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Mean and Median via Sampling



Mean and Median Statistics

• Given a list of 𝑛𝑛 numbers 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛:
• Mean: average value = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 /𝑛𝑛
• Median: the middle number after sorting (if 𝑛𝑛 is even; the average of the two middle ones)

Mean can be computed easily in 𝑂𝑂(𝑛𝑛) time. Similarly, for Median (but much more 
involved).

How to compute them in streaming setting?
• Mean is still easy! What about Median?



How to Compute Median in 𝑂𝑂(𝑛𝑛)

• Median of Medians algorithm



Median Estimation via Sampling

• Sample 𝑘𝑘 elements from the stream (𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛) and Let 𝑆𝑆 denote the sampled set.
• Compute the median of S and output it.

Question. How large should we set 𝑘𝑘 to get a reasonable accuracy?

When our algorithm fails?

Theorem. If 𝑘𝑘 = Ω( 1
𝜖𝜖2

log 1
𝛿𝛿

), then the proposed algorithm outputs an 
𝜖𝜖-approximate median with probability at least 1 − 𝛿𝛿 .
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Median Estimation via Sampling

• Sample 𝑘𝑘 elements from the stream (𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛) and Let 𝑆𝑆 denote the sampled set.
• Compute the median of S and output it.

Question. How large should we set 𝑘𝑘 to get a reasonable accuracy?

When our algorithm fails?
One of 𝑀𝑀𝑈𝑈 or 𝑀𝑀𝐿𝐿 has more than 𝑘𝑘/2 in 𝑆𝑆

𝑘𝑘 = 9

𝑀𝑀𝐿𝐿 𝑀𝑀𝑈𝑈

Theorem. If 𝑘𝑘 = Ω( 1
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log 1
𝛿𝛿

), then the proposed algorithm outputs an 
𝜖𝜖-approximate median with probability at least 1 − 𝛿𝛿 .
 



Proof

• 𝔼𝔼 𝑆𝑆𝐿𝐿 = 𝑘𝑘(1
2
− 𝜖𝜖)

• 𝔼𝔼 𝑆𝑆𝑈𝑈 = 𝑘𝑘(1
2
− 𝜖𝜖)

Now we need to bound Pr 𝑆𝑆𝐿𝐿 > 𝑘𝑘  (and respectively Pr 𝑆𝑆𝐿𝐿 > 𝑘𝑘 )

Note that Pr 𝑆𝑆𝐿𝐿 > 𝑘𝑘
2

= Pr 𝑆𝑆𝐿𝐿 − 𝔼𝔼 |𝑆𝑆𝐿𝐿| > 𝑘𝑘𝑘𝑘
Note that Pr 𝑆𝑆𝐿𝐿 > 𝑘𝑘 ≤ exp(−𝑘𝑘𝜖𝜖2)

It suffices to set 𝑘𝑘 ≥ 1
𝜖𝜖2

ln(2/𝛿𝛿) so that exp(−𝑘𝑘𝜖𝜖2) ≤ 𝛿𝛿/2.

𝑘𝑘 = 9

𝑀𝑀𝐿𝐿 𝑀𝑀𝑈𝑈

Chernoff-Hoeffding bound

𝑆𝑆𝐿𝐿 = 𝑆𝑆 ∩ 𝑀𝑀𝐿𝐿 and 𝑆𝑆𝑈𝑈 = 𝑆𝑆 ∩ 𝑀𝑀𝑈𝑈



Probabilistic Counting

Estimate the number of items in a large dataset w/o storing all the items.

Use cases:
• Network Traffic Monitoring. A router or network switch needs to count the total 

number of data packets that pass through it in a specific time window.
• Web Server Log Analysis. A large web service like Google or Netflix needs to count 

the total number of error log entries (e.g., HTTP 500 errors) generated across its 
thousands of servers.

• Financial Transaction. A payment processing company like Visa or Stripe needs to 
count the total number of transactions occurring globally.



Probabilistic Counting in Streaming

Setting: monitoring a massive, continuous stream of data.

Input: A data stream 𝑆𝑆 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑁𝑁), where 𝑁𝑁 is enormous (billions 
or trillions of items).
The Goal: Count the number of elements that have appeared in the stream.

Trivial approach requires 𝑂𝑂(log𝑁𝑁) bits of space.
Questions. Can we do better?

Deterministically, no!



Morris Counter (1978)

• As 𝑋𝑋 gets larger, 𝑋𝑋 increased with a 
lower probability

• In some sense, we keep track of the 
log𝑁𝑁 (its binary representation) 
rather than 𝑁𝑁 itself.

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
return ?
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What should we show about our 
designed estimator?



Morris Counter (1978)

• As 𝑋𝑋 gets larger, 𝑋𝑋 increased with a 
lower probability

• In some sense, we keep track of the 
log𝑁𝑁 (its binary representation) 
rather than 𝑁𝑁 itself.

• 𝑌𝑌 = 2𝑋𝑋 has the correct expectation; 
𝔼𝔼 𝑌𝑌 − 1 = 𝑛𝑛 (#events).

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
Return 2𝑋𝑋 − 1

What should we show about our 
designed estimator? Motivations (Bell Labs)

• With 8 bits, possible to count to 256

• Managed to count to 130,000.



Expectation Analysis of Morris Counter

• Let 𝑋𝑋𝑖𝑖 be the value of counter after 𝑖𝑖 events, and 𝑌𝑌𝑖𝑖 = 2𝑋𝑋𝑖𝑖
• Both are random variables
By Induction (Goal: 𝑌𝑌𝑛𝑛 = 𝑛𝑛 + 1).

• Base case: 𝑛𝑛 = 0, 1 ⟹ 𝑌𝑌0 = 1 and 𝑌𝑌1 = 2 

𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝔼𝔼 2𝑋𝑋𝑛𝑛 ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ Pr[𝑋𝑋𝑛𝑛 = 𝑗𝑗] ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ (Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ⋅ 1 − 2−𝑗𝑗 + Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 − 1 ⋅ 2−(𝑗𝑗−1)),

𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ,
𝔼𝔼 𝑌𝑌𝑛𝑛  + ∑𝑗𝑗=0∞ 2 ⋅ Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 − 1 − Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ,



Expectation Analysis of Morris Counter (contd.)

𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝔼𝔼 2𝑋𝑋𝑛𝑛 ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ Pr[𝑋𝑋𝑛𝑛 = 𝑗𝑗] ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ (Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ⋅ 1 − 2−𝑗𝑗 + Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 − 1 ⋅ 2−(𝑗𝑗−1)),

𝔼𝔼 𝑌𝑌𝑛𝑛 = ∑𝑗𝑗=0∞ 2𝑗𝑗 ⋅ Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ,
𝔼𝔼 𝑌𝑌𝑛𝑛  + ∑𝑗𝑗=0∞ 2 ⋅ Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 − 1 − Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝔼𝔼[𝑌𝑌𝑛𝑛−1],
𝔼𝔼 𝑌𝑌𝑛𝑛  + ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛−1 = 𝑗𝑗 ,
𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝔼𝔼 𝑌𝑌𝑛𝑛−1 + 1 = 𝑛𝑛 + 1,

Induction 
hypothesis telescoping 

series



So far,…

• We showed that output of the 
Morris counter in expectation is 
equal to 𝑛𝑛 (#events).

• What about the space complexity? 
In other words, how large X gets?

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
Return 2𝑋𝑋 − 1

We know,
• 𝑌𝑌𝑛𝑛 = 2𝑋𝑋𝑛𝑛
• 𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝑛𝑛 + 1  

Ideally, we would like to say
2𝔼𝔼[𝑋𝑋𝑛𝑛] ≤ 𝔼𝔼[𝑌𝑌𝑛𝑛]
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So far,…

• We showed that output of the 
Morris counter in expectation is 
equal to 𝑛𝑛 (#events).

• What about the space complexity? 
In other words, how large X gets?

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
Return 2𝑋𝑋 − 1

We know,
• 𝑌𝑌𝑛𝑛 = 2𝑋𝑋𝑛𝑛
• 𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝑛𝑛 + 1  

Ideally, we would like to say
𝟐𝟐𝔼𝔼[𝑿𝑿𝒏𝒏] ≤ 𝔼𝔼[𝒀𝒀𝒏𝒏]

Then, 
𝔼𝔼 𝑋𝑋𝑛𝑛 ≤ log 𝔼𝔼 𝑌𝑌𝑛𝑛 = log(𝑛𝑛 + 1)



Jensen’s Inequality

• 𝑓𝑓:ℝ → ℝ is convex if and only if,
 𝑓𝑓 𝑥𝑥1+𝑥𝑥2

2 ≤ 𝑓𝑓 𝑥𝑥1 +𝑓𝑓(𝑥𝑥2)
2 , for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ, or equivalently

 𝑓𝑓 𝜃𝜃𝑥𝑥1 + 1 − 𝜃𝜃 𝑥𝑥2 ≤ 𝜃𝜃𝜃𝜃 𝑥𝑥1 + 1 − 𝜃𝜃 𝑓𝑓(𝑥𝑥2), for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ, 0 ≤ 𝜃𝜃 ≤ 1

Jensen’s Inequality. Let 𝑍𝑍 be a 
random variable with 𝔼𝔼 𝑍𝑍 < ∞. For 
convex 𝑓𝑓,

𝒇𝒇(𝔼𝔼 𝒁𝒁 ) ≤ 𝔼𝔼[𝒇𝒇(𝒁𝒁)])
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 𝑓𝑓 𝑥𝑥 = 2𝑥𝑥 is convex.

Jensen’s Inequality. Let 𝑍𝑍 be a 
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• 𝑓𝑓:ℝ → ℝ is convex if and only if,
 𝑓𝑓 𝑥𝑥1+𝑥𝑥2

2 ≤ 𝑓𝑓 𝑥𝑥1 +𝑓𝑓(𝑥𝑥2)
2 , for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ, or equivalently
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• 𝑓𝑓 𝑥𝑥 = 2𝑥𝑥 is convex.

2𝔼𝔼[𝑋𝑋] ≤ 𝔼𝔼 2𝑋𝑋 = 𝔼𝔼 𝑌𝑌  (Morris Counter)

Jensen’s Inequality. Let 𝑍𝑍 be a 
random variable with 𝔼𝔼 𝑍𝑍 < ∞. For 
convex 𝑓𝑓,
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So far,…

• We showed that output of the 
Morris counter in expectation is 
equal to 𝑛𝑛 (#events).

• What about the space complexity? 
In other words, how large X gets?

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
Return 2𝑋𝑋 − 1

We know,
• 𝑌𝑌𝑛𝑛 = 2𝑋𝑋𝑛𝑛
• 𝔼𝔼 𝑌𝑌𝑛𝑛 = 𝑛𝑛 + 1
• 2𝔼𝔼[𝑋𝑋𝑛𝑛] ≤ 𝔼𝔼 𝑌𝑌𝑛𝑛 = log(𝑛𝑛 + 1)  

• Expected number of bits to 
represent 𝑋𝑋𝑛𝑛 is 

𝔼𝔼[log𝑋𝑋𝑛𝑛] ≤ log 𝔼𝔼 𝑋𝑋𝑛𝑛
 𝔼𝔼[log𝑋𝑋] ≤ log log(𝑛𝑛 + 1)

Jensen’s Inequality. Let 𝑍𝑍 be a 
random variable with 𝔼𝔼 𝑍𝑍 < ∞. For 
convex 𝑓𝑓,

𝒇𝒇(𝔼𝔼 𝒁𝒁 ) ≤ 𝔼𝔼[𝒇𝒇(𝒁𝒁)])



So far,…

• We showed that output of the Morris 
counter in expectation is equal to 𝑛𝑛 
(#events). 𝔼𝔼 𝒀𝒀𝒏𝒏 = 𝒏𝒏 + 𝟏𝟏

• We showed that the space complexity 
of the counter is 𝔼𝔼 𝑿𝑿 = 𝑶𝑶(𝐥𝐥𝐥𝐥𝐥𝐥 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)

Morris Counter (stream):
𝑋𝑋 ← 0
while an item in stream arrives:

with probability 1/2𝑋𝑋 run
        𝑋𝑋 ← 𝑋𝑋 + 1
Return 2𝑋𝑋 − 1

How well are they concentrated around their expectation?

What’re their variances?



Variance Analysis of Morris Counter

Var 𝑌𝑌𝑛𝑛 = 𝔼𝔼 𝑌𝑌𝑛𝑛2 − 𝔼𝔼 𝑌𝑌𝑛𝑛 2. 
• We’ve computed the second term. What about the first term?

Claim) 𝔼𝔼 𝑌𝑌𝑛𝑛2 = 1.5 𝑛𝑛2 + 1.5 𝑛𝑛 + 1
Proof is similar to the analysis of 𝔼𝔼[𝑌𝑌𝑛𝑛], via induction.

Var 𝑌𝑌𝑛𝑛 = 𝔼𝔼 𝑌𝑌𝑛𝑛2 − 𝔼𝔼 𝑌𝑌𝑛𝑛 2 = 1.5 𝑛𝑛2 + 𝑛𝑛 + 1 − 𝑛𝑛 + 1 2 = .5 𝑛𝑛2 − 𝑛𝑛 .

In particular, 𝜎𝜎𝑌𝑌𝑛𝑛 = 𝑛𝑛(𝑛𝑛 − 1)/2 ≤ 𝑛𝑛.

By Chebyshev’s inequality, Pr 𝑌𝑌𝑛𝑛 − 𝔼𝔼 𝑌𝑌𝑛𝑛 ≥ 𝑡𝑡𝑡𝑡 ≤ 1/(2𝑡𝑡2)
• So, by setting 𝑡𝑡 = 3/4, with constant probability, 𝑌𝑌𝑛𝑛 = 𝑂𝑂(𝑛𝑛).

How to get a 
sharper estimate?



Tighter Estimate for Morris Counter

Estimators, like Morris counter, give expectation. We can further bound 
their variance to apply Chebyshev. How to improve these estimators?

A common technique: Variance reduction via averaging

Goal. For any given 𝜖𝜖 > 0, output a (1 ± 𝜖𝜖)-approximation with probability (1
− 𝛿𝛿) for a given 𝛿𝛿 > 0.

oRun 𝑘𝑘 independent copies of the algorithm (Morris counter) in parallel.
• Each run uses its own independent random bits.

oLet 𝑌𝑌(1), … ,𝑌𝑌 𝑘𝑘  be estimators from these 𝑘𝑘 independent runs.
oOutput 𝑌𝑌avg = (∑𝑖𝑖=1𝑘𝑘 𝑌𝑌 𝑖𝑖 )/𝑘𝑘

𝔼𝔼 𝑌𝑌avg = 𝑛𝑛

Var 𝑌𝑌avg =
Var[𝑌𝑌]
𝑘𝑘

Var 𝑌𝑌avg =
𝑛𝑛2 − 𝑛𝑛

2𝑘𝑘



Tighter Estimate for Morris Counter (contd.)

A common technique: Variance reduction via averaging

Set 𝑘𝑘 = 2/𝜖𝜖2 and apply Chebyshev’s inequality. Then,

Pr 𝑌𝑌avg − 𝔼𝔼 𝑌𝑌avg ≥ 𝜖𝜖𝑛𝑛 ≤ 1/4

How much the space complexity change? 
• To run 𝑘𝑘 copies need 𝑂𝑂( 1

𝜖𝜖2
log log𝑛𝑛) bits for all these counters.

oRun 𝑘𝑘 independent copies of the algorithm (Morris counter) in parallel.
• Each run uses its own independent random bits.

oLet 𝑌𝑌(1), … ,𝑌𝑌 𝑘𝑘  be estimators from these 𝑘𝑘 independent runs.
oOutput 𝑌𝑌avg = (∑𝑖𝑖=1𝑘𝑘 𝑌𝑌 𝑖𝑖 )/𝑘𝑘

𝔼𝔼 𝑌𝑌avg = 𝑛𝑛

Var 𝑌𝑌avg =
Var[𝑌𝑌]
𝑘𝑘

Var 𝑌𝑌avg =
𝑛𝑛2 − 𝑛𝑛

2𝑘𝑘

compare to

Pr 𝑌𝑌𝑛𝑛 − 𝔼𝔼 𝑌𝑌𝑛𝑛 ≥ 𝑡𝑡𝑡𝑡 ≤ 1/(2𝑡𝑡2)



Let’s Recap

However, what we know is,
Pr 𝑌𝑌avg − 𝔼𝔼 𝑌𝑌avg ≥ 𝜖𝜖𝜖𝜖 ≤ 1/4

Simple fix. Set 𝑘𝑘 = 1/(2𝜖𝜖2𝛿𝛿), then Pr 𝑌𝑌avg − 𝔼𝔼 𝑌𝑌avg ≥ 𝜖𝜖𝜖𝜖 ≤ 𝛿𝛿

• Now, the space complexity is 𝑂𝑂( 1
𝜖𝜖2𝛿𝛿

log log𝑛𝑛)

Question. Can we use smaller number of counters and still get 𝛿𝛿 failure probability.
• Specifically, better dependence on 𝟏𝟏/𝜹𝜹 

Goal. For any given 𝜖𝜖 > 0, output a (1 ± 𝜖𝜖)-approximation with probability 
(1 − 𝛿𝛿) for a given 𝛿𝛿 > 0.



Another Technique: Median Trick

Error reduction via median trick

Let 𝐴𝐴𝑖𝑖 be the event that estimate (i.e., counter) 𝑌𝑌avg𝑖𝑖  is bad; i.e.,
𝑌𝑌avg𝑖𝑖 − (𝑛𝑛 + 1) > 𝜖𝜖𝜖𝜖

We showed that Pr 𝐴𝐴𝑖𝑖 ≤ 1/4. Hence, the expected number of bad estimators is ℓ/4.
When 𝑌𝑌med is a bad estimate? There are ≥ ℓ/2 bad estimators.

oRun ℓ × 𝑘𝑘 independent copies of the algorithm (Morris counter) in parallel.
• Each run uses its own independent random bits.

oLet 𝑌𝑌avg1 , … ,𝑌𝑌avgℓ  be estimators from these 𝑘𝑘 independent runs.
oOutput 𝑌𝑌med = Median(𝑌𝑌avg1 , … ,𝑌𝑌avgℓ )

This is helpful 
because enables 
us to apply 
Chernoff bound.

Using Chernoff,
Pr[bad median] is 
≤ 2−𝑐𝑐𝑐, for some 
constant 𝑐𝑐.



Altogether, …

• Using variance reduction and median trick:

Goal. For any given 𝜖𝜖 > 0, output a (1 ± 𝜖𝜖)-approximation with probability 
(1 − 𝛿𝛿) for a given 𝛿𝛿 > 0.

Using 𝑂𝑂( 𝟏𝟏
𝝐𝝐𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥 𝟏𝟏

𝜹𝜹
log log𝑛𝑛) bits, one can maintain a 1 ± 𝜖𝜖  w.p. at least 1 − 𝛿𝛿. 

generic scheme 
we repeatedly see.

In HW 1: how to set 𝑘𝑘 and ℓ to achieve the stated bound?
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