
Algorithms for Big Data (FALL 25)
Lecture 1

LOGISTIC, COURSE OVERVIEW AND BACKGROUNDS

ALI VAKILIAN (vakilian@vt.edu)



Logistics

• Schedule: Tue/Thu, 12:30–1:45 pm (MCB 240) 
• Instructor: ALI VAKILIAN (vakilian@vt.edu) 
• Office Hours: Wed, 11am–noon (?)
• Website & Canvas: All announcements, slides, and assignments will 

be posted online on the course website and Canvas.



Evaluations

• Homework (45%): Three problem sets released, each 15%, roughly every five weeks.

• Final Project (45%):
 Proposal (5%), 
 Checkpoint meeting (5%), 
 Presentation (10%), and 
 Final report (25%).

• Class Participation (10%): Active engagement is expected during lectures, and each 
student must contribute by scribing at least one lecture of their choice.

Any volunteer for scribing next lecture?



Evaluations (contd.)

Assignments and Deadlines
• Release and due dates appear on the course calendar. No late submissions. All work is due at the 

posted time; no slip days or late penalties apply.

Final-Project & Options
An opportunity to explore an area of modern big data algorithms. 
• Project Style:

 Survey: Read 3--5 recent research papers and write a mini-survey that highlights common themes, 
contrasting approaches, and open questions.

 Implementation: Build and benchmark two (or more) competing algorithms on realistic data sets; 
evaluate trade-offs in accuracy, speed, and memory.

 Research: Propose and develop a new theoretical or empirical result under close mentorship from the 
instructor.

Projects can be done alone or in pairs. 
Surveys must be completed individually.



Evaluations (contd.)

Final-Project & Options
An opportunity to explore an area of modern big data algorithms. 
• Project Style
• Deliverables & Timeline

 Proposal (5%) – due Week 5.  A 1-page PDF describing your topic, motivation, and an initial plan of 
study/research. Schedule a quick chat with the instructor to refine scope.

 Checkpoint Meeting (5%) – due Week 12. A 15-minute meeting to review progress and adjust 
goals. Please bring preliminary results or a working demo.

 Presentations (10%) – last three lecture slots.  Each team/individual will give a 15-minute talk (+2 
min Q&A) to the class. These final sessions replace lectures and are a chance for peer learning.

 Final Report (25%) – due reading day (12/11/2025).  A 6–8 page write-up summarizing 
motivation, methods, results, and future work. Submit both PDF and any code/data via Canvas.



What to Expect

• Streaming & Sketching Algorithms
A framework for handling massive data with strict memory limits: 

 items arrive in a sequence, 

 can be computed once (or in some cases a few times), and

 use low space, and output approximate answers

Examples (basic routines in data analytics): 

• approximate counting with only 𝑂𝑂(log log𝑛𝑛) bits (Morris), 
• distinct elements/cardinality (for 109 items, ~2% accuracy using 1.5kB) (HyperLogLog),
• heavy hitters with guarantees (Misra–Gries/CountSketch).



What to Expect

• Streaming & Sketching Algorithms
 Vector statistics, such as frequency estimation and moment

 Graph problems

 Geometric problems

 Linear sketching (e.g., CountMin and CountSketch)

 Lowerbounds



What to Expect

• Dimensionality Reduction
A technique to compress high-dimensional data into far fewer features while 
approximately preserving structure (e.g., distances or variance). It speeds up 
learning and visualization, cuts noise, and helps algorithms scale



What to Expect

• Numerical Linear Algebra at Scale
• Subspace embedding

• Approximate matrix multiplication

• Low-rank approximation and PCA
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What to Expect

• Nearest Neighbor Search
Basic problem of finding the most similar vector to a query. In LLMs 
• underpins RAG (fetching relevant chunks from vector stores),

• memory/caching and kNN-LM style prompts, 

• and it also approximates/sparsifies attention (e.g., LSH/sparse routing) 

to cut quadratic costs, driving lower latency, larger contexts, and more efficient inference.

Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]



What to Expect

• Clustering and its Coreset Constructions
 A technique of grouping unlabeled data points into coherent clusters based on similarity, 

revealing latent structure for summarization, anomaly detection, and retrieval.

 Our focus is on clustering techniques such as coreset constructions for large scale data.



What to Expect

• Sublinear Algorithms for Graph Problems
They use sampling and sketches to estimate global properties (triangle counts, connectivity, 
PageRank) in sublinear time. 
In ML pipelines, they enable web-scale candidate generation and monitoring, e.g., 

• approximate personalized PageRank for retrieval, 
• graph sparsification and partitioning for faster GNNs, 
• and fast statistics over evolving knowledge graphs for RAG.



What to Expect

• Learning-Augmented Algorithms/Data-Driven Algorithms

Algorithm

I) Better performance when input has “learnable” pattern
Input

Output

The algorithm has access to a learned ORACLE providing a 
certain type of PREDICTIONS about the instance in hand

Learned Oracle



What to Expect

• Learning-Augmented Algorithms/Data-Driven Algorithms

Algorithm

I) Better performance when input has “learnable” pattern

II) Similar worst-case guarantee as the best-known 
classical algorithms

Input

Output

Learned Oracle



• Learning-Augmented Algorithms/Data-Driven Algorithms
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Algorithm

I) Better performance when input has “learnable” pattern
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classical algorithms
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Probabilities Refresher



Independence

• Two events 𝐴𝐴 and 𝐵𝐵 are independent if

Pr 𝐴𝐴 ∩ 𝐵𝐵 = Pr 𝐴𝐴 × Pr 𝐵𝐵

I. A collection of events are independent, if every subset obeys this equality.

II. A collection of events are 𝑘𝑘-wise independent, if every subset of size at most 𝑐𝑐 

obeys this equality. A commonly-used scenario is 𝑘𝑘 = 2 which is referred to as 

pairwise-independence too.



Conditional Probability

• For Pr 𝐵𝐵 > 0, the probability of 𝐴𝐴 given 𝐵𝐵 is 

Pr 𝐴𝐴 𝐵𝐵 =
Pr[𝐴𝐴 ∩ 𝐵𝐵]

Pr[𝐵𝐵]

Bayes’ rule
Pr[𝐵𝐵|𝐴𝐴] =  ⁄Pr 𝐴𝐴 𝐵𝐵 × Pr[𝐵𝐵] Pr[𝐴𝐴]

More generally, for a partition of space, {𝐵𝐵𝑖𝑖}

Pr[𝐵𝐵𝑗𝑗|𝐴𝐴] =
Pr 𝐴𝐴 𝐵𝐵𝑗𝑗 × Pr[𝐵𝐵𝑗𝑗]
∑𝑖𝑖 Pr 𝐴𝐴 𝐵𝐵𝑖𝑖 × Pr[𝐵𝐵𝑖𝑖]



Random Variables

• A random process that assign a number to each outcome of 𝜔𝜔 ∈ Ω.
• Roll a dice, record the number of pips (e.g., 𝑋𝑋 =  6)

• Run Quicksort, record its runtime (e.g. 𝑇𝑇 =  100)

 Expectation: 𝔼𝔼 𝑋𝑋 = ∑𝑥𝑥∈range(𝑋𝑋) 𝑥𝑥 ⋅ Pr[𝑋𝑋 = 𝑥𝑥]

Variance: Var 𝑋𝑋 = 𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼𝔼𝔼 2]

 Indicator Variable: 
𝐈𝐈 = 𝟏𝟏𝐸𝐸  that is equal to 1 when event 𝐸𝐸 occurs and 0 otherwise: 𝔼𝔼 𝟏𝟏𝐸𝐸 = Pr[𝐸𝐸]

cov(𝑋𝑋,𝑌𝑌) = 𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼𝔼𝔼 𝑌𝑌 − 𝔼𝔼𝑌𝑌 ]



Random Variables

• Independence of R.V. : 𝑋𝑋1,⋯ ,𝑋𝑋𝑘𝑘 are independent, if for every choice of 
real numbers 𝑎𝑎1,⋯ , 𝑎𝑎𝑘𝑘 ,

Pr 𝑋𝑋1 = 𝑎𝑎1,⋯ ,𝑋𝑋𝑘𝑘 = 𝑎𝑎𝑘𝑘 = Pr 𝑋𝑋1 = 𝑎𝑎1 × ⋯× Pr[𝑋𝑋𝑘𝑘 = 𝑎𝑎𝑘𝑘]

 Expectation: 

𝔼𝔼 𝑋𝑋 = ∑𝑥𝑥 𝑥𝑥 ⋅ Pr[𝑋𝑋 = 𝑥𝑥] (discrete), 𝔼𝔼 𝑋𝑋 = ∫−∞
+∞𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑 (continuous)

Example. (Expected Value of the Uniform Distribution) Let 𝑋𝑋 be 
a Uniform(𝑎𝑎, 𝑏𝑏) random variable. What is 𝔼𝔼[𝑋𝑋]?



Random Variables

Example. (Expected Value of the Uniform Distribution) Let 𝑋𝑋 be 
a Uniform(𝑎𝑎, 𝑏𝑏) random variable. What is 𝔼𝔼[𝑋𝑋]?



Random Variables

• Two key facts:
1. Linearity of expectation. For any r.v. 𝑋𝑋 and 𝑌𝑌, and constants 𝑎𝑎, 𝑏𝑏:

𝔼𝔼 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑎𝑎𝑎𝑎 𝑋𝑋 + 𝑏𝑏𝑏𝑏[𝑌𝑌]
In particular, no independence is required.

2. Expectation of a function. If 𝑔𝑔 is any real function, then 

𝔼𝔼 𝑔𝑔 𝑋𝑋 = ∑𝑥𝑥 𝑔𝑔(𝑥𝑥) ⋅ Pr[𝑋𝑋 = 𝑥𝑥] (or the analogous integral in the continuous case)



Union Bound 

• For events 𝐸𝐸1,⋯ ,𝐸𝐸𝑘𝑘 , Pr 𝐸𝐸1 ∪ ⋯∪ 𝐸𝐸𝑘𝑘 ≤ ∑𝑖𝑖∈[𝑘𝑘] Pr[𝐸𝐸𝑖𝑖]

Example. (Erdös-Rényi random graph) Let 𝐵𝐵𝑛𝑛 be the event that a graph randomly 
generated according to 𝐺𝐺(𝑛𝑛,𝑝𝑝) model has at least one isolated node. Show that

Pr 𝐵𝐵𝑛𝑛 ≤ 𝑛𝑛 1 − 𝑝𝑝 𝑛𝑛−1,

And conclude that for any 𝜖𝜖 > 0, if 𝑝𝑝 = 𝑝𝑝𝑛𝑛 = 1 + 𝜖𝜖 ln 𝑛𝑛
𝑛𝑛

, then

lim
𝑛𝑛→∞

Pr[𝐵𝐵𝑛𝑛] = 0.

 



Union Bound Example



Markov and Chebyshev Inequalities

• (Markov’s inequality) For a random variable 𝑋𝑋 > 0, and value 𝑎𝑎 > 0,

Pr 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝔼𝔼[𝑋𝑋]
𝑎𝑎

Only required non-negativity of X.

• (Chebyshev’s inequality) For a random variable 𝑋𝑋, and a value 𝑡𝑡 > 0,

Pr |𝑋𝑋 − 𝔼𝔼[𝑋𝑋]| ≥ 𝑡𝑡 ≤
Var[𝑋𝑋]
𝑡𝑡2

Proof. Apply Markov’s on 𝑌𝑌 = 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 2.



Chernoff and Hoeffding Bounds

• Concentration: As you add up many independent random variables, their 
average concentrated around the expected value more and more; typical 
deviations shrink like 1/ 𝑛𝑛, so the distribution piles up tightly around the mean.



Sample mean of 1 normal distribution



Sample mean of 5 normal distribution



Sample mean of 10 normal distribution



Sample mean of 25 normal distribution



Chernoff and Hoeffding Bounds

• (Chernoff Bound) Let 𝑋𝑋 =  ∑𝑖𝑖𝑛𝑛 𝑋𝑋𝑖𝑖 where the 𝑋𝑋𝑖𝑖 ∈ [0,1] are independent, and 
set 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 . Then for 0 < 𝜀𝜀 ≤  1,

• Pr 𝑋𝑋 ≥ 1 + 𝜀𝜀 𝜇𝜇 ≤ exp(−𝜀𝜀2𝜇𝜇
3 ), and

• Pr 𝑋𝑋 ≤ 1 − 𝜀𝜀 𝜇𝜇 ≤ exp(−𝜀𝜀2𝜇𝜇
2 ). 

• (Hoeffding’s Inequality) Let 𝑋𝑋 =  ∑𝑖𝑖𝑛𝑛 𝑋𝑋𝑖𝑖 where the 𝑋𝑋𝑖𝑖 ∈ [𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖] are 
independent, and set 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 . Then for 𝑡𝑡 > 0,

• Pr 𝑋𝑋 − 𝜇𝜇 ≥ 𝑡𝑡 ≤ 2exp(− 2𝑡𝑡2

∑𝑖𝑖
𝑛𝑛 𝑏𝑏𝑖𝑖−𝑎𝑎𝑖𝑖

2).



Linear Algebra Refresher



Vector Norms

• 𝑥𝑥 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑) ∈ ℝ𝑑𝑑

𝑥𝑥 0, 𝑥𝑥 1, 𝑥𝑥 2, 𝑥𝑥 ∞

In general, 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 + ⋯+ 𝑥𝑥𝑑𝑑

𝑝𝑝 1/𝑝𝑝

Exercise (Norm Inequalities). For every 𝑥𝑥 ∈ ℝ𝑑𝑑 ,

𝑥𝑥 ∞ ≤ 𝑥𝑥 2 ≤ 𝑥𝑥 1 ≤ 𝑑𝑑 ⋅ 𝑥𝑥 2

Proof. By Cauchy–Schwarz inequality.

Dot Product and Angles. For 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑑𝑑 , 𝑥𝑥 ⋅ 𝑦𝑦 = 𝑥𝑥,𝑦𝑦 = 𝑥𝑥⊤𝑦𝑦 
𝑥𝑥⊤𝑦𝑦 ≤ 𝑥𝑥 2 ⋅ 𝑦𝑦 2

Exercise. For any 𝑥𝑥 ∈ ℝ𝑑𝑑 , 
𝑥𝑥 log2 𝑑𝑑 ≤ 2 𝑥𝑥 ∞.



Eigenvalue, Eigenvector, and PSD

• Eigenvector. A non-zero vector 𝑣𝑣 ∈ ℝ𝑑𝑑 is an eigenvector of matrix 𝐴𝐴 ∈ ℝ𝑑𝑑×𝑑𝑑 
with eigenvalue 𝜆𝜆 ∈ ℝ, if 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆. (directions that are invariant under 𝐴𝐴) 
 can be negative or complex

• Positive Semidefinite (PSD) Matrices. A symmetric matrix 𝐴𝐴 is positive 

semidefinite if 

𝑥𝑥⊤𝐴𝐴𝐴𝐴 ≥ 0 for all 𝑥𝑥 ∈ ℝ𝑑𝑑 

Exercise. Let 𝐴𝐴 ∈ ℝ𝑑𝑑×𝑑𝑑 be symmetric with eigenvalues 𝜆𝜆1,⋯ , 𝜆𝜆𝑑𝑑 . Then,

𝐴𝐴 is PSD ⟺ 𝜆𝜆𝑖𝑖 ≥ 0 for every 𝑖𝑖.



Singular Values, SVD

• Singular value. 𝜎𝜎𝑖𝑖 is a singular value of 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑑𝑑 , if 𝜆𝜆𝑖𝑖 is an eigenvalue of 
𝐴𝐴⊤𝐴𝐴, and 𝜎𝜎𝑖𝑖 = 𝜆𝜆𝑖𝑖 .
 always real and non-negative

Exercise. If 𝜆𝜆 is an eigenvalue of 𝐴𝐴⊤𝐴𝐴, then 𝜆𝜆 ≥ 0.

Proof. Consider the corresponding eigenvector 𝑥𝑥 to 𝜆𝜆, and argue with 𝐴𝐴⊤𝑥𝑥 2

• Singular value decomposition (SVD). For every 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑑𝑑 , there exist 
orthogonal matrices 𝑈𝑈 ∈ ℝ𝑚𝑚×𝑚𝑚,𝑉𝑉 ∈ ℝ𝑑𝑑×𝑑𝑑 such that

𝐴𝐴 = 𝑈𝑈 Σ 𝑉𝑉⊤ ,
where Σ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1,⋯ ,𝜎𝜎𝑟𝑟 , 0,⋯ , 0), 𝜎𝜎1 ≥ ⋯ ,≥ 𝜎𝜎𝑟𝑟 > 0. Recall 𝑟𝑟 is the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴).



Matrix Norm

• Frobenius norm. For a matrix 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑑𝑑 ,

𝐴𝐴 𝐹𝐹 = �
𝑖𝑖∈[𝑚𝑚]

�
𝑗𝑗∈[𝑑𝑑]

𝐴𝐴𝑖𝑖,𝑗𝑗
2

Alternatively, 𝐴𝐴 𝐹𝐹 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴) 2 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴∗𝐴𝐴) = ∑𝑖𝑖 𝜎𝜎𝑖𝑖2

• Spectral nom. 𝐴𝐴 2 = 𝜎𝜎1

Exercise. For any matrix 𝐴𝐴, 𝐴𝐴 2 ≤ 𝐴𝐴 𝐹𝐹 ≤ rank 𝐴𝐴 ⋅ 𝐴𝐴 2
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