Algorithms for Big Data (FALL 25)

Lecture 1

LOGISTIC, COURSE OVERVIEW AND BACKGROUNDS

ALI VAKILIAN (vakilian@vt.edu)

Logistics

- Schedule: Tue/Thu, 12:30–1:45 pm (MCB 240)
- Instructor: ALI VAKILIAN (vakilian@vt.edu)
- Office Hours: Wed, 11am-noon (?)
- Website & Canvas: All announcements, slides, and assignments will be posted online on the course website and Canvas.

Evaluations

- Homework (45%): Three problem sets released, each 15%, roughly every five weeks.
- Final Project (45%):
 - Proposal (5%),
 - Checkpoint meeting (5%),
 - Presentation (10%), and
 - Final report (25%).
- Class Participation (10%): Active engagement is expected during lectures, and each student must contribute by scribing at least one lecture of their choice.

Any volunteer for scribing next lecture?

Evaluations (contd.)

Assignments and Deadlines

• Release and due dates appear on the course calendar. **No late submissions**. All work is due at the posted time; no slip days or late penalties apply.

Final-Project & Options

An opportunity to explore an area of modern big data algorithms.

- Project Style:
 - **Survey:** Read 3--5 recent research papers and write a mini-survey that highlights common themes, contrasting approaches, and open questions.
 - **Implementation:** Build and benchmark two (or more) competing algorithms on realistic data sets; evaluate trade-offs in accuracy, speed, and memory.
 - **Research:** Propose and develop a new theoretical or empirical result under close mentorship from the instructor.

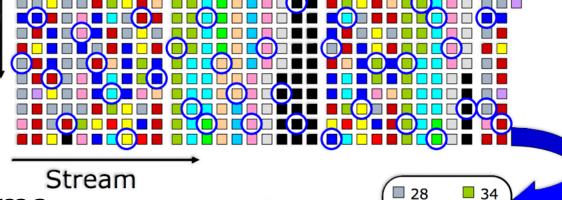
Projects can be done alone or in pairs. Surveys must be completed individually.

Evaluations (contd.)

Final-Project & Options

An opportunity to explore an area of modern big data algorithms.

- Project Style
- Deliverables & Timeline
 - **Proposal (5%)** due **Week 5**. A 1-page PDF describing your topic, motivation, and an initial plan of study/research. Schedule a quick chat with the instructor to refine scope.
 - Checkpoint Meeting (5%) due Week 12. A 15-minute meeting to review progress and adjust goals. Please bring preliminary results or a working demo.
 - Presentations (10%) last three lecture slots. Each team/individual will give a 15-minute talk (+2 min Q&A) to the class. These final sessions replace lectures and are a chance for peer learning.
 - Final Report (25%) due reading day (12/11/2025). A 6–8 page write-up summarizing motivation, methods, results, and future work. Submit both PDF and any code/data via Canvas.



Streaming & Sketching Algorithms

A framework for handling massive data with strict memory limits:

- items arrive in a sequence,
- can be computed once (or in some cases a few times), and
- use low space, and output approximate answers

Examples (basic routines in data analytics):

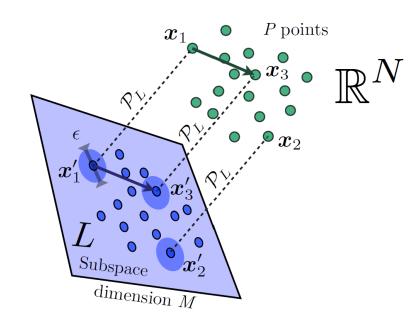
- approximate counting with only $O(\log \log n)$ bits (Morris),
- distinct elements/cardinality (for 10^9 items, ~2% accuracy using 1.5kB) (HyperLogLog),
- heavy hitters with guarantees (Misra-Gries/CountSketch).

Streaming & Sketching Algorithms

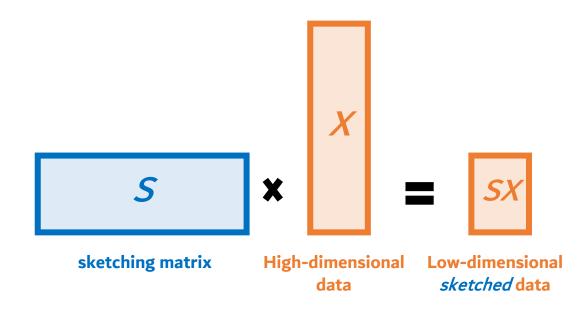
- Vector statistics, such as frequency estimation and moment
- Graph problems
- Geometric problems
- Linear sketching (e.g., CountMin and CountSketch)
- Lowerbounds

Dimensionality Reduction

A technique to **compress high-dimensional** data into far fewer features while approximately preserving structure (e.g., distances or variance). It speeds up learning and visualization, cuts noise, and helps algorithms scale



- Numerical Linear Algebra at Scale
 - Subspace embedding
 - Approximate matrix multiplication
 - Low-rank approximation and PCA



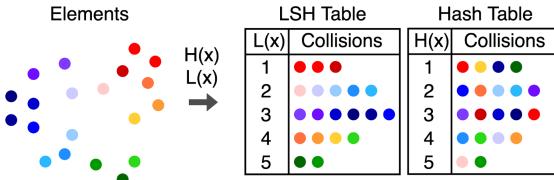
Nearest Neighbor Search

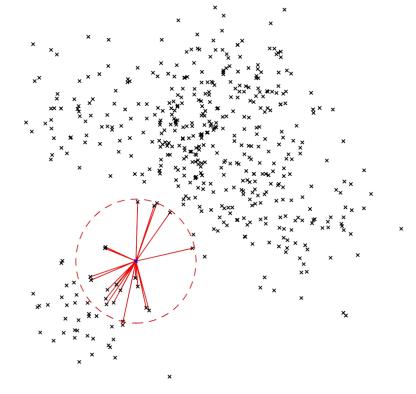
Basic problem of finding the most similar vector to a query. In LLMs

- underpins RAG (fetching relevant chunks from vector stores),
- memory/caching and kNN-LM style prompts,
- and it also approximates/sparsifies attention (e.g., LSH/sparse routing)

to cut quadratic costs, driving lower latency, larger contexts, and more efficient inference.

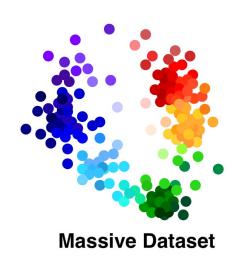
Locality Sensitive Hashing (LSH) [Indyk, Motwani'98]

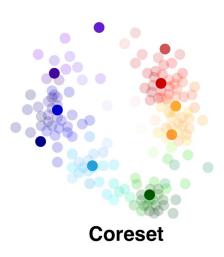


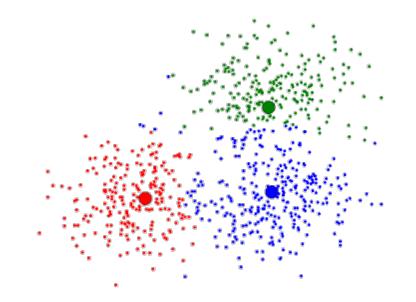


Clustering and its Coreset Constructions

- A technique of grouping unlabeled data points into coherent clusters based on similarity, revealing latent structure for summarization, anomaly detection, and retrieval.
- Our focus is on clustering techniques such as coreset constructions for large scale data.





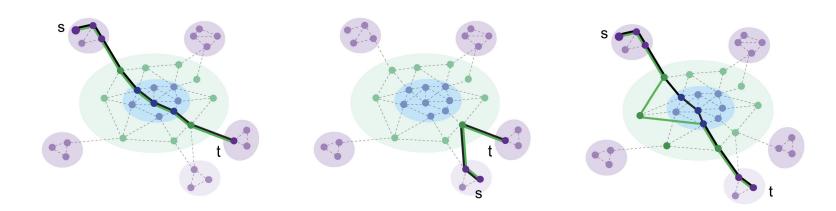


Sublinear Algorithms for Graph Problems

They use sampling and sketches to estimate global properties (triangle counts, connectivity, PageRank) in sublinear time.

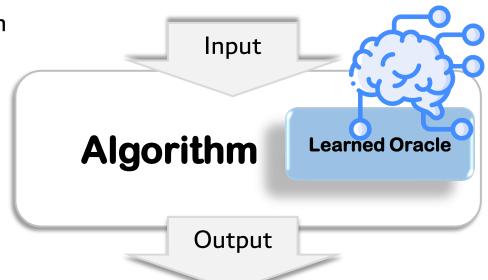
In ML pipelines, they enable web-scale candidate generation and monitoring, e.g.,

- approximate personalized PageRank for retrieval,
- graph sparsification and partitioning for faster GNNs,
- and fast statistics over evolving knowledge graphs for RAG.



Learning-Augmented Algorithms/Data-Driven Algorithms

I) **Better performance** when input has "learnable" pattern

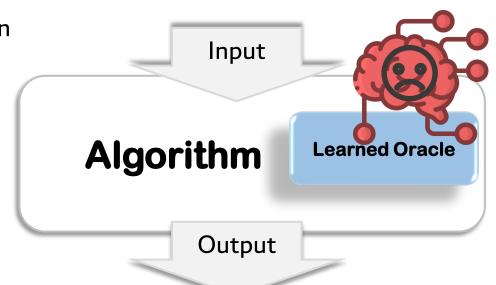


The algorithm has access to a **learned ORACLE** providing a certain type of **PREDICTIONS** about the instance in hand

Learning-Augmented Algorithms/Data-Driven Algorithms

I) **Better performance** when input has "learnable" pattern

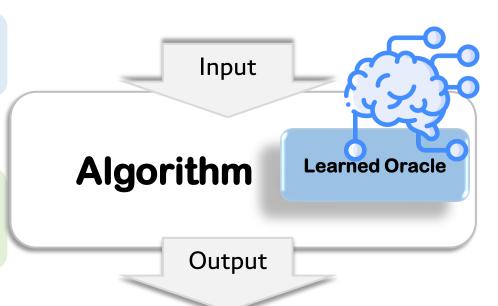
II) <u>Similar worst-case guarantee</u> as the best-known classical algorithms



Learning-Augmented Algorithms/Data-Driven Algorithms

I) **Better performance** when input has "learnable" pattern

II) <u>Similar worst-case guarantee</u> as the best-known classical algorithms



Probabilities Refresher

Independence

• Two events A and B are *independent* if

$$Pr[A \cap B] = Pr[A] \times Pr[B]$$

- I. A collection of events are *independent*, if every subset obeys this equality.
- II. A collection of events are k-wise independent, if every subset of size at most c obeys this equality. A commonly-used scenario is k=2 which is referred to as pairwise-independence too.

Conditional Probability

• For Pr[B] > 0, the probability of A given B is

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$$

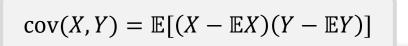
Bayes' rule

$$Pr[B|A] = Pr[A|B] \times Pr[B]/Pr[A]$$

More generally, for a partition of space, $\{B_i\}$

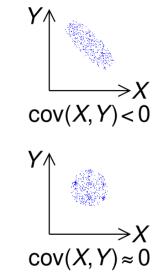
$$\Pr[B_j|A] = \frac{\Pr[A|B_j] \times \Pr[B_j]}{\sum_i \Pr[A|B_i] \times \Pr[B_i]}$$

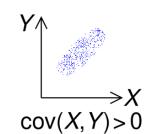
- A random process that assign a number to each outcome of $\omega \in \Omega$.
 - Roll a dice, record the number of pips (e.g., X=6)
 - Run Quicksort, record its runtime (e.g. T = 100)
- Expectation: $\mathbb{E}[X] = \sum_{x \in \text{range}(X)} x \cdot \Pr[X = x]$
- Variance: $Var[X] = \mathbb{E}[(X \mathbb{E}X)^2]$



Indicator Variable:

 $\mathbf{I} = \mathbf{1}_E$ that is equal to 1 when event E occurs and 0 otherwise: $\mathbb{E}[\mathbf{1}_E] = \Pr[E]$





• Independence of R.V.: X_1, \dots, X_k are independent, if for every choice of real numbers a_1, \dots, a_k ,

$$\Pr[X_1 = a_1, \dots, X_k = a_k] = \Pr[X_1 = a_1] \times \dots \times \Pr[X_k = a_k]$$

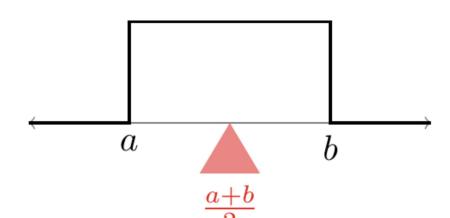
Expectation:

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$
 (discrete), $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) \, dx$ (continuous)

Example. (Expected Value of the Uniform Distribution) Let X be a Uniform (a, b) random variable. What is $\mathbb{E}[X]$?

Example. (Expected Value of the Uniform Distribution) Let X be a Uniform (a, b) random variable. What is $\mathbb{E}[X]$?

$$f(x) = \left\{ egin{array}{ll} rac{1}{b-a} & a \leq x \leq b \ 0 & ext{otherwise} \end{array}
ight.,$$



$$E[X] = \int_a^b x \cdot \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b$$

$$= \frac{1}{b-a} (b^2 - a^2) \frac{1}{2}$$

$$= \frac{a+b}{2}.$$

- Two key facts:
 - **1.** Linearity of expectation. For any r.v. X and Y, and constants a, b:

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

In particular, no independence is required.

2. Expectation of a function. If g is any real function, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \cdot \Pr[X = x]$$
 (or the analogous integral in the continuous case)

Union Bound

• For events E_1, \dots, E_k , $\Pr[E_1 \cup \dots \cup E_k] \leq \sum_{i \in [k]} \Pr[E_i]$

Example. (Erdös-Rényi random graph) Let B_n be the event that a graph randomly generated according to G(n,p) model has at least one isolated node. Show that

$$\Pr[B_n] \le n(1-p)^{n-1},$$

And conclude that for any $\epsilon>0$, if $p=p_n=(1+\epsilon)\frac{\ln n}{n}$, then $\lim_{n\to\infty}\Pr[B_n]=0.$

Union Bound Example

Markov and Chebyshev Inequalities

• (Markov's inequality) For a random variable X > 0, and value a > 0,

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

Only required non-negativity of X.

• (Chebyshev's inequality) For a random variable X, and a value t > 0,

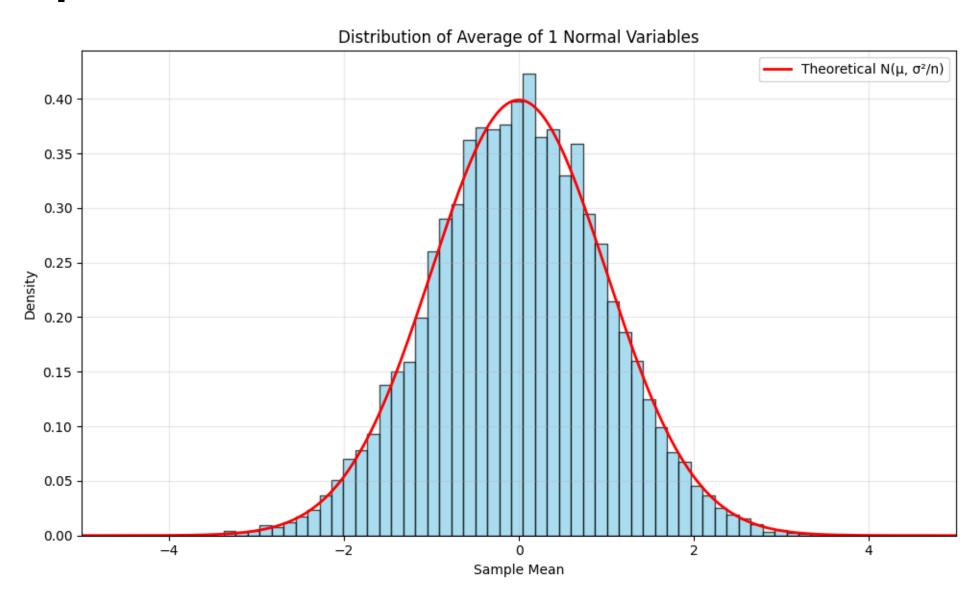
$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

Proof. Apply Markov's on $Y = (X - \mathbb{E}[X])^2$.

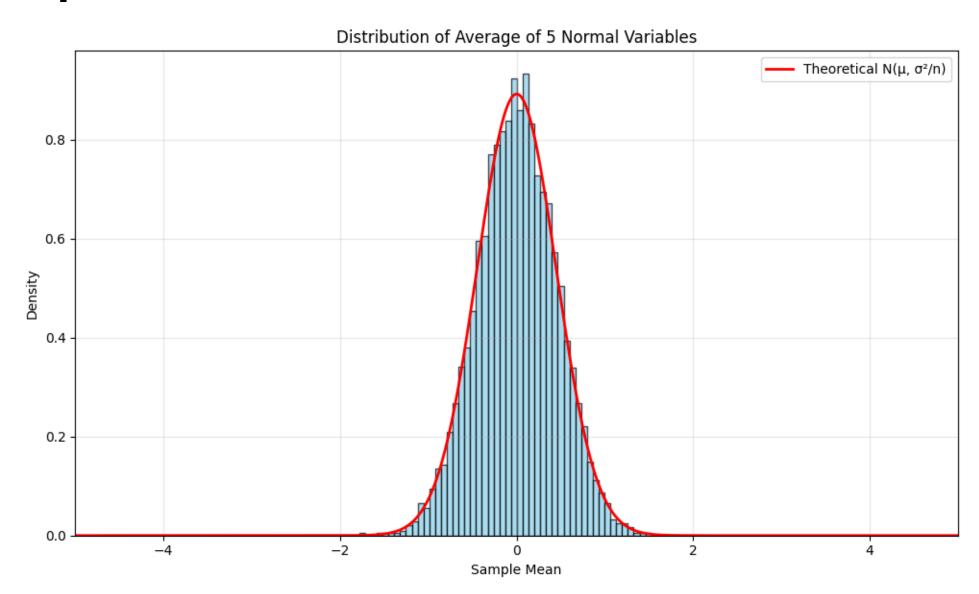
Chernoff and Hoeffding Bounds

• Concentration: As you add up many independent random variables, their average concentrated around the expected value more and more; typical deviations shrink like $1/\sqrt{n}$, so the distribution piles up tightly around the mean.

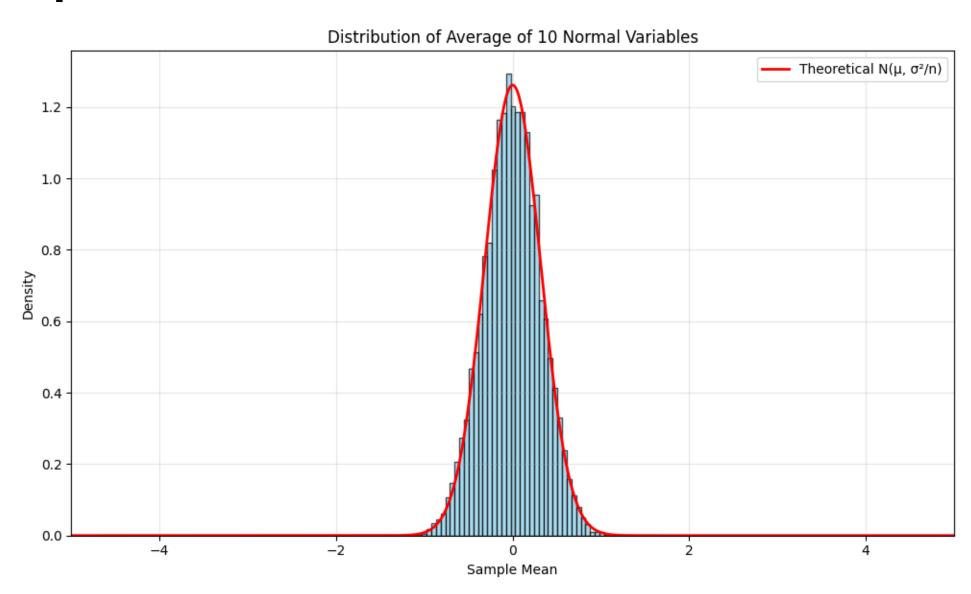
Sample mean of 1 normal distribution



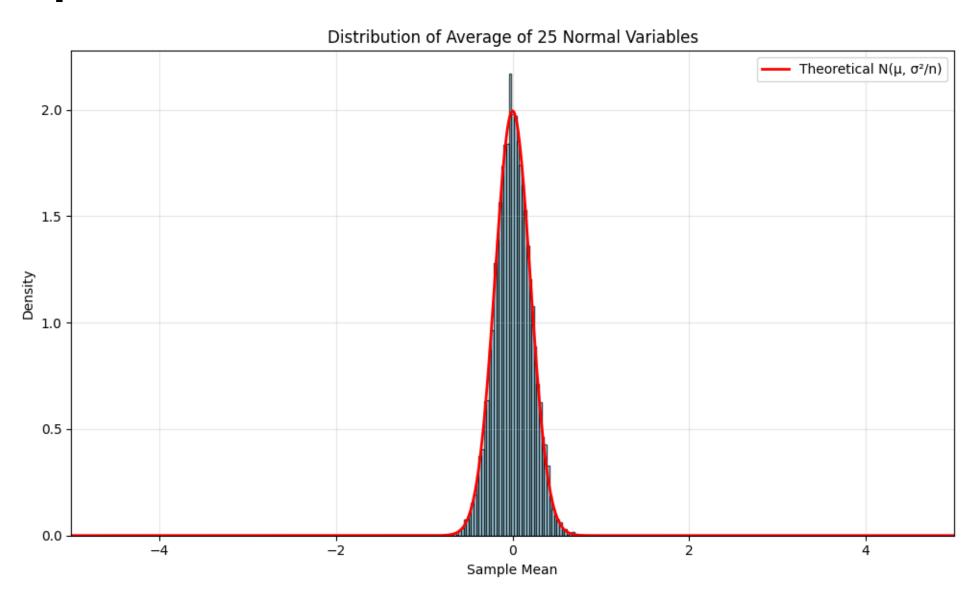
Sample mean of 5 normal distribution



Sample mean of 10 normal distribution



Sample mean of 25 normal distribution



Chernoff and Hoeffding Bounds

- (Chernoff Bound) Let $X = \sum_{i=1}^{n} X_i$ where the $X_i \in [0,1]$ are independent, and set $\mu = \mathbb{E}[X]$. Then for $0 < \varepsilon \le 1$,
 - $\Pr[X \ge (1+\varepsilon)\mu] \le \exp(-\frac{\varepsilon^2\mu}{3})$, and
 - $\Pr[X \le (1 \varepsilon)\mu] \le \exp(-\frac{\varepsilon^2 \mu}{2}).$
- (Hoeffding's Inequality) Let $X = \sum_{i=1}^{n} X_i$ where the $X_i \in [a_i, b_i]$ are independent, and set $\mu = \mathbb{E}[X]$. Then for t > 0,
 - $\Pr[|X \mu| \ge t] \le 2\exp(-\frac{2t^2}{\sum_{i=1}^{n}(b_i a_i)^2}).$

Linear Algebra Refresher

Vector Norms

•
$$x = (x_1, \cdots, x_d) \in \mathbb{R}^d$$

$$||x||_0$$
, $||x||_1$, $||x||_2$, $||x||_\infty$

In general,
$$||x||_p = (|x_1^p| + \dots + |x_d^p|)^{1/p}$$

Exercise (Norm Inequalities). For every $x \in \mathbb{R}^d$,

Exercise. For any $x \in \mathbb{R}^d$, $||x||_{\log_2 d} \le 2||x||_{\infty}$.

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{d} \cdot ||x||_2$$

Proof. By Cauchy–Schwarz inequality.

Dot Product and Angles. For
$$x, y \in \mathbb{R}^d$$
, $x \cdot y = \langle x, y \rangle = x^\top y$ $\left| x^\top y \right| \le \|x\|_2 \cdot \|y\|_2$

Eigenvalue, Eigenvector, and PSD

- **Eigenvector.** A non-zero vector $v \in \mathbb{R}^d$ is an **eigenvector** of matrix $A \in \mathbb{R}^{d \times d}$ with **eigenvalue** $\lambda \in \mathbb{R}$, if $Av = \lambda v$. (directions that are invariant under A)
 - can be negative or complex
- Positive Semidefinite (PSD) Matrices. A symmetric matrix A is positive semidefinite if

$$x^{\mathsf{T}}Ax \ge 0$$
 for all $x \in \mathbb{R}^d$

Exercise. Let $A \in \mathbb{R}^{d \times d}$ be symmetric with eigenvalues $\lambda_1, \dots, \lambda_d$. Then,

A is **PSD** $\Leftrightarrow \lambda_i \geq 0$ for every *i*.

Singular Values, SVD

- **Singular value.** σ_i is a singular value of $A \in \mathbb{R}^{m \times d}$, if λ_i is an eigenvalue of $A^T A$, and $\sigma_i = \sqrt{\lambda_i}$.
 - always real and non-negative

Exercise. If λ is an eigenvalue of $A^{T}A$, then $\lambda \geq 0$.

Proof. Consider the corresponding eigenvector x to λ , and argue with $||A^Tx||_2$

• Singular value decomposition (SVD). For every $A \in \mathbb{R}^{m \times d}$, there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{d \times d}$ such that

$$A = U \Sigma V^{\mathsf{T}}$$
,

where $\Sigma = diag(\sigma_1, \dots, \sigma_r, 0, \dots, 0), \sigma_1 \ge \dots, \ge \sigma_r > 0$. Recall r is the rank(A).

Matrix Norm

• Frobenius norm. For a matrix $A \in \mathbb{R}^{m \times d}$,

$$||A||_F = \sqrt{\sum_{i \in [m]} \sum_{j \in [d]} |A_{i,j}|^2}$$

Alternatively, $||A||_F = ||vec(A)||_2 = \sqrt{trace(A^*A)} = \sqrt{\sum_i \sigma_i^2}$

• Spectral nom. $||A||_2 = \sigma_1$

Exercise. For any matrix A, $||A||_2 \le ||A||_F \le \sqrt{\operatorname{rank}(A)} \cdot ||A||_2$