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Streaming Model

• Input: 𝑚𝑚 items 𝑒𝑒1,⋯ , 𝑒𝑒𝑁𝑁 arrive one by one
• Memory constraint: only 𝐵𝐵 tokens of space, with (typically) 𝐵𝐵 ≪ 𝑁𝑁
• Goal: compute interesting functions/statistics over the stream under limited memory

can’t store the whole stream
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• Input: 𝑚𝑚 items 𝑒𝑒1,⋯ , 𝑒𝑒𝑁𝑁 arrive one by one
• Memory constraint: only 𝐵𝐵 tokens of space, with (typically) 𝐵𝐵 ≪ 𝑁𝑁
• Goal: compute interesting functions/statistics over the stream under limited memory

Examples of streams
• A number in [𝑛𝑛] 
• Network packets: (src IP, dst IP, payload)
• Graph stream: each token is an edge
• Geometric stream: each token is a point in a feature space
• Matrix stream: each token is a row/column of a matrix (or an entry of a matrix)

can’t store the whole stream



Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are 
best for sequential access, while main memory is small but fast.

process data in one or few passes
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Streaming Algorithms: Motivations

• Storage gap: Very large but slow media (e.g., tape and remote storage) are 
best for sequential access, while main memory is small but fast.

• High-velocity sources: Network switches, logs, sensors/IoT where data is 
flying by; raw storage is infeasible due to rate, cost, or privacy/compliance. 

• Distributed data: Data lives on many devices. Shipping everything to a central 
place is costly/impossible.

• Resource constraints: Often per-item update time is required to be 𝑂𝑂(1) or 
𝑂𝑂(log𝑛𝑛); memory ≪ data size; often running with power/latency limits.



Key Question in Streaming Algorithms

• Trade-off between memory size, accuracy, and number of passes

Ideal scenario. compute the quantity of interest, over a stream of 𝒏𝒏 items 
• Near optimally (say (𝟏𝟏 ± 𝝐𝝐)-approximation),
• In one pass over the stream,
• Using 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏) space

For many, not possible to do in less than 𝑂𝑂(𝑛𝑛) space if one wants exact answer

Randomization and approximation leads to many interesting results



Technique I: Sampling



Sampling

• Why: Random sampling is a powerful, general tool for data analysis. We’ll see 
several variants and applications.

• Core idea: pick a small random subset 𝑆𝑆 from a large dataset 𝐷𝐷 and estimate the 
quantity of interest using 𝑆𝑆 instead of all of 𝐷𝐷.

• What matters: the sampling strategy, sample size, and estimator used in analysis.



Sampling: Common Variants

• Simple random sampling: with/without replacement

• Reservoir sampling: maintain a uniform 𝑘𝑘-sample from a stream (single pass)

• Stratified sampling: sample within groups/segments to reduce variance

• Weighted sampling: assign a weight to each item; sample accordingly.



Estimation and Accuracy Analysis

• Unbiased estimators with variance you can compute/upper bound

• Concentration: error 𝜖𝜖 with failure prob. 𝛿𝛿 typically needs sample size 𝑂𝑂( 1
𝜖𝜖2

log 1
𝛿𝛿

)
• Typically apply Chebyshev or Hoeffding/Chernoff to bound accuracy and uncertainty

• 𝔼𝔼 𝜃̂𝜃 = 𝜃𝜃, and Var(𝜃̂𝜃) is bounded (estimator is correct on average but no reliable)

• Variance reduction via averaging. Consider 𝑘𝑘 independent copies of unbiased 𝜃̂𝜃1,⋯ , 𝜃̂𝜃𝑘𝑘 ; then 𝜃̂𝜃avg =
∑ 𝜃̂𝜃𝑖𝑖 /𝑘𝑘

• 𝔼𝔼 𝜃̂𝜃avg = 𝜃𝜃, but Var(𝜃̂𝜃avg)= Var(𝜃̂𝜃)/𝑘𝑘

• Chebyshev’s inequality: Pr 𝜃̂𝜃avg − 𝜃𝜃 ≥ 𝜖𝜖 ≤ Var(𝜃𝜃)
𝑘𝑘𝜖𝜖2 . So, set 𝑘𝑘 = 𝜎𝜎2

𝜖𝜖2𝛿𝛿 to get probability down to 𝛿𝛿

• Chernoff bound: Pr 𝜃̂𝜃avg − 𝜃𝜃 ≥ 𝜖𝜖 ≤ 2−Ω(k𝜖𝜖2). So, set 𝑘𝑘 = 𝑂𝑂( 1
𝜖𝜖2 log 1

𝛿𝛿) to get probability down to 𝛿𝛿 



How to perform sampling?



Basic Sampling Strategies

• Setup: dataset of size 𝑚𝑚; goal is a uniform sample of size 𝑘𝑘
With replacement
• Procedure: repeat 𝑘𝑘 times, draw 𝑖𝑖 ∼ 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔{1, … ,𝑚𝑚} and include item 𝑒𝑒𝑖𝑖
• Duplicates allowed; draws are independent (i.i.d.)
• Use when independence simplifies analysis or when sampling cost per draw is small

Without replacement
• Procedure: choose one 𝑘𝑘-subset uniformly from all 𝑚𝑚

𝑘𝑘  subsets
• No duplicates; draws are dependent

• Marginal inclusion probability for any item: 𝑘𝑘/𝑚𝑚 Compare the marginal inclusion probability 

of w. replacement and w/o. replacement



Marginal Inclusion Probability Computation



Marginal Inclusion Probability Computation



Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Key tool: rejection sampling
Simple example. Choose a random integer 𝑟𝑟 in {1,⋯ ,𝑚𝑚} 
• Let 𝑘𝑘 = log 𝑚𝑚
• Use 𝑘𝑘 random bits to generate an integer 𝑟𝑟 uniformly in {1,⋯ , 2𝑘𝑘}
• If 𝑟𝑟 ≤ 𝑚𝑚, output 𝑟𝑟; otherwise, reject 𝑟𝑟 and repeat

Expected number of iterations? (HW0)



Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. 
The output sample is uniform. i.e.,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr sample = 𝑒𝑒𝑖𝑖 = 1/𝑚𝑚

Proof. (by induction)

ReservoirSample (stream):
    sample ← ∅, 𝑡𝑡 ← 0
    foreach item 𝑥𝑥 in stream:
        𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝟏𝟏/𝒕𝒕

        if RandomUniform(0,1) < 1/𝑡𝑡:
             sample ← 𝑥𝑥
    return sample



Reservoir Sampling

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. 
The output sample is uniform. I.e.,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr sample = 𝑒𝑒𝑖𝑖 = 1/𝑚𝑚

Question. How to pick 𝑘𝑘 samples?

How to sample 𝑘𝑘 items without replacement?

ReservoirSample (stream):
    sample ← ∅, 𝑡𝑡 ← 0
    foreach item 𝑥𝑥 in stream:
        𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝟏𝟏/𝒕𝒕

        if RandomUniform(0,1) < 1/𝑡𝑡:
             sample ← 𝑥𝑥
    return sample



Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. 
The probability of selecting all items are equal,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr 𝑒𝑒𝑖𝑖 ∈ S = 𝑘𝑘/𝑚𝑚

Proof.

ReservoirSample (stream):
    S[1…k]← Stream[1…k], 𝑡𝑡 ← 𝑘𝑘
    foreach 𝑥𝑥 in stream after position 𝑘𝑘:
        𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝒌𝒌/𝒕𝒕

        𝑟𝑟 ← RandomUniformInt[1, 𝑡𝑡]
 if 𝑟𝑟 ≤ 𝑘𝑘:
             S[r] ← 𝑥𝑥
    return S



Reservoir Sampling without Replacement

• How to draw a uniform sample w/o knowing length of stream in advance?

Claim. Let m be the length of the stream. 
The probability of selecting all items are equal,
 ∀𝑖𝑖 ∈ 𝑚𝑚 , Pr 𝑒𝑒𝑖𝑖 ∈ S = 𝑘𝑘/𝑚𝑚

ReservoirSample (stream):
    S[1…k]← Stream[1…k], 𝑡𝑡 ← 𝑘𝑘
    foreach 𝑥𝑥 in stream after position 𝑘𝑘:
        𝑡𝑡 ← 𝑡𝑡 + 1
 // Replace with probability 𝒌𝒌/𝒕𝒕

        𝑟𝑟 ← RandomUniformInt[1, 𝑡𝑡]
 if 𝑟𝑟 ≤ 𝑘𝑘:
             S[r] ← 𝑥𝑥
    return SA different implementation in HW 1



Weighted Sampling

• Now, each item 𝑥𝑥𝑖𝑖 in the stream is assigned with a weight 𝑤𝑤𝑖𝑖 > 0. Goal is sample 
item 𝑖𝑖 proportional to its weight; i.e., 𝑤𝑤𝑖𝑖/𝑊𝑊 where 𝑊𝑊 =  ∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖 .

• How to implement in streaming?

Correctness Proof.

ReservoirSample (stream):
    sample ← ∅, 𝑡𝑡 ← 0, 𝑊𝑊 ← 0
    foreach item 𝑥𝑥𝑖𝑖 in stream:
        𝑡𝑡 ← 𝑡𝑡 + 1, 𝑊𝑊 ← 𝑊𝑊 + 𝑤𝑤𝑖𝑖
 // Replace with probability 𝒘𝒘𝒊𝒊/𝑾𝑾

        if RandomUniform(0,1) < 𝑤𝑤𝑖𝑖/𝑊𝑊:
             sample ← 𝑥𝑥
    return sample



Mean and Median via Sampling



Mean and Median Statistics

• Given a list of 𝑛𝑛 numbers 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛:
• Mean: average value = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 /𝑛𝑛 
• Median: the middle number after sorting (if 𝑛𝑛 is even; the average of the two middle ones)

Mean can be computed easily in 𝑂𝑂(𝑛𝑛) time. Similarly, for Median (but much more 
involved).

How to compute them in streaming setting?
• Mean is still easy! What about Median?



How to Compute Median in 𝑂𝑂(𝑛𝑛)

• Medians of Median algorithm
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