < 𝑘𝑘 < 1 and 1 < 𝑘𝑘 < 2 𝐹𝐹𝑘𝑘 for 2 < 𝑘𝑘 < ∞

(III) Sketching. Given 𝑘𝑘, create a small size summary (sketch) of the frequency vector providing
point query (or other statistics), in one pass over the stream.

(II) Sampling. Given 𝑘𝑘, sample an item 𝑖𝑖 proportional to 𝑓𝑓𝑖𝑖𝑘𝑘/𝐹𝐹𝑘𝑘 using small memory in one pass
over the stream.

(I) Estimation. Given 𝑘𝑘, estimate 𝐹𝐹𝑘𝑘 exactly/approximately using small memory in one pass over
the stream.

Frequency Moments: Questions

(III) Sketching. Given 𝑘𝑘, create a small size summary (sketch) of the frequency vector providing
point query (or other statistics), in one pass over the stream.

(II) Sampling. Given 𝑘𝑘, sample an item 𝑖𝑖 proportional to 𝑓𝑓𝑖𝑖𝑘𝑘/𝐹𝐹𝑘𝑘 using small memory in one pass
over the stream.

(I) Estimation. Given 𝑘𝑘, estimate 𝐹𝐹𝑘𝑘 exactly/approximately using small memory in one pass over
the stream.

Frequency Moments: Questions

Mostly, Ω(𝑛𝑛) lower bound for exact answer

• With 𝑂𝑂(𝑛𝑛) space; easy: store the vector explicitly
• What if we are restricted to use ≪ 𝑛𝑛 words of memory?

• In particular, 𝑂𝑂(log𝑐𝑐 𝑛𝑛) for some fixed 𝑐𝑐 ≥ 1 (what we refer to as polylog(n))
• Note that to store a single word, we require 𝑂𝑂(log𝑛𝑛)bits.
• Memory consumption is quite optimal.

Approximate Estimate/Solution

Relative Approximation

An algorithms 𝒜𝒜 provides an 𝛼𝛼-relative approximation to a non-
negative function 𝑔𝑔 over the stream 𝒆𝒆 ≔ 𝑒𝑒1, … . 𝑒𝑒𝑚𝑚 if

𝒜𝒜(𝒆𝒆)
𝑔𝑔(𝒆𝒆)

− 1 ≤ 𝛼𝛼

o (Maximization: 𝒜𝒜 𝒆𝒆
𝑔𝑔 𝑒𝑒

≥ 1 − 𝛼𝛼) & (Minimization: 𝒜𝒜 𝒆𝒆
𝑔𝑔 𝑒𝑒

≤ 1 + 𝛼𝛼)

oRandomized: (𝜖𝜖, 𝛿𝛿)-relative approximation if Pr 𝒜𝒜 𝒆𝒆
𝑔𝑔 𝒆𝒆

− 1 ≤ 𝜖𝜖 ≥ 1 − 𝛿𝛿

Also referred to as multiplicative approximation.

Additive Approximation

An algorithms 𝒜𝒜 provides an 𝛼𝛼-additive approximation to a function 𝑔𝑔
over the stream 𝒆𝒆 ≔ 𝑒𝑒1, … . 𝑒𝑒𝑚𝑚 if

𝒜𝒜 𝒆𝒆 − 𝑔𝑔(𝒆𝒆) ≤ 𝛼𝛼

oRandomized: (𝜖𝜖, 𝛿𝛿)-relative approximation if Pr 𝒜𝒜(𝑒𝑒) − 𝑔𝑔(𝑒𝑒) ≤ 𝜖𝜖 ≥ 1 − 𝛿𝛿

Typically, useful when some scaling/normalization on 𝑔𝑔 happens.

Estimating Distinct Elements

Distinct Element Problem

Estimate the number of unique items in a large dataset w/o storing all
the items.
Use cases:
• Tracking the number of unique visitors to a popular website in real-

time.
• Database Query Optimization: In a complex query, the database’s query

planner needs to estimate the number of unique values in different columns to
decide the most efficient way to execute the query.

• Online Advertising: Ad platforms need to measure the reach of a campaign,
which is the number of unique people who saw an advertisement.

Non-Streaming Solutions

• Use standard dictionary data structures:
• Processing a list of 𝑛𝑛 elements from 𝑑𝑑 distinct items
• Binary Search Trees: 𝑂𝑂(𝑑𝑑) space and total time of 𝑂𝑂(𝑛𝑛 log𝑑𝑑)
• Hashing: 𝑂𝑂(𝑑𝑑) space and expected total time of 𝑂𝑂(𝑛𝑛)

DistinctElements:
Initialize an empty dictionary 𝒟𝒟
𝑑𝑑 ← 0
while an item 𝑒𝑒 in stream arrives:
 if 𝑒𝑒 ∉ 𝒟𝒟 then
 insert 𝑒𝑒 into 𝒟𝒟
 𝑑𝑑 ← 𝑑𝑑 + 1
return 𝑑𝑑

How to do it much more space
efficiently now that we look for an

estimate only?

(Idealized) Flajolet-Martin Algorithm

• Use hash function ℎ: 𝑛𝑛 → [𝑚𝑚] for some 𝑚𝑚 polynomial in 𝑛𝑛.
• Store only the minimum hash value observed so far. I.e., min

𝑖𝑖∈[𝑛𝑛]
ℎ(𝑒𝑒𝑖𝑖).

• Space complexity: 𝑂𝑂 log𝑚𝑚 = 𝑂𝑂 log 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛 = 𝑂𝑂(log𝑛𝑛)

Why it works? (analysis of the estimation)
• Consider an ideal hash function ℎ: 𝑛𝑛 → [0,1] that is fully random
• If we have 𝑑𝑑 distinct element, what is the expected value of their minimum

hash values?

For this analysis, we will disregard the
space required to store the hash function

(Idealized) Flajolet-Martin Algorithm

• Use hash function ℎ: 𝑛𝑛 → [𝑚𝑚] for some 𝑚𝑚 polynomial in 𝑛𝑛.
• Store only the minimum hash value observed so far. I.e., min

𝑖𝑖∈[𝑛𝑛]
ℎ(𝑒𝑒𝑖𝑖).

• Space complexity: 𝑂𝑂 log𝑚𝑚 = 𝑂𝑂 log 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛 = 𝑂𝑂(log𝑛𝑛)

Theorem. Suppose 𝑋𝑋1, … ,𝑋𝑋𝑑𝑑 are r.v.s that are independent
and uniformly distributed in [0,1], and let 𝑌𝑌 = min

𝑖𝑖∈[𝑑𝑑]
𝑋𝑋𝑖𝑖 .

Then, 𝔼𝔼 𝑌𝑌 = 1/(𝑑𝑑 + 1).

DistinctElements:
ideal hash function ℎ
𝒚𝒚 ← 1
while an item 𝑒𝑒 arrives:
 𝒚𝒚 = min(𝑦𝑦,ℎ(𝑒𝑒))
return 1

𝒚𝒚
− 1

Analysis of its Expectation

Pr[𝑌𝑌 ≤ 𝑡𝑡]
Pr[𝑌𝑌 ≤ 𝑡𝑡] = 1 − Pr[𝑋𝑋1 > 𝑡𝑡 ∧ ⋯∧ 𝑋𝑋𝑑𝑑 > 𝑡𝑡]
Pr[𝑌𝑌 ≤ 𝑡𝑡] = 1 −∏𝑖𝑖∈[𝑑𝑑] Pr[𝑋𝑋𝑖𝑖 > 𝑡𝑡] (by independence of 𝑋𝑋𝑖𝑖)

Pr[𝑌𝑌 ≤ 𝑡𝑡] = 1 − 1 − 𝑡𝑡 𝑑𝑑 .

The pdf of 𝑌𝑌 is 𝑑𝑑 1 − 𝑡𝑡 𝑑𝑑−1. So,
𝔼𝔼 𝑌𝑌 = ∫0

1 𝑡𝑡 ⋅ 𝑑𝑑 1 − 𝑡𝑡 𝑑𝑑−1 𝑑𝑑𝑑𝑑 (by the definition of 𝔼𝔼)

𝔼𝔼 𝑌𝑌 = 1
𝑑𝑑+1

 (by change of variable 𝑧𝑧 = 1 − 𝑡𝑡)

Concentration

Need to bound variance too. Recall Var 𝑌𝑌 = 𝔼𝔼 𝑌𝑌2 − 𝔼𝔼 𝑌𝑌 2

How to compute 𝔼𝔼 𝑌𝑌2 ? Similar to 𝔼𝔼 𝑌𝑌 calculation.

The pdf of 𝑌𝑌 is 𝑑𝑑 1 − 𝑡𝑡 𝑑𝑑−1. So,
𝔼𝔼 𝑌𝑌2 = ∫0

1 𝑡𝑡2 ⋅ 𝑑𝑑 1 − 𝑡𝑡 𝑑𝑑−1 𝑑𝑑𝑑𝑑 (by the definition of 𝔼𝔼)

𝔼𝔼 𝑌𝑌2 = 2
(𝑑𝑑+1)(𝑑𝑑+2)

 (by change of variable 𝑧𝑧 = 1 − 𝑡𝑡)

⇒ Var 𝑌𝑌 = 2
(𝑑𝑑+1)(𝑑𝑑+2)

− 1
𝑑𝑑+1 2 = 𝑑𝑑

𝑑𝑑+1 2 𝑑𝑑+2
≤ 1/(𝑑𝑑 + 1)2

By Chebyshev’s inequality:

Pr[𝑌𝑌 − 𝔼𝔼 𝑌𝑌 ≥ 𝜖𝜖𝜖𝜖 𝑌𝑌] ≤
Var 𝑌𝑌
𝜖𝜖𝜖𝜖 𝑌𝑌 2 ≤ 1/𝜖𝜖2

What does it imply for our final estimate (𝜖𝜖 = 2)?

How to boost the accuracy? A FAMILIAR RECIPE

• (Averaging) Take average of 𝑘𝑘 = 𝑂𝑂(1/𝜖𝜖2) independent estimators to reduce variance
• Apply Chebyshev to get (𝜖𝜖,𝑂𝑂(1))-relative estimator

o Run 𝑘𝑘 independent copies of the estimator in parallel.
• Each run uses its own random hash function ℎ𝑖𝑖 .

o Let 𝑌𝑌(1), … ,𝑌𝑌 𝑘𝑘 be estimators from these 𝑘𝑘 independent runs.
o Output 1/(𝑌𝑌avg) − 1 (where 𝑌𝑌avg = (∑𝑖𝑖=1𝑘𝑘 𝑌𝑌 𝑖𝑖)/𝑘𝑘)

𝔼𝔼 𝑌𝑌avg =
1

𝑑𝑑 + 1
Var Yavg ≤

1
𝑘𝑘 𝑑𝑑 + 1 2

By Chebyshev’s inequality:

Pr[𝑌𝑌avg − 𝔼𝔼 𝑌𝑌avg ≥ 𝜖𝜖𝜖𝜖 𝑌𝑌avg] ≤
Var 𝑌𝑌avg
𝜖𝜖𝜖𝜖 𝑌𝑌avg

2 ≤ 1/𝑘𝑘𝜖𝜖2 𝑘𝑘 = 1
4𝜖𝜖2

How to boost the accuracy? A FAMILIAR RECIPE

• (Averaging) Take average of 𝑘𝑘 = 𝑂𝑂(1/𝜖𝜖2) independent estimators to reduce variance
• Apply Chebyshev to get (𝜖𝜖,𝑂𝑂(1))-relative estimator

𝔼𝔼 𝑌𝑌avg =
1

𝑑𝑑 + 1
Var Yavg ≤

1
𝑘𝑘 𝑑𝑑 + 1 2

By Chebyshev’s inequality:

Pr[𝑌𝑌avg − 𝔼𝔼 𝑌𝑌avg ≥ 𝜖𝜖𝜖𝜖 𝑌𝑌avg] ≤
Var 𝑌𝑌avg
𝜖𝜖𝜖𝜖 𝑌𝑌avg

2 ≤ 1/𝑘𝑘𝜖𝜖2 𝑘𝑘 = 1
4𝜖𝜖2

What does it imply for our final estimate?

Pr 𝑌𝑌avg ∈
1−𝜖𝜖
𝑑𝑑+1

, 1+𝜖𝜖
𝑑𝑑+1

≥ 3/4 ⟹ 1
𝑌𝑌avg

− 1 ∈ 𝑑𝑑+1
1+𝜖𝜖

− 1, 𝑑𝑑+1
1−𝜖𝜖

− 1 w.p. at least 3/4

How to boost the accuracy? A FAMILIAR RECIPE

• (Averaging) Take average of 𝑘𝑘 = 𝑂𝑂(1/𝜖𝜖2) independent estimators to reduce variance
• Apply Chebyshev to get (𝜖𝜖,𝑂𝑂(1))-relative estimator

• (Median trick) Use ℓ = 𝑂𝑂(log 1/𝛿𝛿) of these averaged estimators and return their
median to get 𝑂𝑂 𝜖𝜖, 𝛿𝛿 -relative estimator

o Repeat 𝑂𝑂(log 1/𝛿𝛿) times

o Output the median of the estimators

o Run 𝑘𝑘 independent copies of the estimator in parallel.
• Each run uses its own random hash function ℎ𝑖𝑖 .

o Let 𝑌𝑌(1), … ,𝑌𝑌 𝑘𝑘 be estimators from these 𝑘𝑘 independent runs.
o Output 1/(𝑌𝑌avg) − 1 (where 𝑌𝑌avg = (∑𝑖𝑖=1𝑘𝑘 𝑌𝑌 𝑖𝑖)/𝑘𝑘)

Practical Considerations: IMPLEMENTING HASH FUNCTIONS

• So far, we assume access to a fully random hash function ℎ: 𝑛𝑛 → [0,1].
How to implement it?

 Use ℎ: 𝑛𝑛 → [𝑚𝑚] for sufficiently large value of 𝑚𝑚 = poly(𝑛𝑛)

 Use pairwise independent hash families ℋ

Hashing and its role in Streaming

Pairwise Independent Hash Functions

A family ℋ = {ℎ: 𝑛𝑛 → [𝑚𝑚]} is pairwise-independent or strongly 2-universal if,

• ∀𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑛𝑛 , 𝑖𝑖 ≠ 𝑗𝑗 ∈ [𝑚𝑚]: Pr
ℎ∼ℋ

ℎ 𝑥𝑥 = 𝑖𝑖 ∧ ℎ 𝑦𝑦 = 𝑗𝑗 = 1/𝑚𝑚2

What about uniformity? Is such hash function uniform over [𝑚𝑚] too?
I.e. Does the following hold?

Pr
ℎ∼ℋ

ℎ 𝑥𝑥 = 𝑖𝑖 = 1/𝑚𝑚

Pairwise Independent Hash Functions

A family ℋ = {ℎ: 𝑛𝑛 → [𝑚𝑚]} is pairwise-independent or strongly 2-universal if,

• ∀𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑛𝑛 , 𝑖𝑖 ≠ 𝑗𝑗 ∈ [𝑚𝑚]: Pr
ℎ∼ℋ

ℎ 𝑥𝑥 = 𝑖𝑖 ∧ ℎ 𝑦𝑦 = 𝑗𝑗 = 1/𝑚𝑚2

Construction) Let 𝑝𝑝 be a prime ∈ [𝑛𝑛,2𝑛𝑛]. For any 𝒂𝒂,𝒃𝒃 ∈ {0, … ,𝑝𝑝 − 1}, define:

• ℎ𝒂𝒂,𝒃𝒃 𝑥𝑥 = 𝒂𝒂𝑥𝑥 + 𝒃𝒃 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

• The collection of ℋ = ℎ𝒂𝒂,𝒃𝒃 𝒂𝒂,𝒃𝒃 ∈ [0,𝑝𝑝 − 1]} is pairwise independent

Space complexity for ℋ) a hash function from the family can be specified by three
strings of length log 𝑝𝑝 = 𝑂𝑂(log𝑛𝑛) to represent 𝒂𝒂,𝒃𝒃 and 𝑝𝑝.

Simialr construction led to 𝑘𝑘-wise independence with 𝑂𝑂(𝑘𝑘 log𝑛𝑛) space representation

Flajolet-Martin (LogLog)

ℎ(𝑒𝑒1) 00101101000111011101

ℎ(𝑒𝑒2) 11000011011110001000

ℎ(𝑒𝑒3) 01101000000100110001

ℎ(𝑒𝑒4) 01111001000100111110

ℎ(𝑒𝑒5) 00101111011110111000

ℎ(𝑒𝑒6) 10111000000101100000

ℎ: 𝑛𝑛 → [2𝐿𝐿] where 𝐿𝐿 = log𝑛𝑛

Flajolet-Martin (LogLog)

ℎ(𝑒𝑒1) 00101101000111011101

ℎ(𝑒𝑒2) 11000011011110001000

ℎ(𝑒𝑒3) 01101000000100110001

ℎ(𝑒𝑒4) 01111001000100111110

ℎ(𝑒𝑒5) 00101111011110111000

ℎ(𝑒𝑒6) 10111000000101100000

Estimate number of distinct
elements based on maximum
number of trailing zeros.

The more distinct hash values
we see, the higher we expect
this maximum to be.Pr[ℎ 𝑒𝑒𝑖𝑖 has 𝒁𝒁 = 𝑠𝑠 trailing zeros] = 1/2𝑠𝑠

In particular,
Pr[ℎ 𝑒𝑒𝑖𝑖 has𝒁𝒁 = log𝑑𝑑 trailing zeros] = 1/𝑑𝑑
So, with 𝑑𝑑 distinct hash values (i.e., items), we expect to see one with log𝑑𝑑 trailing zeros

ℎ: 𝑛𝑛 → [2𝐿𝐿] where 𝐿𝐿 = log𝑛𝑛

Rough Analysis

• If we had truly random ℎ, the same analysis would work here too.
• [Alon, Matias, Szegedy’99] proved that pairwise independence suffices.
How?

• Define 𝑋𝑋𝑒𝑒,𝑟𝑟 be the indicator r.v. that ℎ(𝑒𝑒) has ≥ 𝑟𝑟 trailing zeros.
• 𝑌𝑌𝑟𝑟 = 𝑋𝑋𝑒𝑒1,𝑟𝑟 + ⋯+ 𝑋𝑋𝑒𝑒𝑛𝑛,𝑟𝑟

• {𝑌𝑌𝑟𝑟 ≥ 1 ⟺ 𝒁𝒁 ≥ 𝑟𝑟} and {𝑌𝑌𝑟𝑟 = 0 ⟺ 𝒁𝒁 ≤ 𝑟𝑟 − 1}

• For any 𝑟𝑟 ∈ [𝐿𝐿], 𝔼𝔼 𝑌𝑌𝑟𝑟 = 𝑑𝑑
2𝑟𝑟

 and Var 𝑌𝑌𝑟𝑟 = 𝑑𝑑
2𝑟𝑟

1 − 1
2𝑟𝑟

• With probability ≥ 1
2
, 𝑑𝑑 − 2 ≤ 𝑍𝑍 ≤ 𝑑𝑑 + 2

	Algorithms for Big Data (Fall 25)
	Intro to Frequency Moments
	Frequency Moments
	Frequency Moments
	Frequency Moments: Questions
	Frequency Moments: Questions
	Approximate Estimate/Solution
	Relative Approximation
	Additive Approximation
	Estimating Distinct Elements
	Distinct Element Problem
	Non-Streaming Solutions
	(Idealized) Flajolet-Martin Algorithm
	(Idealized) Flajolet-Martin Algorithm
	Analysis of its Expectation
	Concentration
	How to boost the accuracy? A familiar recipe
	How to boost the accuracy? A familiar recipe
	How to boost the accuracy? A familiar recipe
	Practical Considerations: Implementing Hash Functions
	Hashing and its role in Streaming
	Pairwise Independent Hash Functions
	Pairwise Independent Hash Functions
	Flajolet-Martin (LogLog)
	Flajolet-Martin (LogLog)
	Rough Analysis

