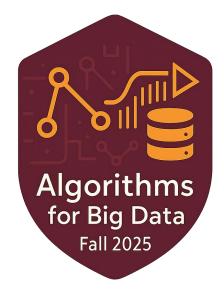
Algorithms for Big Data (FALL 25)

Lecture 2
Streaming Model and Sampling

ALI VAKILIAN (vakilian@vt.edu)

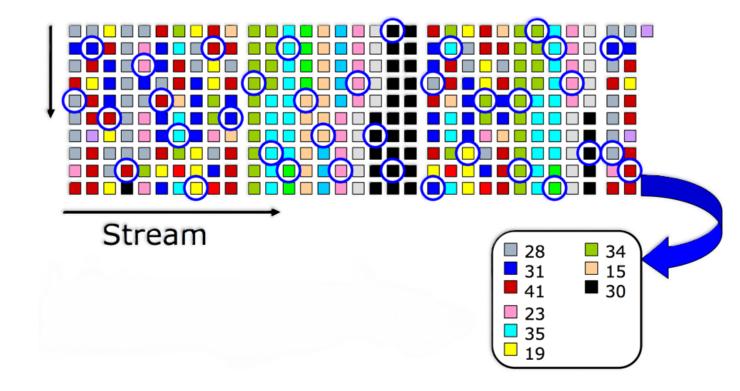


Streaming Model

• Input: m items e_1, \dots, e_N arrive one by one

can't store the whole stream

- Memory constraint: only B tokens of space, with (typically) $B \ll N$
- Goal: compute interesting functions/statistics over the stream under limited memory



Streaming Model

• Input: m items e_1, \dots, e_N arrive one by one

can't store the whole stream

- Memory constraint: only B tokens of space, with (typically) $B \ll N$
- Goal: compute interesting functions/statistics over the stream under limited memory

Examples of streams

- A number in [n]
- Network packets: (src IP, dst IP, payload)
- Graph stream: each token is an edge
- Geometric stream: each token is a point in a feature space
- Matrix stream: each token is a row/column of a matrix (or an entry of a matrix)

• **Storage gap:** Very large but slow media (e.g., tape and remote storage) are best for sequential access, while main memory is small but fast.

process data in one or few passes

- **Storage gap:** Very large but slow media (e.g., tape and remote storage) are best for sequential access, while main memory is small but fast.
- **High-velocity sources:** Network switches, logs, sensors/IoT where data is flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.

keep only high-level statistics

- **Storage gap:** Very large but slow media (e.g., tape and remote storage) are best for sequential access, while main memory is small but fast.
- **High-velocity sources:** Network switches, logs, sensors/IoT where data is flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.

• Distributed data: Data lives on many devices. Shipping everything to a central

place is costly/impossible.

need **small-size** summaries

sketching techniques

- **Storage gap:** Very large but slow media (e.g., tape and remote storage) are best for sequential access, while main memory is small but fast.
- **High-velocity sources:** Network switches, logs, sensors/IoT where data is flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.
- **Distributed data:** Data lives on many devices. Shipping everything to a central place is costly/impossible.
- Resource constraints: Often per-item update time is required to be O(1) or $O(\log n)$; memory \ll data size; often running with power/latency limits.

Key Question in Streaming Algorithms

Trade-off between memory size, accuracy, and number of passes

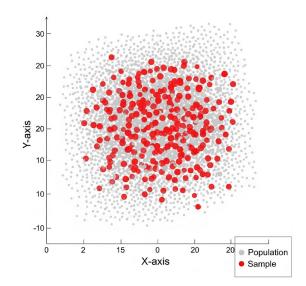
Ideal scenario. compute the quantity of interest, over a stream of n items

- Near optimally (say $(1 \pm \epsilon)$ -approximation),
- In one pass over the stream,
- Using poly(log n) space
- For many, **not possible** to do in less than O(n) space if one wants **exact** answer
- Randomization and approximation leads to many interesting results

Technique I: Sampling

Sampling

- **Why:** Random sampling is a powerful, general tool for data analysis. We'll see several variants and applications.
- Core idea: pick a small random subset S from a large dataset D and estimate the quantity of interest using S instead of all of D.
- What matters: the sampling strategy, sample size, and estimator used in analysis.

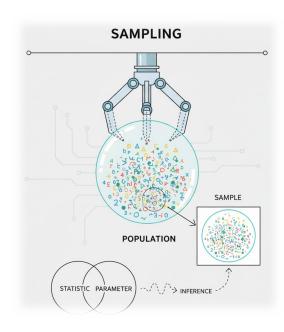


Sampling: Common Variants

- Simple random sampling: with/without replacement
- Reservoir sampling: maintain a uniform k-sample from a stream (single pass)
- Stratified sampling: sample within groups/segments to reduce variance
- Weighted sampling: assign a weight to each item; sample accordingly.

Estimation and Accuracy Analysis

- Unbiased estimators with variance you can compute/upper bound
- Concentration: error ϵ with failure prob. δ typically needs sample size $O(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$
 - Typically apply Chebyshev or Hoeffding/Chernoff to bound accuracy and uncertainty
- $\mathbb{E}[\hat{\theta}] = \theta$, and $Var(\hat{\theta})$ is bounded (estimator is correct on average but no reliable)
- Variance reduction via averaging. Consider k independent copies of unbiased $\hat{\theta}_1, \dots, \hat{\theta}_k$; then $\hat{\theta}_{avg} = \sum \hat{\theta}_i / k$
 - $\mathbb{E}[\hat{\theta}_{avg}] = \theta$, but $Var(\hat{\theta}_{avg}) = Var(\hat{\theta})/k$
 - Chebyshev's inequality: $\Pr[|\hat{\theta}_{avg} \theta| \ge \epsilon] \le \frac{\operatorname{Var}(\theta)}{k\epsilon^2}$. So, set $k = \frac{\sigma^2}{\epsilon^2 \delta}$ to get probability down to δ
 - Chernoff bound: $\Pr[|\hat{\theta}_{avg} \theta| \ge \epsilon] \le 2^{-\Omega(k\epsilon^2)}$. So, set $k = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ to get probability down to δ



How to perform sampling?

Basic Sampling Strategies

• **Setup:** dataset of size m; goal is a uniform sample of size k

With replacement

- **Procedure:** repeat k times, draw $i \sim \mathbf{Uniform}\{1, ..., m\}$ and include item e_i
- Duplicates allowed; draws are independent (i.i.d.)
- Use when independence simplifies analysis or when sampling cost per draw is small

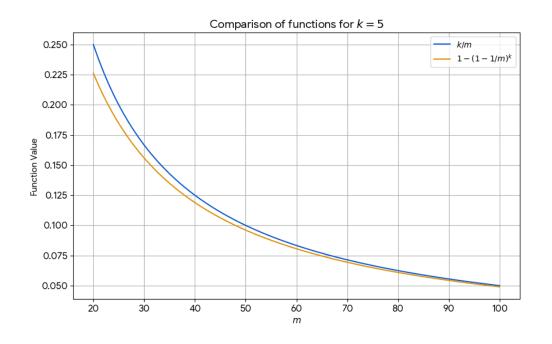
Without replacement

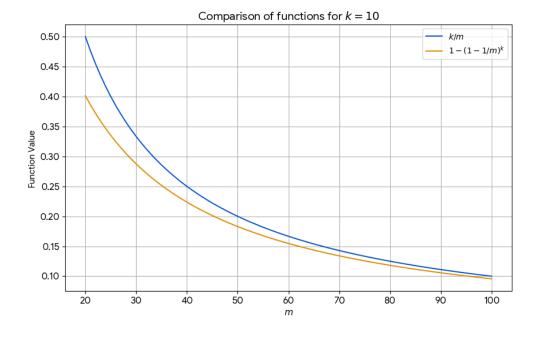
- **Procedure:** choose one k-subset uniformly from all $\binom{m}{k}$ subsets
- No duplicates; draws are dependent
- Marginal inclusion probability for any item: k/m

Compare the marginal inclusion probability of w. replacement and w/o. replacement

Marginal Inclusion Probability Computation

Marginal Inclusion Probability Computation





Reservoir Sampling

How to draw a uniform sample w/o knowing length of stream in advance?

Key tool: rejection sampling

Simple example. Choose a random integer r in $\{1, \dots, m\}$

- Let $k = \lceil \log m \rceil$
- Use k random bits to generate an integer r uniformly in $\{1, \dots, 2^k\}$
- If $r \leq m$, output r; otherwise, **reject** r and repeat

Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.

The output sample is uniform. i.e.,

$$\forall i \in [m], \Pr[\text{sample} = e_i] = 1/m$$

Proof. (by induction)

ReservoirSample (stream):

```
sample \leftarrow \emptyset, t \leftarrow 0
```

foreach item *x* in stream:

$$t \leftarrow t + 1$$

// Replace with probability 1/t

if RandomUniform(0,1) < 1/t:

sample
$$\leftarrow x$$

return sample

Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.

The output sample is uniform. I.e.,

$$\forall i \in [m], \Pr[\text{sample} = e_i] = 1/m$$

Question. How to pick k samples?

How to sample *k* items without replacement?

ReservoirSample (stream):

sample
$$\leftarrow \emptyset$$
, $t \leftarrow 0$

foreach item *x* in stream:

$$t \leftarrow t + 1$$

// Replace with probability 1/t

if RandomUniform(0,1) < 1/t:

sample
$$\leftarrow x$$

return sample

Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. The probability of selecting all items are equal, $\forall i \in [m], \Pr[e_i \in S] = k/m$

Proof.

ReservoirSample (stream): $S[1...k] \leftarrow Stream[1...k], t \leftarrow k$ **foreach** *x* in stream after position *k*: $t \leftarrow t + 1$ // Replace with probability k/t $r \leftarrow \mathsf{RandomUniformInt}[1, t]$ if $r \leq k$: $S[r] \leftarrow x$ return S

Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. The probability of selecting all items are equal, $\forall i \in [m], \Pr[e_i \in S] = k/m$

S[l...k] \leftarrow Stream[1...k], $t \leftarrow k$ foreach x in stream after position k: $t \leftarrow t+1$ // Replace with probability k/t $r \leftarrow$ RandomUniformInt[1, t] if $r \leq k$: S[r] $\leftarrow x$

ReservoirSample (stream):

return S

A different implementation in **HW 1**

Weighted Sampling

- Now, each item x_i in the stream is assigned with a weight $w_i > 0$. Goal is sample item i proportional to its weight; i.e., w_i/W where $W = \sum_{i=1}^m w_i$.
- How to implement in streaming?

Correctness Proof.

ReservoirSample (stream):

sample
$$\leftarrow \emptyset$$
, $t \leftarrow 0$, $W \leftarrow 0$

foreach item x_i in stream:

$$t \leftarrow t + 1, W \leftarrow W + w_i$$

// Replace with probability w_i/W

if RandomUniform $(0,1) < w_i/W$:

sample
$$\leftarrow x$$

return sample

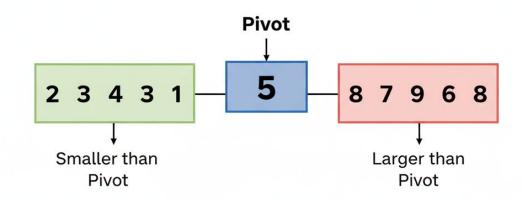
Mean and Median via Sampling

Mean and Median Statistics

- Given a list of n numbers x_1, \dots, x_n :
 - **Mean:** average value = $\sum_{i=1}^{n} x_i / n$
 - **Median:** the middle number after sorting (if n is even; the average of the two middle ones)

Mean can be computed easily in O(n) time. Similarly, for **Median** (but much more involved).

- How to compute them in streaming setting?
 - Mean is still easy! What about Median?



How to Compute Median in O(n)

Medians of Median algorithm