Algorithms for Big Data (FALL 25)

Lecture 4

FREQUENCY MOMENT ESTIMATION IN STREAMING

ALI VAKILIAN (vakilian@vt.edu)

Intro to Frequency Moments

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

Setting: Streaming; the algorithm has B tokens of memory ($B \ll N$)

The Goal: Compute some norm of the observed vector; a fundamental class of problems [Alon, Matias, Szegedy'99].

Example: n = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4

Frequency Moments

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Given $k \geq 0$, compute the k-th moment of f denoted as

$$F_k = \sum_{i \in [n]} f_i^k$$

(similarly, we can also consider ℓ_k norm of f which is $(F_k)^{1/k}$)

Example: n = 9 and stream is 9, 1, 1, 3, 5, 8, 9, 7, 2, 1, 3, 9, 8, 4

- $F_1 = 14$
- $F_2 = 30$

$$f = (3,1,2,1,1,0,1,2,3)$$

Frequency Moments

Input: A data stream $S = (e_1, e_2, e_3, ..., e_N)$, that are seen one by one, where each $e_i \in [n]$ (for known n or an upper bound on n).

- Let f_i denotee the frequency of item i in the stream
- Consider vector $\mathbf{f} = (f_1, ..., f_n)$

The Goal: Given $k \geq 0$, compute the k-th moment of f denoted as

$$F_k = \sum_{i \in [n]} f_i^k$$

(similarly, we can also consider ℓ_k norm of f which is $(F_k)^{1/k}$)

Important Regimes

 F_0 : number of distinct elements

 F_1 : length of stream

 F_k for 0 < k < 1 and 1 < k < 2

 F_2 : fundamental function (MSE, distance in ,...)

 F_{∞} : maximum frequency (heavy hitters)

 F_k for $2 < k < \infty$

Frequency Moments: Questions

- (I) Estimation. Given k, estimate F_k exactly/approximately using small memory in one pass over the stream.
- (II) Sampling. Given k, sample an item i proportional to f_i^k/F_k using small memory in one pass over the stream.
- (III) Sketching. Given k, create a small size summary (sketch) of the frequency vector providing point query (or other statistics), in one pass over the stream.

Frequency Moments: Questions

- (I) Estimation. Given k, estimate F_k exactly/approximately using small memory in one pass over the stream.
- (II) Sampling. Given k, sample an item i proportional to f_i^k/F_k using small memory in one pass over the stream.
- (III) Sketching. Given k, create a small size summary (sketch) of the frequency vector providing point query (or other statistics), in one pass over the stream.
- With O(n) space; easy: store the vector explicitly
- What if we are restricted to use $\ll n$ words of memory?
 - In particular, $O(\log^c n)$ for some fixed $c \ge 1$ (what we refer to as polylog(n))
 - Note that to store a single word, we require $O(\log n)$ bits.
 - Memory consumption is quite optimal.

Mostly, $\Omega(n)$ lower bound for exact answer

Approximate Estimate/Solution

Relative Approximation

An algorithms \mathcal{A} provides an α -relative approximation to a non-negative function g over the stream $\mathbf{e} \coloneqq e_1, \dots, e_m$ if

$$\left| \frac{\mathcal{A}(e)}{g(e)} - 1 \right| \le \alpha$$

$$\bigcirc \text{ (Maximization: } \frac{\mathcal{A}(e)}{g(e)} \geq 1 - \alpha \text{) \& (Minimization: } \frac{\mathcal{A}(e)}{g(e)} \leq 1 + \alpha \text{)}$$

 \circ Randomized: (ϵ, δ) -relative approximation if $\Pr\left[\left|\frac{\mathcal{A}(e)}{g(e)} - 1\right| \le \epsilon\right] \ge 1 - \delta$

Also referred to as multiplicative approximation.

Additive Approximation

An algorithms \mathcal{A} provides an α -additive approximation to a function g over the stream $\mathbf{e} \coloneqq e_1, \dots, e_m$ if

$$|\mathcal{A}(\boldsymbol{e}) - g(\boldsymbol{e})| \le \alpha$$

 \circ Randomized: (ϵ, δ) -relative approximation if $\Pr[|\mathcal{A}(e) - g(e)| \le \epsilon] \ge 1 - \delta$

Typically, useful when some scaling/normalization on g happens.

Estimating Distinct Elements

Distinct Element Problem

Estimate the number of **unique items** in a large dataset w/o storing all the items.

Use cases:

- Tracking the number of unique visitors to a popular website in realtime.
- Database Query Optimization: In a complex query, the database's query planner needs to estimate the number of unique values in different columns to decide the most efficient way to execute the query.
- Online Advertising: Ad platforms need to measure the reach of a campaign, which is the number of unique people who saw an advertisement.

Non-Streaming Solutions

- Use standard dictionary data structures:
 - Processing a list of n elements from d distinct items
 - Binary Search Trees: O(d) space and total time of $O(n \log d)$
 - Hashing: O(d) space and expected total time of O(n)

How to do it much more space efficiently now that we look for an estimate only?

DistinctElements:

```
Initialize an empty dictionary \mathcal{D} d \leftarrow 0 while an item e in stream arrives: if e \notin \mathcal{D} then insert e into \mathcal{D} d \leftarrow d+1 return d
```

(Idealized) Flajolet-Martin Algorithm

- Use hash function $h: [n] \to [m]$ for some m polynomial in n.
- Store only the minimum hash value observed so far. I.e., $\min_{i \in [n]} h(e_i)$.
- Space complexity: $O(\log m) = O(\log(poly(n))) = O(\log n)$

For this analysis, we will disregard the space required to store the hash function

Why it works? (analysis of the estimation)

- Consider an ideal hash function $h: [n] \to [0,1]$ that is fully random
- If we have d distinct element, what is the expected value of their minimum hash values?

(Idealized) Flajolet-Martin Algorithm

- Use hash function $h: [n] \to [m]$ for some m polynomial in n.
- Store only the minimum hash value observed so far. I.e., $\min_{i \in [n]} h(e_i)$.
- Space complexity: $O(\log m) = O(\log(poly(n))) = O(\log n)$

Theorem. Suppose $X_1, ..., X_d$ are r.v.s that are independent and uniformly distributed in [0,1], and let $Y = \min_{i \in [d]} X_i$. Then, $\mathbb{E}[Y] = 1/(d+1)$.

DistinctElements:

ideal hash function h $y \leftarrow 1$ while an item e arrives: $y = \min(y, h(e))$ return $\frac{1}{y} - 1$

Analysis of its Expectation

$$\Pr[Y \leq t] \\ = 1 - \Pr[X_1 > t \land \dots \land X_d > t] \\ = 1 - \prod_{i \in [d]} \Pr[X_i > t] \quad \text{(by independence of } X_i\text{)} \\ = 1 - (1 - t)^d.$$
 The pdf of Y is $d(1 - t)^{d-1}$. So,
$$\mathbb{E}[Y] = \int_0^1 t \cdot d(1 - t)^{d-1} \, dt \quad \text{(by the definition of } \mathbb{E}\text{)} \\ \mathbb{E}[Y] = \frac{1}{d+1} \quad \text{(by change of variable } z = 1 - t\text{)}$$

Concentration

Need to bound variance too. Recall $Var[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2$

How to compute $\mathbb{E}[Y^2]$? Similar to $\mathbb{E}[Y]$ calculation.

The pdf of Y is $d(1-t)^{d-1}$. So,

$$\mathbb{E}[Y^2] = \int_0^1 t^2 \cdot d(1-t)^{d-1} dt$$
$$= \frac{2}{(d+1)(d+2)}$$

(by the definition of \mathbb{E})

(by change of variable z = 1 - t)

$$\Rightarrow \operatorname{Var}[Y] = \frac{2}{(d+1)(d+2)} - \frac{1}{(d+1)^2} = \frac{d}{(d+1)^2(d+2)} \le 1/(d+1)^2$$

By Chebyshev's inequality:

$$\Pr[|Y - \mathbb{E}[Y]| \ge \epsilon \mathbb{E}[Y]] \le \frac{\operatorname{Var}[Y]}{(\epsilon \mathbb{E}[Y])^2} \le 1/\epsilon^2$$

What does it imply for our final estimate ($\epsilon = 2$)?

How to boost the accuracy? A FAMILIAR RECIPE

- (Averaging) Take average of $k = O(1/\epsilon^2)$ independent estimators to reduce variance
 - Apply Chebyshev to get $(\epsilon, O(1))$ -relative estimator

$$\mathbb{E}[Y_{\text{avg}}] = \frac{1}{d+1}$$

$$\text{Var}[Y_{\text{avg}}] \le \frac{1}{k(d+1)^2}$$

By Chebyshev's inequality:

$$\mathbb{E}[Y_{\text{avg}}] = \frac{1}{d+1}$$

$$\text{Var}[Y_{\text{avg}}] \le \frac{1}{k(d+1)^2}$$

$$\text{By Chebyshev's inequality:}$$

$$\Pr[|Y_{\text{avg}} - \mathbb{E}[Y_{\text{avg}}]| \ge \epsilon \mathbb{E}[Y_{\text{avg}}]] \le \frac{\text{Var}[Y_{\text{avg}}]}{\left(\epsilon \mathbb{E}[Y_{\text{avg}}]\right)^2} \le 1/k\epsilon^2$$

$$k = \frac{1}{4\epsilon^2}$$

$$k = \frac{1}{4\epsilon^2}$$

- Run k independent copies of the estimator in parallel.
 - Each run uses its own random hash function h_i .
- \circ Let $Y^{(1)}, ..., Y^{(k)}$ be estimators from these k independent runs.
- (where $Y_{\text{avg}} = (\sum_{i=1}^{k} Y^{(i)})/k$) \circ Output $1/(Y_{avg}) - 1$

How to boost the accuracy? A FAMILIAR RECIPE

- (Averaging) Take average of $k = O(1/\epsilon^2)$ independent estimators to reduce variance
 - Apply Chebyshev to get $(\epsilon, O(1))$ -relative estimator

$$\mathbb{E}[Y_{\text{avg}}] = \frac{1}{d+1}$$

$$\text{Var}[Y_{\text{avg}}] \le \frac{1}{k(d+1)^2}$$

By Chebyshev's inequality:

$$\mathbb{E}[Y_{\text{avg}}] = \frac{1}{d+1}$$

$$\text{Var}[Y_{\text{avg}}] \le \frac{1}{k(d+1)^2}$$

$$\text{By Chebyshev's inequality:}$$

$$\Pr[|Y_{\text{avg}} - \mathbb{E}[Y_{\text{avg}}]| \ge \epsilon \mathbb{E}[Y_{\text{avg}}]] \le \frac{\text{Var}[Y_{\text{avg}}]}{\left(\epsilon \mathbb{E}[Y_{\text{avg}}]\right)^2} \le 1/k\epsilon^2$$

$$k = \frac{1}{4\epsilon^2}$$

$$k = \frac{1}{4\epsilon^2}$$

What does it imply for our final estimate?

$$\Pr\left[Y_{\text{avg}} \in \left(\frac{1-\epsilon}{d+1}, \frac{1+\epsilon}{d+1}\right)\right] \ge 3/4 \qquad \qquad \Rightarrow \frac{1}{Y_{\text{avg}}} - 1 \in \left(\frac{d+1}{1+\epsilon} - 1, \frac{d+1}{1-\epsilon} - 1\right) \text{ w.p. at least } 3/4$$

How to boost the accuracy? A FAMILIAR RECIPE

- (Averaging) Take average of $k = O(1/\epsilon^2)$ independent estimators to reduce variance
 - Apply Chebyshev to get $(\epsilon, O(1))$ -relative estimator
- (Median trick) Use $\ell = O(\log 1/\delta)$ of these averaged estimators and return their median to get $O(\epsilon, \delta)$ -relative estimator
 - \circ Repeat $O(\log 1/\delta)$ times
 - \circ Run k independent copies of the estimator in parallel.
 - Each run uses its own random hash function h_i .
 - \circ Let $Y^{(1)}, ..., Y^{(k)}$ be estimators from these k independent runs.
 - o Output $1/(Y_{avg}) 1$ (where $Y_{avg} = (\sum_{i=1}^{k} Y^{(i)})/k$)
 - Output the **median** of the estimators

Practical Considerations: Implementing Hash Functions

- So far, we assume access to a fully random hash function $h: [n] \to [0,1]$. How to implement it?
 - \square Use $h: [n] \to [m]$ for sufficiently large value of m = poly(n)
 - lacksquare Use pairwise independent hash families ${\mathcal H}$

Hashing and its role in Streaming

Pairwise Independent Hash Functions

A family $\mathcal{H} = \{h: [n] \to [m]\}$ is pairwise-independent or strongly 2-universal if,

•
$$\forall x \neq y \in [n], i \neq j \in [m]$$
:
$$\Pr_{h \sim \mathcal{H}}[h(x) = i \land h(y) = j] = 1/m^2$$

What about uniformity? Is such hash function uniform over [m] too? I.e. Does the following hold?

$$\Pr_{h \sim \mathcal{H}}[h(x) = i] = 1/m$$

Pairwise Independent Hash Functions

A family $\mathcal{H} = \{h: [n] \to [m]\}$ is pairwise-independent or strongly 2-universal if,

•
$$\forall x \neq y \in [n], i \neq j \in [m]$$
:
$$\Pr_{h \sim \mathcal{H}}[h(x) = i \land h(y) = j] = 1/m^2$$

Construction) Let p be a prime $\in [n, 2n]$. For any $a, b \in \{0, ..., p-1\}$, define:

- $h_{a,b}(x) = (ax + b) \mod p$
- The collection of $\mathcal{H}=\{h_{\pmb{a},\pmb{b}} \mid \pmb{a}, \pmb{b} \in [0,p-1]\}$ is pairwise independent

Space complexity for \mathcal{H}) a hash function from the family can be specified by three strings of length $\log p = O(\log n)$ to represent a, b and p.

Simialr construction led to k-wise independence with $O(k \log n)$ space representation

Flajolet-Martin (LogLog)

$h(e_1)$	00101101000111011101
$h(e_2)$	11000011011110001000
$h(e_3)$	01101000000100110001
$h(e_4)$	01111001000100111110
$h(e_5)$	00101111011110111000
h(e ₆)	10111000000101100000

$$h: [n] \rightarrow [2^L]$$
 where $L = \lceil \log n \rceil$

Flajolet-Martin (LogLog)

$h(e_1)$	00101101000111011101
$h(e_2)$	11000011011110001000
$h(e_3)$	01101000000100110001
$h(e_4)$	01111001000100111110
$h(e_5)$	00101111011110111000
$h(e_6)$	10111000000101100000

 $h: [n] \rightarrow [2^L]$ where $L = \lceil \log n \rceil$

 $Pr[h(e_i) \text{ has } \mathbf{Z} = s \text{ trailing zeros}] = 1/2^s$

In particular,

 $Pr[h(e_i) \text{ has } \mathbf{Z} = \log d \text{ trailing zeros}] = 1/d$

Estimate number of distinct elements based on maximum number of trailing zeros.

The more distinct hash values we see, the higher we expect this maximum to be.

So, with d distinct hash values (i.e., items), we expect to see one with $\log d$ trailing zeros

Rough Analysis

- If we had truly random h, the same analysis would work here too.
- [Alon, Matias, Szegedy'99] proved that pairwise independence suffices.

How?

- Define $X_{e,r}$ be the indicator r.v. that h(e) has $\geq r$ trailing zeros.
- $\bullet Y_r = X_{e_1,r} + \dots + X_{e_n,r}$
- $\{Y_r \ge 1 \iff \mathbf{Z} \ge r\}$ and $\{Y_r = 0 \iff \mathbf{Z} \le r 1\}$
- For any $r \in [L]$, $\mathbb{E}[Y_r] = \frac{d}{2^r}$ and $\mathrm{Var}[Y_r] = \frac{d}{2^r} \Big(1 \frac{1}{2^r} \Big)$
- With probability $\geq \frac{1}{2}$, $d-2 \leq Z \leq d+2$