
Algorithms for Big Data (FALL 25)
Lecture 2

STREAMING MODEL AND SAMPLING

ALI VAKILIAN (vakilian@vt.edu)

Streaming Model

• Input: 𝑚𝑚 items 𝑒𝑒1,⋯ , 𝑒𝑒𝑁𝑁 arrive one by one
• Memory constraint: only 𝐵𝐵 tokens of space, with (typically) 𝐵𝐵 ≪ 𝑁𝑁
• Goal: compute interesting functions/statistics over the stream under limited memory

can’t store the whole stream

Streaming Model

• Input: 𝑚𝑚 items 𝑒𝑒1,⋯ , 𝑒𝑒𝑁𝑁 arrive one by one
• Memory constraint: only 𝐵𝐵 tokens of space, with (typically) 𝐵𝐵 ≪ 𝑁𝑁
• Goal: compute interesting functions/statistics over the stream under limited memory

Examples of streams
• A number in [𝑛𝑛]
• Network packets: (src IP, dst IP, payload)
• Graph stream: each token is an edge
• Geometric stream: each token is a point in a feature space
• Matrix stream: each token is a row/column of a matrix (or an entry of a matrix)

can’t store the whole stream

Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are
best for sequential access, while main memory is small but fast.

process data in one or few passes

Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are
best for sequential access, while main memory is small but fast.

• High-velocity sources: Network switches, logs, sensors/IoT where data is
flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.

keep only high-level statistics

Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are
best for sequential access, while main memory is small but fast.

• High-velocity sources: Network switches, logs, sensors/IoT where data is
flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.

• Distributed data: Data lives on many devices. Shipping everything to a central
place is costly/impossible.

need small-size summaries

sketching techniques

Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are
best for sequential access, while main memory is small but fast.

• High-velocity sources: Network switches, logs, sensors/IoT where data is
flying by; raw storage is infeasible due to rate, cost, or privacy/compliance.

• Distributed data: Data lives on many devices. Shipping everything to a central
place is costly/impossible.

• Resource constraints: Often per-item update time is required to be 𝑂𝑂(1) or
𝑂𝑂(log𝑛𝑛); memory ≪ data size; often running with power/latency limits.

Key Question in Streaming Algorithms

• Trade-off between memory size, accuracy, and number of passes

Ideal scenario. compute the quantity of interest, over a stream of 𝒏𝒏 items
• Near optimally (say (𝟏𝟏 ± 𝝐𝝐)-approximation),
• In one pass over the stream,
• Using 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏) space

For many, not possible to do in less than 𝑂𝑂(𝑛𝑛) space if one wants exact answer

Randomization and approximation leads to many interesting results

Technique I: Sampling

Sampling

• Why: Random sampling is a powerful, general tool for data analysis. We’ll see
several variants and applications.

• Core idea: pick a small random subset 𝑆𝑆 from a large dataset 𝐷𝐷 and estimate the
quantity of interest using 𝑆𝑆 instead of all of 𝐷𝐷.

• What matters: the sampling strategy, sample size, and estimator used in analysis.

Sampling: Common Variants

• Simple random sampling: with/without replacement

• Reservoir sampling: maintain a uniform 𝑘𝑘-sample from a stream (single pass)

• Stratified sampling: sample within groups/segments to reduce variance

• Weighted sampling: assign a weight to each item; sample accordingly.

Estimation and Accuracy Analysis

• Unbiased estimators with variance you can compute/upper bound

• Concentration: error 𝜖𝜖 with failure prob. 𝛿𝛿 typically needs sample size 𝑂𝑂(1
𝜖𝜖2

log 1
𝛿𝛿

)
• Typically apply Chebyshev or Hoeffding/Chernoff to bound accuracy and uncertainty

• 𝔼𝔼 𝜃̂𝜃 = 𝜃𝜃, and Var(𝜃̂𝜃) is bounded (estimator is correct on average but no reliable)

• Variance reduction via averaging. Consider 𝑘𝑘 independent copies of unbiased 𝜃̂𝜃1,⋯ , 𝜃̂𝜃𝑘𝑘 ; then 𝜃̂𝜃avg =
∑ 𝜃̂𝜃𝑖𝑖 /𝑘𝑘

• 𝔼𝔼 𝜃̂𝜃avg = 𝜃𝜃, but Var(𝜃̂𝜃avg)= Var(𝜃̂𝜃)/𝑘𝑘

• Chebyshev’s inequality: Pr 𝜃̂𝜃avg − 𝜃𝜃 ≥ 𝜖𝜖 ≤ Var(𝜃𝜃)
𝑘𝑘𝜖𝜖2 . So, set 𝑘𝑘 = 𝜎𝜎2

𝜖𝜖2𝛿𝛿 to get probability down to 𝛿𝛿

• Chernoff bound: Pr 𝜃̂𝜃avg − 𝜃𝜃 ≥ 𝜖𝜖 ≤ 2−Ω(k𝜖𝜖2). So, set 𝑘𝑘 = 𝑂𝑂(1
𝜖𝜖2 log 1

𝛿𝛿) to get probability down to 𝛿𝛿

How to perform sampling?

Basic Sampling Strategies

• Setup: dataset of size 𝑚𝑚; goal is a uniform sample of size 𝑘𝑘
With replacement
• Procedure: repeat 𝑘𝑘 times, draw 𝑖𝑖 ∼ 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔{1, … ,𝑚𝑚} and include item 𝑒𝑒𝑖𝑖
• Duplicates allowed; draws are independent (i.i.d.)
• Use when independence simplifies analysis or when sampling cost per draw is small

Without replacement
• Procedure: choose one 𝑘𝑘-subset uniformly from all 𝑚𝑚

𝑘𝑘 subsets
• No duplicates; draws are dependent

• Marginal inclusion probability for any item: 𝑘𝑘/𝑚𝑚 Compare the marginal inclusion probability

of w. replacement and w/o. replacement

Marginal Inclusion Probability Computation

Marginal Inclusion Probability Computation

Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Key tool: rejection sampling
Simple example. Choose a random integer 𝑟𝑟 in {1,⋯ ,𝑚𝑚}
• Let 𝑘𝑘 = log 𝑚𝑚
• Use 𝑘𝑘 random bits to generate an integer 𝑟𝑟 uniformly in {1,⋯ , 2𝑘𝑘}
• If 𝑟𝑟 ≤ 𝑚𝑚, output 𝑟𝑟; otherwise, reject 𝑟𝑟 and repeat

Expected number of iterations? (HW0)

Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.
The output sample is uniform. i.e.,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr sample = 𝑒𝑒𝑖𝑖 = 1/𝑚𝑚

Proof. (by induction)

ReservoirSample (stream):
 sample ← ∅, 𝑡𝑡 ← 0
 foreach item 𝑥𝑥 in stream:
 𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝟏𝟏/𝒕𝒕

 if RandomUniform(0,1) < 1/𝑡𝑡:
 sample ← 𝑥𝑥
 return sample

Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.
The output sample is uniform. I.e.,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr sample = 𝑒𝑒𝑖𝑖 = 1/𝑚𝑚

Question. How to pick 𝑘𝑘 samples?

How to sample 𝑘𝑘 items without replacement?

ReservoirSample (stream):
 sample ← ∅, 𝑡𝑡 ← 0
 foreach item 𝑥𝑥 in stream:
 𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝟏𝟏/𝒕𝒕

 if RandomUniform(0,1) < 1/𝑡𝑡:
 sample ← 𝑥𝑥
 return sample

Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.
The probability of selecting all items are equal,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr 𝑒𝑒𝑖𝑖 ∈ S = 𝑘𝑘/𝑚𝑚

Proof.

ReservoirSample (stream):
 S[1…k]← Stream[1…k], 𝑡𝑡 ← 𝑘𝑘
 foreach 𝑥𝑥 in stream after position 𝑘𝑘:
 𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝒌𝒌/𝒕𝒕

 𝑟𝑟 ← RandomUniformInt[1, 𝑡𝑡]
 if 𝑟𝑟 ≤ 𝑘𝑘:
 S[r] ← 𝑥𝑥
 return S

Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream.
The probability of selecting all items are equal,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr 𝑒𝑒𝑖𝑖 ∈ S = 𝑘𝑘/𝑚𝑚

ReservoirSample (stream):
 S[1…k]← Stream[1…k], 𝑡𝑡 ← 𝑘𝑘
 foreach 𝑥𝑥 in stream after position 𝑘𝑘:
 𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝒌𝒌/𝒕𝒕

 𝑟𝑟 ← RandomUniformInt[1, 𝑡𝑡]
 if 𝑟𝑟 ≤ 𝑘𝑘:
 S[r] ← 𝑥𝑥
 return SA different implementation in HW 1

Weighted Sampling

• Now, each item 𝑥𝑥𝑖𝑖 in the stream is assigned with a weight 𝑤𝑤𝑖𝑖 > 0. Goal is sample
item 𝑖𝑖 proportional to its weight; i.e., 𝑤𝑤𝑖𝑖/𝑊𝑊 where 𝑊𝑊 = ∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖 .

• How to implement in streaming?

Correctness Proof.

ReservoirSample (stream):
 sample ← ∅, 𝑡𝑡 ← 0, 𝑊𝑊 ← 0
 foreach item 𝑥𝑥𝑖𝑖 in stream:
 𝑡𝑡 ← 𝑡𝑡 + 1, 𝑊𝑊 ← 𝑊𝑊 + 𝑤𝑤𝑖𝑖
 // Replace with probability 𝒘𝒘𝒊𝒊/𝑾𝑾

 if RandomUniform(0,1) < 𝑤𝑤𝑖𝑖/𝑊𝑊:
 sample ← 𝑥𝑥
 return sample

Mean and Median via Sampling

Mean and Median Statistics

• Given a list of 𝑛𝑛 numbers 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛:
• Mean: average value = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 /𝑛𝑛
• Median: the middle number after sorting (if 𝑛𝑛 is even; the average of the two middle ones)

Mean can be computed easily in 𝑂𝑂(𝑛𝑛) time. Similarly, for Median (but much more
involved).

How to compute them in streaming setting?
• Mean is still easy! What about Median?

How to Compute Median in 𝑂𝑂(𝑛𝑛)

• Medians of Median algorithm

	Algorithms for Big Data (Fall 25)
	Streaming Model
	Streaming Model
	Streaming Algorithms: Motivations
	Streaming Algorithms: Motivations
	Streaming Algorithms: Motivations
	Streaming Algorithms: Motivations
	Key Question in Streaming Algorithms
	Technique I: Sampling
	Sampling
	Sampling: Common Variants
	Estimation and Accuracy Analysis
	How to perform sampling?
	Basic Sampling Strategies
	Marginal Inclusion Probability Computation
	Marginal Inclusion Probability Computation
	Reservoir Sampling
	Reservoir Sampling
	Reservoir Sampling
	Reservoir Sampling without Replacement
	Reservoir Sampling without Replacement
	Weighted Sampling
	Mean and Median via Sampling
	Mean and Median Statistics
	How to Compute Median in 𝑂(𝑛)

