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Applications of Subspace Embedding

Faster algorithms for approximate
* matrix multiplication

* regression
* SVD

Basic idea. Want to perform operations on matrix A with n data columns (in a
large dimension R") with small actual rank d.

Our goal is to reduce to a matrix of size roughly R4*¢ by spending time
proportional to the number of non-zero entries in A.



Regression: Linear Model Fitting

A classic problem in data analysis

* n data pointsin a4, *-,a, € R4

* Each data point q; is associated with a value b; € R
What model should one use to explain the data?

Simplest model? Linear fitting:
* by =wy + Xi<j<qWj - a;; foravector w = (wg, -, wy)
* However, usually data is noisy and won’t be able to satisfy for all data points

* Without loss of generality, we can restrict to wy = 0 by lifting to d + 1 dimensions



Regression

Goal: want to choose wy, -+, W, to estimate b; ~ lejsd Wi - Q;

Let A be matrix with one row per data point a;. We write x, ..., X4 as
variables for finding w4, ..., w,.
g L »hd (a1,1 iz A13 - al,d\

Az1 Q22 Q23 ... A4

Ideally: Find x € R® such that Ax = b 7 2 s By

Best fit: Find x € R% to minimize Ax — b under some norm
* [|[Ax — bll4, l|Ax — bll|,, [|Ax — bl|



Least Squares Error Regression
Given A € R™4 and b € R%, find x to minimize ||Ax — b||,

Interesting when n >> d; there is no solution to Ax = b and want to
find the best fit

15
e Ax is a linear combination of columns in 4 *

* z € colspace(A) that is closest to b in £,-norm |
10}
* So, z is the projection of b onto colspace(A4)

How to find it? / .
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Least Squares Regression

Given A € R™4 and b € R%, find x to minimize ||Ax — b||,

* Closest vector to b is the projection of b onto colspace(A)
* Find orthonormal basis 74, ..., z,- for the columns of A

= Compute projection ¢ of b to colspace(A) whichis ¢ = Z1sj5r<b, Zj) Zj

» Back to our question, what is x?
» Ax = c¢. We need to solve the linear system.
= By solving normal equation:

= |f columns of A are linearly independent, A" 4 is full rank and x* = (ATA)"'ATb
» Otherwise, there’re multiple solutions and min-normis x* = (4)*b (Moore-Penrose Pseudoinverse)



SVD & Moore-Penrose Pseudoinverse

» Singular value decomposition (SVD). For every A € R™*¢, there exist
matrices U € R™*™M | € R2*4 with orthonormal columns such that

A=UXVT,
where ¥ = diag(o4,++,0,,0,:--,0),01 = -+, = a7, > 0.

Moore-Penrose Pseudoinverse of 4 is defined as AY = VI 1UT where X =
diag(1/ay,+,1/0,.,0,,0)

e AA*A = A (AAD)T = AA*

« When A has linearly independent columns, then AT = (474)714T

« AA™: projection to the column span of A.

« P = AAY; then Pv = A(A"v) which is a linear combination of columns in A

* Let y € colspan(A);y = Ax;then Py = AAT(Ax) = Ax = A



Least Squares Regression

Given A € R™4 and b € R%, find x to minimize ||Ax — b||,

* Closest vector to b is the projection of b onto colspace(A)
* Find orthonormal basis 74, ..., z,- for the columns of A

= Compute projection ¢ of b to colspace(A4) whichis ¢ = 21sj5r<b, Zj) Zj

» Back to our question, what is x?
» Ax = c¢. We need to solve the linear system.
= By solving normal equation:

= |f columns of A are linearly independent, A" 4 is full rank and x* = (ATA)"'ATb
» Otherwise, there’re multiple solutions and min-normis x* = (4)*b (Moore-Penrose Pseudoinverse)

= Naively requires O(nd?) time to compute

Can we speed up the process with some potential approximation?



LSE Regression via Subspace Embedding

Let E denote the subspace spanned by columns of A and b. It has
dimension at most d + 1.

Use Subspace Embedding IT on E with k = 0(d /&%) rows to reduce
{A(l),A(Z), o A@) b} to {A'(l),A’(Z), ,A'(d), b'} which are in R¥.

Solve mln 1A' x" — b'||,
x'eRd
Lemma. With probability 1 — 9,
(1—¢) m1n||Ax —bll, < mln |IA'x" — b'||, < (1 + &) min||Ax — b||,
x€ERA x'eRd x€ERA



LSE Regression via Subspace Embedding

Lemma. With probability 1 — ¢,

(1 — &) min||Ax — b||, < min ||[A'x" = b'||, < (1 + &) min||Ax — b||,
x€ER4 x'eR4 xER4

With probability (1 — §), via subspace embedding guarantee, for all z € E,
(1 —-allzll; = |[Mz]l, = (1 + &)lz]l,

* Let x*, y" be respectively the optimal solution to min ||Ax — b||, and min [|A'x" — b'||,
x€R4 x'eR4

e Letz =Ax" — b.Sincez € E, ||Sz||, < (1 + £)]|z]|,.

* Since x* is a feasible solution to r,nindllA’x’ —Db'|l5,
x eR

1Ay" = b'|l; = ||A'x" = b'|l; = (1 + &)||[Ax™ — b|,
* Since forany y € R, ||A'y — b'||, = |[TTIAy — TIb||, < (1 + ¢)||Ay — b|l,
|Ay* = bll, = (A +)|lAy"=Db'll; =@+ )||Ax" = b'|l; < (1 +3&)||Ax" — bl|;



Running Time

» Reduce the problem for d vectors in R™ to d vectors in R* with k =
0(d/e%).

* Computing I1A and I1b can be done in nnz(A) via sparse/fast JL
* The reduced problem can be solved in time 0(d?> /&%)

 Useful when n > d/&*



Approximate Matrix
Multiplication



Matrix Multiplication

e A fundamental subroutine in countless computational tasks.
* Given two matrices 4 € R™4 B € R™*?, we need to compute A" B

* The standard naive approach requires O(ndp).

* For the square matrices, significantly faster algorithms exist, running
in 0(n®), where w is the exponent of Matrix Multiplication

* w < log, 7 (Strassen)
* w < 2.376 (Coppersmith, Winograd)
e w < 2.371339 (Alman, Duan, Vassilevska Williams, Y. Xu, Z. Xu, Zhou)



Matrix Multiplication

Year

1969
1978
1979
1981
1981
1981
1986
1990
2010
2012
2014
2020
2022
2024

2024

Best known (w) bound
2.8074
2.796
2.780
2.522
2.517
2.496
2.479
2.3755
2.3737
2.3729
2.3728639
2.3728596
2.371866
2.371552

2.371339 (current best)

Authors

Strassen (Wikipedia)

Pan (Wikipedia)

Bini, Capovani, Romani (Wikipedia)

Schénhage (Wikipedia)

Romani (Wikipedia)

Coppersmith, Winograd (Wikipedia)

Strassen (laser method) (Wikipedia)

Coppersmith, Winograd (Wikipedia)

Stothers (Wikipedia)

Vassilevska Williams (Wikipedia)

Le Gall (Wikipedia)

Alman, Vassilevska Williams (SODA'21) (Wikipedia)
Duan, Wu, Zhou (FOCS’23) (Wikipedia)

Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA24) (arXiv)

Alman, Duan, Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA’25)
(arXiv)
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Approximate Matrix Multiplication

* Exact vs. Practical: While theoretically fast, exact matrix multiplication can be
complex.

* Approx. is Often Enough: In many modern applications (e.g., ML and data
analysis), we don't need the perfect answer. A high-quality approx. is sufficient.

* The Trade-Off: This leads to Approximate Matrix Multiplication. We trade a
small, controlled amount of precision for significant gains in speed.

» The Formal Goal: We want to quickly compute a matrix C € R**P that is close to
the true answer, with a high probability of success.

||ATB — C”F < &, with probability 1 — 0



JL-Based Approach for Fast Matrix Mult.

Theorem. D is a DJL distribution of matrices with 0(5715) rows, then for A4, B:
Tp _ T
Pr [[|4TB — Ma)TWB)||, = ellAllFlIBllF| < &

Error Matrix:
« Let M = A"B — (I1A) " (IIB);
* Our goal is to show that ||M || is small w.h.p.
Analyze a Single Entry of the Error Matrix:
* M;; = (a; bj) — (ay, by)

« Contribution of the entry to ||M||% is ij = ((Hai, Hbj) — (ai, bj))z



JL-Based Approach for Fast Matrix Mult.

Theorem. D is a DJL distribution of matrices with 0(5715) rows, then for A4, B:
Tp _ T
Pr [[|4TB — Ma)TWB)||, = ellAllFlIBllF| < &

Error Matrix: M = A"B — (I14) " (I1B);

Analyze a Single Entry of the Error Matrix: M; ; = (a;, b;) — (Ila;, I1b;)

Use of Distributional JL Property: for unit norm vectors X, y, and IT with k rows,
E[((ITx, ITy) — (x, y))?*] < 1/k

Bound the Expectation of the Error: bound the expected error, then apply Markov



Bound the Expected Error

E[IIMIZ] = E[X;; MZ] = ;B |({Na;, ;) — (a, bj))zl

2
* By the property of DJL: E [((Hai, Hbj> — (ai, bj)) ] < %-IlaiH%”ijz
* So, summing over all i, j:
1
n| = o F r- Hence, applying Markov
E|lIM]|7 IAllZ - IBIIF. H | k
E[lmz]  _ wlaldieig 1

NAlZ1BIIZ  e2-llAl2-1BlZ  ke?
* By choosing k = 0(1/(£%6)); the proof follows.

PrlMII = &2 - IAlIZ - IBIIF] < -



Runtime

The proposed Approximate Matrix Multiplication runs in

* Computing IIA and IIB in time O (knd + knp)

* Then, multiplying I1A and I1B in time O (kdp)

* Overall, runs in O(k(nd + np + dp)) < O(ndp) as k = 0(1/(£26))



JL Map Preserves Dot Product

* Projection matrix I1 € R**% have entries [T, . that are independent rv.s. with:
* E[ll,]=0
* E[IT7.] = 1/k (this normalization simplifies the proof).

« Z =(lla,11b) = Zrzl...kﬂ_[r: a><nr:b>
ElZ] = Zr=1...k E[(I1,., a)(Il,., b)]
=k - E[{ITy,aXIly, b)] = k - ]E[(ZS asﬂl,s)(z:s bsﬂl,s)]
=k -2 asbs[E[T[is] =(a, b)

* Similarly, we can bound the variance as Var({Ila, [1b)) < % lall311b]l5
So,
E[({Tla, T1b) — (a, b))*] = E[({1a, [1b) — E[(Ila, [1b)])*] = Var({Ila, I1b})) < %Ilalléllbllg
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