Algorithms for Big Data (FaLL 25)

Lecture 4
FREQUENCY MOMENT ESTIMATION IN STREAMING

ALl VAKILIAN (vakilian@vt.edu)

Algorithms

for Big Data
VIRGINIA

Intro to Frequency Moments

Input: A data stream S = (eq, e, €3, ..., €y), that are seen one by one, where each
e; € [n] (for known n or an upper bound on n).

Setting: Streaming; the algorithm has B tokens of memory (B < N)

The Goal: Compute some norm of the observed vector; a fundamental class of
problems [Alon, Matias, Szegedy’99].

Example: n =9andstreamis9,1,1,3,5,8,9,7,2,1,3,9,8, 4

Frequency Moments

Input: A data stream S = (eq, e, €3, ..., €y), that are seen one by one, where each
e; € [n] (for known n or an upper bound on n).

* Let f; denotee the frequency of item i in the stream

* Consider vector f = (f1, ...,)
The Goal: Given k = 0, compute the k-th moment of f denoted as

F, =Y. i1 fX
I€[n] /i
(similarly, we can also consider €, norm of f which is (F;,)/%)

Example: n =9andstreamis9,1,1,3,5,8,9,7,2,1,3,9,8,4

i Fl == 14‘
° F2 = 30 f — (3)1)2;1)11011;2)3)

Frequency Moments

Input: A data stream S = (eq, e, €3, ..., €y), that are seen one by one, where each
e; € [n] (for known n or an upper bound on n).

* Let f; denotee the frequency of item i in the stream

* Consider vector f = (f1, ...,)
The Goal: Given k = 0, compute the k-th moment of f denoted as

F, =Y. i1 fX
I€[n] /i
(similarly, we can also consider #;, norm of f which is (F;)/%)

Important Regimes
Fy: number of distinct elements F,: fundamental function (MSE, distance in ,...)

F;: length of stream F,.: maximum frequency (heavy hitters)

FpforO<k<landl1<k<?2 Fi,for2 <k <oo

Frequency Moments: Questions

() Estimation. Given k, estimate F}, exactly/approximately using small memory in one pass over
the stream.

(Il) Sampling. Given k, sample an item i proportional to f/F) using small memory in one pass
over the stream.

(Ill) Sketching. Given k, create a small size summary (sketch) of the frequency vector providing
point query (or other statistics), in one pass over the stream.

Frequency Moments: Questions

() Estimation. Given k, estimate F}, exactly/approximately using small memory in one pass over
the stream.

(Il) Sampling. Given k, sample an item i proportional to f;*/F; using small memory in one pass
over the stream.

(Ill) Sketching. Given k, create a small size summary (sketch) of the frequency vector providing
point query (or other statistics), in one pass over the stream.

* With 0(n) space; easy: store the vector explicitly

* What if we are restricted to use < n words of memory?
* In particular, O(log® n) for some fixed ¢ = 1 (what we refer to as polylog(n))
* Note that to store a single word, we require O (log n)bits.
* Memory consumption is quite optimal.

Mostly, (2(n) lower bound for exact answer

Approximate Estimate/Solution

Relative Approximation

An algorithms A provides an a-relative approximation to a non-
negative function g over the stream e := ¢4, e, if

Ae) _ 1| <«
g(e)
o (Maximization: (()) > 1 — a) & (Minimization: (()) <1+ a)
o Randomized: (¢, §)-relative approximation if Pr[j((ee)) — 1‘ < E] >1-96

Also referred to as multiplicative approximation.

Additive Approximation

An algorithms A provides an a-additive approximation to a function g
over the stream e := e, e, if

|A(e) —g(e)| < a

o Randomized: (¢, §)-relative approximation if Pr[|A(e) — g(e)| <€e]=1—-6

Typically, useful when some scaling/normalization on g happens.

Estimating Distinct Elements

Distinct Element Problem

Estimate the number of unique items in a large dataset w/o storing all
the items.

Use cases:

* Tracking the number of unique visitors to a popular website in real-
time.
* Database Query Optimization: In a complex query, the database’s query

planner needs to estimate the number of unique values in different columns to
decide the most efficient way to execute the query.

* Online Advertising: Ad platforms need to measure the reach of a campaign,
which is the number of unique people who saw an advertisement.

Non-Streaming Solutions

* Use standard dictionary data structures:
* Processing a list of n elements from d distinct items
* Binary Search Trees: O(d) space and total time of O(nlog d)
* Hashing: O(d) space and expected total time of O(n)

DistinctElements:
Initialize an empty dictionary D

e How to do it much more space dI:_'I 0 . . .
. . e an item € In stream arrives:
efficiently now that we look for an v ifae ¢ D then
estimate only? insert e into D

d—d+1
return d

(Idealized) Flajolet-Martin Algorithm

* Use hash function h: [n] — [m] for some m polynomial in n.

* Store only the minimum hash value observed so far. l.e., nel[irﬁ h(e;).
lein

 Space complexity: O(logm) = 0(log(poly(n))) = 0(logn)

For this analysis, we will disregard the
space required to store the hash function

Why it works? (analysis of the estimation)

* Consider an ideal hash function h: [n] — [0,1] that is fully random

* If we have d distinct element, what is the expected value of their minimum
hash values?

(Idealized) Flajolet-Martin Algorithm

* Use hash function h: [n] — [m] for some m polynomial in n.

* Store only the minimum hash value observed so far. l.e., nei[irﬁ h(e;).
lein

 Space complexity: O(logm) = 0(log(poly(n))) = O(logn)

Theorem. Suppose X3, ..., X, are rv.s that are independent

and uniformly distributed in [0,1], and let Y = min X; . DistinctElements:
L€[d] ideal hash function h
Then, E[Y] =1/(d + 1). y 1

while an item e arrives:
y = min(y, h(e))
1
return-—1
y

Analysis of its Expectation

Pr|V < ¢]

The pdfonls d(1—
—f t-d(1-—

E
E

Y
Y

=1—Pr[X; >tA-AX; > t]

=1

— [igfay PriX; > ¢]

=1-(1-1t)<.

1

d+1

t)d_1 So,

(by independence of X;)

(by the definition of [E)

(by change of variable z = 1 — t)

Concentration

Need to bound variance too. Recall Var[Y] = E[Y?] — E[V]?

How to compute E[Y#]? Similar to E[Y] calculation.

The pdf of YV is d(1 — t)%~1. So,

1
E[Y?] = fo t?-d(1—-1t)*1dt (by the definition of E)

2 . 4

BRCTENCTD) (by change of variable z =1 — t)
2 1 d

— — — < 2

= VarlV] = o ~ @i — @iy = /@ + 1)
By Chebyshev’s inequality: What does it imply for our final estimate (¢ = 2)?
Var|Y]

Pr[|Y — E[Y]| = €E[Y]] <

= Germvpz = M€

How to boost the accuracy? A FAMILIAR RECIPE

* (Averaging) Take average of k = 0(1/€?) independent estimators to reduce variance
* Apply Chebyshev to get (€, 0(1))-relative estimator

E[Vave| = L By Chebyshev’s inequality:
avgl = 711 1 Var[Yan] k=l
Var[Yan] = k(d+ 1)2 Pr[lyavg o II5:[Y51vg]| = E[E[Yavg]] < (EIE[Y])2 < 1/k€ T
avg

o Run k independent copies of the estimator in parallel.
» FEach run uses its own random hash function h;.

o Let Y, .. Y pe estimators from these k independent runs.
o Output 1/(Yaye) — 1 (where Y,yo = (Xi=, Y) /k)

How to boost the accuracy? A FAMILIAR RECIPE

* (Averaging) Take average of k = 0(1/€?) independent estimators to reduce variance
* Apply Chebyshev to get (€, 0(1))-relative estimator

IE[Y] _ 1 By Chebyshev’s inequality:
woety Pr|Vave — E[Vave|| = €E[Vave]] < VarVavel < 1/ke? k=1
Var[Yavg] < £l Vavg = E[Vavg]| 2 €B[Vaye]] < ;< 1/ke? FT
AR)
g
What does it imply for our final estimate?
1- 1 1 d+1 d+1
Pr [Yavg € (d—;,ﬁ)l > 3/4 = —1€ (1—; — 1,1—; — 1) w.p. at least 3 /4

avg

How to boost the accuracy? A FAMILIAR RECIPE

* (Averaging) Take average of k = 0(1/€?) independent estimators to reduce variance
* Apply Chebyshev to get (€, 0(1))-relative estimator

* (Median trick) Use £ = O(log 1/6) of these averaged estimators and return their
median to get O (¢, §)-relative estimator

o Repeat O(log 1/6) times

o Run k independent copies of the estimator in parallel.
» FEach run uses its own random hash function h;.

o Let Y, .. Y pe estimators from these k independent runs.
o Output 1/(Yaye) — 1 (where Y,yo = (Xi=, Y) /k)

o Output the median of the estimators

Practical Considerations: ivrLemenTiNG HASH FUNCTIONS

* So far, we assume access to a fully random hash function h: [n] — [0,1].

How to implement it?

 Use h: [n] — [m] for sufficiently large value of m = poly(n)

1 Use pairwise independent hash families H

Hashing and its role in Streaming

Pairwise Independent Hash Functions

A family H = {h:|n] - [m]} is pairwise-independent or strongly 2-universal if,

*Vx =y € [n],i #j € [m]: [h(x) =i AR(y) =j] = 1/m?

Pr
h~

What about uniformity? Is such hash function uniform over [m| too?
l.e. Does the following hold?

hEl;[[h(x) =i]=1/m

Pairwise Independent Hash Functions

A family H = {h:|n] - [m]} is pairwise-independent or strongly 2-universal if,

*Vx =y € [n],i #j € [m]: [h(x) =i AR(y) =j] = 1/m?

nbi
Construction) Let p be a prime € [n,2n]. Forany a, b € {0, ...,p — 1}, define:
* hyp(x) = (ax + b) mod p

* The collection of H = {ha,b | a,b € [0,p — 1]} is pairwise independent

Space complexity for H') a hash function from the family can be specified by three
strings of length logp = O(logn) to represent a, b and p.

Simialr construction led to k-wise independence with O(k logn) space representation

Flajolet-Martin (LogLog)

h(e,) 00101101000111011101
h(ey) 11000011011110001000
h(es) 01101000000100110001
h(es) 01111001000100111110
h(es) 00101111011110111000
h(eg) 10111000000101100000

h: [n] - [2Y] where L = [logn]

Flajolet-Martin (LogLog)

h(ey) 00101101000111011101 , o
Estimate number of distinct

h(ey) 11000011011110001000)
elements based on maximum

h(es) 01101000000100110001 -
number of trailing zeros.

h(es) 01111001000100111110

h(es) 00101111011110111000

h(eg) 10111000000101100000 h o

2 The more distinct hash values

h: [n] - [2Y] where L = [logn] we see, the higher we expect
Pr[h(e;) has Z = s trailing zeros] = 1/2° this maximum to be.
In particular,

Pr[h(e;) has Z = logd trailing zeros] = 1/d

So, with d distinct hash values (i.e., items), we expect to see one with log d trailing zeros

Rough Analysis

* If we had truly random h, the same analysis would work here too.
* [Alon, Matias, Szegedy’99] proved that pairwise independence suffices.

How?

* Define X, ;- be the indicator rv. that h(e) has = r trailing zeros.
YV, =Xe rt o+ X r

Y, 21lesZ=>2rland{Y, =0 2Z <r—1}

* Foranyr € [L], E|Y,.] = = and Var[Y,] = %(1 B 2_1T)

27‘

* With probability > %, d—2<7Z<d+2

	Algorithms for Big Data (Fall 25)
	Intro to Frequency Moments
	Frequency Moments
	Frequency Moments
	Frequency Moments: Questions
	Frequency Moments: Questions
	Approximate Estimate/Solution
	Relative Approximation
	Additive Approximation
	Estimating Distinct Elements
	Distinct Element Problem
	Non-Streaming Solutions
	(Idealized) Flajolet-Martin Algorithm
	(Idealized) Flajolet-Martin Algorithm
	Analysis of its Expectation
	Concentration
	How to boost the accuracy? A familiar recipe
	How to boost the accuracy? A familiar recipe
	How to boost the accuracy? A familiar recipe
	Practical Considerations: Implementing Hash Functions
	Hashing and its role in Streaming
	Pairwise Independent Hash Functions
	Pairwise Independent Hash Functions
	Flajolet-Martin (LogLog)
	Flajolet-Martin (LogLog)
	Rough Analysis

