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Applications of Subspace 
Embedding
Regression



Applications of Subspace Embedding

Faster algorithms for approximate 
• matrix multiplication
• regression
• SVD

Basic idea. Want to perform operations on matrix 𝐴𝐴 with 𝑛𝑛 data columns (in a 
large dimension ℝℎ) with small actual rank 𝑑𝑑. 
Our goal is to reduce to a matrix of size roughly ℝ𝑑𝑑×𝑑𝑑 by spending time 
proportional to the number of non-zero entries in 𝐴𝐴.



Regression: Linear Model Fitting

A classic problem in data analysis
• 𝑛𝑛 data points in 𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛 ∈ ℝ𝑑𝑑

• Each data point 𝑎𝑎𝑖𝑖 is associated with a value 𝑏𝑏𝑖𝑖 ∈ ℝ
What model should one use to explain the data?

Simplest model? Linear fitting:
• 𝑏𝑏𝑖𝑖 = 𝑤𝑤0 + ∑1≤𝑗𝑗≤𝑑𝑑 𝑤𝑤𝑗𝑗 ⋅ 𝑎𝑎𝑖𝑖,𝑗𝑗 for a vector 𝑤𝑤 ≔ (𝑤𝑤0,⋯ ,𝑤𝑤𝑑𝑑)
• However, usually data is noisy and won’t be able to satisfy for all data points
• Without loss of generality, we can restrict to 𝑤𝑤0 = 0 by lifting to 𝑑𝑑 + 1 dimensions



Regression

Goal: want to choose 𝑤𝑤1,⋯ ,𝑤𝑤𝑑𝑑 to estimate 𝑏𝑏𝑖𝑖 ~ ∑1≤𝑗𝑗≤𝑑𝑑 𝑤𝑤𝑗𝑗 ⋅ 𝑎𝑎𝑖𝑖,𝑗𝑗
Let 𝐴𝐴 be matrix with one row per data point 𝑎𝑎𝑖𝑖 . We write 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 as 
variables for finding 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 .

Ideally: Find 𝑥𝑥 ∈ ℝ𝑑𝑑 such that 𝐴𝐴𝐴𝐴 = 𝑏𝑏
Best fit: Find 𝑥𝑥 ∈ ℝ𝑑𝑑 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 under some norm
• 𝐴𝐴𝐴𝐴 − 𝑏𝑏 1, 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2, 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∞

𝐴𝐴 =

𝑎𝑎1,1 𝑎𝑎1,2 𝑎𝑎1,3  … 𝑎𝑎1,𝑑𝑑

𝑎𝑎2,1 𝑎𝑎2,2 𝑎𝑎2,3  … 𝑎𝑎2,𝑑𝑑

𝑎𝑎𝑛𝑛,1 𝑎𝑎𝑛𝑛,2 𝑎𝑎𝑛𝑛,3  … 𝑎𝑎𝑛𝑛,𝑑𝑑



Least Squares Error Regression

Given 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 , find 𝑥𝑥 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2

Interesting when 𝑛𝑛 ≫ 𝑑𝑑; there is no solution to 𝐴𝐴𝐴𝐴 = 𝑏𝑏 and want to 
find the best fit
• 𝐴𝐴𝐴𝐴 is a linear combination of columns in 𝐴𝐴
• 𝑧𝑧 ∈ colspace(𝐴𝐴) that is closest to b in ℓ2-norm
• So, 𝑧𝑧 is the projection of 𝑏𝑏 onto colspace(𝐴𝐴)

How to find it? 



Least Squares Regression

Given 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 , find 𝑥𝑥 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
• Closest vector to 𝑏𝑏 is the projection of 𝑏𝑏 onto colspace(𝐴𝐴)
 Find orthonormal basis 𝑧𝑧1, … , 𝑧𝑧𝑟𝑟 for the columns of 𝐴𝐴
 Compute projection 𝑐𝑐 of 𝑏𝑏 to colspace(𝐴𝐴) which is 𝑐𝑐 = ∑1≤𝑗𝑗≤𝑟𝑟 𝑏𝑏, 𝑧𝑧𝑗𝑗  𝑧𝑧𝑗𝑗

• Back to our question, what is 𝑥𝑥?
 𝐴𝐴𝐴𝐴 = 𝑐𝑐. We need to solve the linear system. 
 By solving normal equation: 

 If columns of A are linearly independent, 𝐴𝐴⊤𝐴𝐴 is full rank and 𝑥𝑥∗ = 𝐴𝐴⊤𝐴𝐴 −1𝐴𝐴⊤𝑏𝑏 
 Otherwise, there’re multiple solutions and min-norm is 𝑥𝑥∗ = 𝐴𝐴 +𝑏𝑏 (Moore-Penrose Pseudoinverse)



SVD & Moore-Penrose Pseudoinverse

• Singular value decomposition (SVD). For every 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑑𝑑 , there exist 
matrices 𝑈𝑈 ∈ ℝ𝑚𝑚×𝑚𝑚,𝑉𝑉 ∈ ℝ𝑑𝑑×𝑑𝑑 with orthonormal columns such that

𝐴𝐴 = 𝑈𝑈 Σ 𝑉𝑉⊤ ,
where Σ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1,⋯ ,𝜎𝜎𝑟𝑟 , 0,⋯ , 0), 𝜎𝜎1 ≥ ⋯ ,≥ 𝜎𝜎𝑟𝑟 > 0. 
Moore-Penrose Pseudoinverse of 𝐴𝐴 is defined as 𝐴𝐴+ = 𝑉𝑉Σ−1𝑈𝑈⊤ where Σ =
diag(1/𝜎𝜎1,⋯ , 1/𝜎𝜎𝑟𝑟 , 0,⋯ , 0)

• 𝐴𝐴𝐴𝐴+𝐴𝐴 = 𝐴𝐴; 𝐴𝐴𝐴𝐴+ ⊤ = 𝐴𝐴𝐴𝐴+
• When 𝐴𝐴 has linearly independent columns, then 𝐴𝐴+ = 𝐴𝐴⊤𝐴𝐴 −1𝐴𝐴⊤ 
• 𝐴𝐴𝐴𝐴+: projection to the column span of 𝐴𝐴.
• 𝑃𝑃 =  𝐴𝐴𝐴𝐴+; then 𝑃𝑃𝑃𝑃 = 𝐴𝐴(𝐴𝐴+𝑣𝑣) which is a linear combination of columns in 𝐴𝐴
• Let 𝑦𝑦 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴); 𝑦𝑦 = 𝐴𝐴𝐴𝐴; then  𝑃𝑃𝑃𝑃 = 𝐴𝐴𝐴𝐴+ 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 = 𝐴𝐴



Least Squares Regression

Given 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 , find 𝑥𝑥 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
• Closest vector to 𝑏𝑏 is the projection of 𝑏𝑏 onto colspace(𝐴𝐴)
 Find orthonormal basis 𝑧𝑧1, … , 𝑧𝑧𝑟𝑟 for the columns of 𝐴𝐴
 Compute projection 𝑐𝑐 of 𝑏𝑏 to colspace(𝐴𝐴) which is 𝑐𝑐 = ∑1≤𝑗𝑗≤𝑟𝑟 𝑏𝑏, 𝑧𝑧𝑗𝑗  𝑧𝑧𝑗𝑗

• Back to our question, what is 𝑥𝑥?
 𝐴𝐴𝐴𝐴 = 𝑐𝑐. We need to solve the linear system. 
 By solving normal equation: 

 If columns of A are linearly independent, 𝐴𝐴⊤𝐴𝐴 is full rank and 𝑥𝑥∗ = 𝐴𝐴⊤𝐴𝐴 −1𝐴𝐴⊤𝑏𝑏 
 Otherwise, there’re multiple solutions and min-norm is 𝑥𝑥∗ = 𝐴𝐴 +𝑏𝑏 (Moore-Penrose Pseudoinverse)

 Naively requires 𝑂𝑂(𝑛𝑛𝑑𝑑2) time to compute

Can we speed up the process with some potential approximation?



LSE Regression via Subspace Embedding

Let 𝐸𝐸 denote the subspace spanned by columns of 𝐴𝐴 and 𝑏𝑏. It has 
dimension at most 𝑑𝑑 + 1.

Use Subspace Embedding Π on 𝐸𝐸 with 𝑘𝑘 = 𝑂𝑂(𝑑𝑑/𝜀𝜀2) rows to reduce 
{𝐴𝐴 1 ,𝐴𝐴 2 ,⋯ ,𝐴𝐴 𝑑𝑑 , 𝑏𝑏} to {𝐴𝐴′ 1 ,𝐴𝐴′ 2 ,⋯ ,𝐴𝐴′ 𝑑𝑑 , 𝑏𝑏′} which are in ℝ𝑘𝑘 .

Solve min
𝑥𝑥′∈ℝ𝑑𝑑

𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2 

Lemma. With probability 1 − 𝛿𝛿,
1 − 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2 ≤ min

𝑥𝑥′∈ℝ𝑑𝑑
𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2



LSE Regression via Subspace Embedding

With probability 1 − 𝛿𝛿 , via subspace embedding guarantee, for all 𝑧𝑧 ∈ 𝐸𝐸,
1 − 𝜀𝜀 𝑧𝑧 2 ≤ Π𝑧𝑧 2 ≤ 1 + 𝜀𝜀 𝑧𝑧 2

• Let 𝑥𝑥∗,𝑦𝑦∗ be respectively the optimal solution to min
𝑥𝑥∈ℝ𝑑𝑑

𝐴𝐴𝐴𝐴 − 𝑏𝑏 2 and min
𝑥𝑥′∈ℝ𝑑𝑑

𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2

• Let 𝑧𝑧 = 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏. Since 𝑧𝑧 ∈ 𝐸𝐸, 𝑆𝑆𝑆𝑆 2 ≤ 1 + 𝜀𝜀 𝑧𝑧 2. 
• Since 𝑥𝑥∗ is a feasible solution to min

𝑥𝑥′∈ℝ𝑑𝑑
𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2, 

𝐴𝐴′𝑦𝑦∗ − 𝑏𝑏′ 2 ≤ 𝐴𝐴′𝑥𝑥∗ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏 2
• Since for any 𝑦𝑦 ∈ ℝ𝑑𝑑 , 𝐴𝐴𝐴𝑦𝑦 − 𝑏𝑏𝑏 2 = Π𝐴𝐴𝐴𝐴 − Π𝑏𝑏 2 ≤ (1 + 𝜀𝜀) 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2

𝐴𝐴𝑦𝑦∗ − 𝑏𝑏 2 ≤ 1 + 𝜀𝜀 𝐴𝐴′𝑦𝑦∗ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 𝐴𝐴′𝑥𝑥∗ − 𝑏𝑏′ 2 ≤ (1 + 3𝜀𝜀) 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏 2

Lemma. With probability 1 − 𝛿𝛿,
1 − 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2 ≤ min

𝑥𝑥′∈ℝ𝑑𝑑
𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2



Running Time

• Reduce the problem for 𝑑𝑑 vectors in ℝ𝑛𝑛 to 𝑑𝑑 vectors in ℝ𝑘𝑘 with 𝑘𝑘 =
𝑂𝑂(𝑑𝑑/𝜀𝜀2).

• Computing Π𝐴𝐴 and Π𝑏𝑏 can be done in 𝑛𝑛𝑛𝑛𝑛𝑛(𝐴𝐴) via sparse/fast JL

• The reduced problem can be solved in time 𝑂𝑂(𝑑𝑑3/𝜀𝜀2)

• Useful when 𝑛𝑛 ≫ 𝑑𝑑/𝜀𝜀2



Approximate Matrix 
Multiplication



Matrix Multiplication

• A fundamental subroutine in countless computational tasks.
• Given two matrices 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 ,𝐵𝐵 ∈ ℝ𝑛𝑛×𝑝𝑝, we need to compute 𝐴𝐴⊤𝐵𝐵
• The standard naïve approach requires 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛).
• For the square matrices , significantly faster algorithms exist, running 

in 𝑂𝑂(𝑛𝑛𝜔𝜔), where 𝜔𝜔 is the exponent of Matrix Multiplication

• 𝜔𝜔 ≤ log2 7 (Strassen)

• 𝜔𝜔 ≤ 2.376 (Coppersmith, Winograd)

• 𝜔𝜔 ≤ 2.371339 (Alman, Duan, Vassilevska Williams, Y. Xu, Z. Xu, Zhou)



Matrix Multiplication
Year Best known (𝝎𝝎) bound Authors
1969 2.8074 Strassen (Wikipedia)
1978 2.796 Pan (Wikipedia)
1979 2.780 Bini, Capovani, Romani (Wikipedia)
1981 2.522 Schönhage (Wikipedia)
1981 2.517 Romani (Wikipedia)
1981 2.496 Coppersmith, Winograd (Wikipedia)
1986 2.479 Strassen (laser method) (Wikipedia)
1990 2.3755 Coppersmith, Winograd (Wikipedia)
2010 2.3737 Stothers (Wikipedia)
2012 2.3729 Vassilevska Williams (Wikipedia)
2014 2.3728639 Le Gall (Wikipedia)
2020 2.3728596 Alman, Vassilevska Williams (SODA’21) (Wikipedia)
2022 2.371866 Duan, Wu, Zhou (FOCS’23) (Wikipedia)
2024 2.371552 Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA’24) (arXiv)

2024 2.371339 (current best) Alman, Duan, Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA’25) 
(arXiv)

https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://arxiv.org/abs/2307.07970?utm_source=chatgpt.com
https://arxiv.org/abs/2404.16349?utm_source=chatgpt.com


Approximate Matrix Multiplication

• Exact vs. Practical: While theoretically fast, exact matrix multiplication can be 
complex.

• Approx. is Often Enough: In many modern applications (e.g., ML and data 
analysis), we don't need the perfect answer. A high-quality approx. is sufficient.

• The Trade-Off: This leads to Approximate Matrix Multiplication. We trade a 
small, controlled amount of precision for significant gains in speed.

• The Formal Goal: We want to quickly compute a matrix 𝐶𝐶 ∈ ℝ𝑑𝑑×𝑝𝑝 that is close to 
the true answer, with a high probability of success.

𝐴𝐴⊤𝐵𝐵 − 𝐶𝐶 𝐹𝐹 ≤ 𝜀𝜀, with probability 1 − 𝛿𝛿 



Theorem. 𝒟𝒟 is a DJL distribution of matrices with 𝑂𝑂( 1
𝜀𝜀2𝛿𝛿

) rows, then for 𝐴𝐴,𝐵𝐵:
Pr
Π∼𝒟𝒟

𝐴𝐴⊤𝐵𝐵 − Π𝐴𝐴 ⊤ Π𝐵𝐵 𝐹𝐹 ≥ 𝜀𝜀 𝐴𝐴 𝐹𝐹 𝐵𝐵 𝐹𝐹 ≤ 𝛿𝛿

JL-Based Approach for Fast Matrix Mult.

Error Matrix: 
• Let 𝑀𝑀 = 𝐴𝐴⊤𝐵𝐵 − Π𝐴𝐴 ⊤ Π𝐵𝐵 ; 
• Our goal is to show that 𝑀𝑀 𝐹𝐹 is small w.h.p.

Analyze a Single Entry of the Error Matrix:
• 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑗𝑗 − Π𝑎𝑎𝑖𝑖 ,Π𝑏𝑏𝑗𝑗
• Contribution of the entry to 𝑀𝑀 𝐹𝐹

2  is 𝑀𝑀𝑖𝑖,𝑗𝑗
2 = Π𝑎𝑎𝑖𝑖 ,Π𝑏𝑏𝑗𝑗 − 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑗𝑗

2



JL-Based Approach for Fast Matrix Mult.

Error Matrix: 𝑀𝑀 = 𝐴𝐴⊤𝐵𝐵 − Π𝐴𝐴 ⊤ Π𝐵𝐵 ; 
Analyze a Single Entry of the Error Matrix: 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗 − Π𝑎𝑎𝑖𝑖,Π𝑏𝑏𝑗𝑗
Use of Distributional JL Property: for unit norm vectors 𝑥𝑥,𝑦𝑦, and Π with 𝑘𝑘 rows, 

𝔼𝔼 Π𝑥𝑥,Π𝑦𝑦 − 𝑥𝑥,𝑦𝑦 2 ≤ 1/𝑘𝑘
Bound the Expectation of the Error: bound the expected error, then apply Markov

Theorem. 𝒟𝒟 is a DJL distribution of matrices with 𝑂𝑂( 1
𝜀𝜀2𝛿𝛿

) rows, then for 𝐴𝐴,𝐵𝐵:
Pr
Π∼𝒟𝒟

𝐴𝐴⊤𝐵𝐵 − Π𝐴𝐴 ⊤ Π𝐵𝐵 𝐹𝐹 ≥ 𝜀𝜀 𝐴𝐴 𝐹𝐹 𝐵𝐵 𝐹𝐹 ≤ 𝛿𝛿



Bound the Expected Error

𝔼𝔼 𝑀𝑀 𝐹𝐹
2 = 𝔼𝔼 ∑𝑖𝑖,𝑗𝑗 𝑀𝑀𝑖𝑖,𝑗𝑗

2 = ∑𝑖𝑖,𝑗𝑗 𝔼𝔼 Π𝑎𝑎𝑖𝑖 ,Π𝑏𝑏𝑗𝑗 − 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗
2

 

• By the property of DJL: 𝔼𝔼 Π𝑎𝑎𝑖𝑖 ,Π𝑏𝑏𝑗𝑗 − 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗
2 ≤ 1

𝑘𝑘⋅ 𝑎𝑎𝑖𝑖 2
2 𝑏𝑏𝑗𝑗 2

2

• So, summing over all 𝑖𝑖, 𝑗𝑗:

𝔼𝔼 𝑀𝑀 𝐹𝐹
2 = 1

𝑘𝑘
⋅ 𝐴𝐴 𝐹𝐹

2 ⋅ 𝐵𝐵 𝐹𝐹
2 . Hence, applying Markov

Pr 𝑀𝑀 𝐹𝐹
2 ≥ 𝜀𝜀2 ⋅ 𝐴𝐴 𝐹𝐹

2 ⋅ 𝐵𝐵 𝐹𝐹
2 ≤ 𝔼𝔼 𝑀𝑀 𝐹𝐹

2

𝜀𝜀2⋅ 𝐴𝐴 𝐹𝐹
2 ⋅ 𝐵𝐵 𝐹𝐹

2 =
1
𝑘𝑘⋅ 𝐴𝐴 𝐹𝐹

2 ⋅ 𝐵𝐵 𝐹𝐹
2

𝜀𝜀2⋅ 𝐴𝐴 𝐹𝐹
2 ⋅ 𝐵𝐵 𝐹𝐹

2 =
1
𝑘𝑘𝜀𝜀2

• By choosing 𝑘𝑘 = 𝑂𝑂(1/(𝜀𝜀2𝛿𝛿)); the proof follows.



Runtime

The proposed Approximate Matrix Multiplication runs in 

• Computing Π𝐴𝐴 and Π𝐵𝐵 in time 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘𝑘𝑘)

• Then, multiplying Π𝐴𝐴 and Π𝐵𝐵 in time 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘)

• Overall, runs in 𝑂𝑂 𝑘𝑘 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛 + 𝑑𝑑𝑑𝑑 ≪ 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛) as 𝑘𝑘 = 𝑂𝑂(1/(𝜀𝜀2𝛿𝛿))



JL Map Preserves Dot Product

• Projection matrix Π ∈ ℝ𝑘𝑘×𝑑𝑑 have entries Π𝑟𝑟,𝑐𝑐 ​ that are independent r.v.s. with:
• 𝔼𝔼[Π𝑟𝑟,𝑐𝑐] = 0
• 𝔼𝔼[Π𝑟𝑟,𝑐𝑐

2 ] = 1/𝑘𝑘 (this normalization simplifies the proof).

• 𝑍𝑍 = Π𝑎𝑎,Π𝑏𝑏 = ∑𝑟𝑟=1…𝑘𝑘 Π𝑟𝑟 ,𝑎𝑎 Π𝑟𝑟 ,𝑏𝑏
𝔼𝔼 𝑍𝑍 = ∑𝑟𝑟=1…𝑘𝑘 𝔼𝔼 Π𝑟𝑟 ,𝑎𝑎 Π𝑟𝑟 ,𝑏𝑏  
𝔼𝔼 𝑍𝑍 = 𝑘𝑘 ⋅ 𝔼𝔼 Π1,𝑎𝑎 Π1,𝑏𝑏 = 𝑘𝑘 ⋅ 𝔼𝔼 ∑𝑠𝑠 𝑎𝑎𝑠𝑠𝜋𝜋1,𝑠𝑠 ∑𝑠𝑠 𝑏𝑏𝑠𝑠𝜋𝜋1,𝑠𝑠

𝔼𝔼 𝑍𝑍 = 𝑘𝑘 ⋅ ∑𝑠𝑠 𝑎𝑎𝑠𝑠𝑏𝑏𝑠𝑠𝔼𝔼 𝜋𝜋1,𝑠𝑠
2 = 𝑎𝑎, 𝑏𝑏  

• Similarly, we can bound the variance as Var Π𝑎𝑎,Π𝑏𝑏 ≤ 1
𝑘𝑘
𝑎𝑎 2

2 𝑏𝑏 2
2

So, 

𝔼𝔼 Π𝑎𝑎,Π𝑏𝑏 − 𝑎𝑎, 𝑏𝑏 2 = 𝔼𝔼 Π𝑎𝑎,Π𝑏𝑏 − 𝔼𝔼 Π𝑎𝑎,Π𝑏𝑏 2 = Var Π𝑎𝑎,Π𝑏𝑏 ≤ 1
𝑘𝑘
𝑎𝑎 2

2 𝑏𝑏 2
2 
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