Algorithms for Big Data (FALL 25)

Lecture 11

FINAL NOTES ON JL AND SUBSPACE EMBEDDING

ALI VAKILIAN (vakilian@vt.edu)

A main motivation

- reduce the dimensionality of the input with the hope to solve the problem faster! $(X \subset \mathbb{R}^d; \max X \text{ down in } \mathbb{R}^m \text{ for } m \ll d \text{ using a map } f)$
- but, how fast can we compute the map f?
- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix $\Pi \in \mathbb{R}^{m \times d}$ with similar guarantees (entries are independently chosen at random; equal to $\frac{1}{\sqrt{s}}$ w.p. $\frac{1}{3}$, $\frac{-1}{\sqrt{s}}$ w.p. $\frac{1}{3}$; 0 otherwise)
 - s = m/3
 - $\Pi z = \sum_{i} z_{i} \Pi^{i}$ (where Π^{i} is the *i*-th column in Π)

- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix $\Pi \in \mathbb{R}^{m \times d}$ with similar guarantees (entries are independently chosen at random; equal to $\frac{1}{\sqrt{s}}$ w.p. $\frac{1}{3}$, $\frac{-1}{\sqrt{s}}$ w.p. $\frac{1}{3}$; 0 otherwise)
 - s = m/3
 - $\Pi z = \sum_{i} z_{i} \Pi^{i}$ (where Π^{i} is the *i*-th column in Π)

- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix $\Pi \in \mathbb{R}^{m \times d}$ with similar guarantees
- 3. Fast JL Transform: main idea is to pick a sampling matrix $S \in \mathbb{R}^{m \times d}$
 - S has a single 1 in a random location per row (zero elsewhere in the row); Rows are chosen at random
 - Computing $z \mapsto \Pi z$ is fast (takes O(m) time)
 - $\mathbb{E}\left[\left\|\frac{1}{\sqrt{m}}\Pi z\right\|_{2}^{2}=\|z\|_{2}^{2}\right]$; however, the variance might be quite high
 - if z has its mass concentrated in one or few coordinates
 - Apply a pre-conditioning operation R (for a certain orthogonal matrix R) s.t. $\frac{\|Rz\|_{\infty}}{\|Rz\|_{2}}$ is small w.h.p.
 - Rz is "well-spread", with no coordinate having too much mass
 - $\frac{1}{\sqrt{m}}SRz$ has roughly the same norm as z; the runtime to compute $\frac{1}{\sqrt{m}}SRz$ is $O(d \log d + m^3)$

- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix $\Pi \in \mathbb{R}^{m \times d}$ with similar guarantees
- 3. Fast JL Transform: main idea is to pick a sampling matrix $S \in \mathbb{R}^{m \times d}$
 - While fast, it does not utilize the sparsity of z (when they're).
- **4.** Sparse JL Transform: If Π has s non-zero per column, Πx can be multiplied in $O(s \cdot ||z||_0)$ time
 - Then, the name of the game is to make m and s as small as possible.
 - CountSketch provides DJL with $m = O(1/(\varepsilon^2 \delta))$ and s = 1.
 - [KN'14]: similar to CountSkecth with s > 1. Improves to $m = O(\log(1/\delta)/\varepsilon^2)$ and $s = \varepsilon m$.

Sparse JL Transform

 $\Pi \in \mathbb{R}^{m \times d}$ s.t. $\Pi_{r,i} = (\eta_{r,i} \cdot \sigma_{r,i}) / \sqrt{s}$, where $\sigma_{r,i}$ are independent Rademacher and $\eta_{r,i}$ are Bernoulli random variable satisfying:

- For all r, i, $\mathbb{E}[\eta_{r,i}] = s/m$
- For any $i, \sum_{1 \le r \le m} \eta_{r,i} = s$: I.e., each column of Π has exactly s non-zero entries.
- $\eta_{r,i}$ are negatively correlated: for any $S \subset [m] \times [d]$, $\mathbb{E} \left[\Pi_{(r,i) \in S} \eta_{r,i} \right] \leq \Pi_{(r,i) \in S} \mathbb{E} \left[\eta_{r,i} \right] \leq \left(\frac{s}{m} \right)^{|S|}$

Theorem. If $m = O(\log(1/\delta)/\varepsilon^2)$ and $s = \varepsilon m$, then for all z of unit norm, $\Pr_{\Pi}(\left|\|\Pi z\| - 1\right| > \varepsilon) \le \delta$

What more? Fast JL by Ailon and Chazelle [AC'09] where Πx can be computed in $O(d \log d)$ time

- $\Pi = \frac{1}{\sqrt{m}}SHD$:
 - $S_{m \times d}$ is a sampling matrix
 - H is Hadamard matrix, and
 - *D* is a diagonal matrix with independent Rademacher

Dimensionality Reduction

JL Lemma and Subspace Embedding

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

Sum of Independent Normal Distribution

Lemma. Let *X* and *Y* be independent random variables.

Suppose
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then, $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Corollary. Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY where a,b are arbitrary real numbers. Then, $Z \sim \mathcal{N}(\mathbf{0}, a^2 + b^2)$

Normal distribution is a *stable distribution*: adding two indep. r.v. within the same class gives a distribution inside the class. Other exist and useful in F_p estimation for $p \in (0, 2)$.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_i \sim \mathcal{N}(0,1)$ for each i, and $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2 + \dots + y_k^2}{2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^k e^{-\|y\|_2/2}$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used to generate a random unit vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated around k.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distribution

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2}{\sqrt{2\pi}}\right)^k$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated are

Concentration of sum of squares of normally distributed variables

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed random variables,

$$Y = \sum_{1 \le i \le k} Z_i^2$$
 where each $Z_i \sim \mathcal{N}(0,1)$

Lemma. Let $Z_1, ..., Z_k$ be independent $\mathcal{N}(0,1)$ r.v.s. and let $Y = \sum_i Z_i^2$. Then, for $\varepsilon \in (0,1/2)$, there is a constant c such that,

$$\Pr[(1-\varepsilon)^2 k \le Y \le (1+\varepsilon)^2 k] \ge 1 - 2e^{-c\varepsilon^2 k}$$

• Recall Chernoff for bounded independent non-negative rv. Z_i^2 are not bounded, however, Chernoff bounds extend to sums of random variables with exponentially decaying tails.

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$ and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

Can we guarantee this property for all $x \in \mathbb{R}^d$?
Not possible. Why? No! Since Π maps an n-dimension to a d-dimension space, some non-zero vectors must be mapped to zero under Π .

Question. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for $every \ x \in E$, $\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$?

Not possible if k < d.

Possible if k = d. Why? Pick Π to be an orthonormal basis for E.

• This requires knowing E and computing orthonormal basis which is slow.

Goal. Find an oblivious subspace embedding; JL based on random projections

You can think of E as column space of $n \times d$ matrix A

Then, one has to show $||SAx||_2 = (1 \pm \varepsilon)||Ax||_2$ for all $x \in \mathbb{R}^d$

Oblivious Subspace Embedding

Theorem. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1-\delta)$, for every $x \in E$, $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$

In other words, JL Lemma extends from one dimension to arbitrary number of dimensions in a smoothly.

Proof Challenges

How do we prove that Π works for all $x \in E$ which is an **infinite set**?

In particular, union bound doesn't work as is.

Useful Idea. Net Argument

- Choose a large but finite set of vectors T carefully (the net)
- Prove that Π preserves length of vectors in T (via union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T; hence, Π also preserves the length of x

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Theorem. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1-\delta)$, for every $x \in E$, $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Use DJL with $k = O(\frac{d}{\varepsilon^2}\log(1/\delta))$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \varepsilon)$ -factor.

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Definition (ε -net). A subset T is an ε -net for a space S if for every point $p \in S$, there is a point x in the net T such that

- In ℓ_2 space: $\|\mathbf{x} \mathbf{p}\|_2 \le \varepsilon$, or
- In ℓ_{∞} space: $\|x p\|_{\infty} \le \varepsilon$, or

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

A weaker ε -net construction.

- For $[-1,1]^d$, make a grid of length (ε/d)
- Number of grid points is $(2d/\varepsilon)^d$
- Better net constructions exist too.

Proof via Net Argument Analysis

Theorem. Let $E \subset \mathbb{R}^n$ be a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1 - \delta)$, for every $x \in E$,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$$

Fix any $x \in E$ such that $||x||_2 = 1$

• \exists a grid point $y \in T$ s.t. $\|y\|_2 \le 1$ and $\|x - y\|_\infty \le \frac{\varepsilon}{d}$. Let z = x - y $\|\Pi x\|_2 = \|\Pi(y + (x - y))\|_2 \le \|\Pi x\|_2 + \|\Pi z\|_2$ $\le (1 + \varepsilon) + (1 + \varepsilon) \sum_{i \in [d]} |z_i|$ $\le (1 + \varepsilon) + (1 + \varepsilon)\varepsilon \le 1 + 3\varepsilon.$

Similarly, $\|\Pi x\|_2 \ge 1 - O(\varepsilon)$

Proof of Subspace Embedding

A $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for column space of an $n \times d$ matrix A is a matrix S for which for all $x \in \mathbb{R}^d$

$$||SAx||_2^2 = (1 \pm \varepsilon)||Ax||_2^2$$

S is also an ℓ_2 -subspace embedding for U, where U is an orthonormal basis for column space of A. So,

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

A $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for column space of an $n \times d$ matrix A is a matrix S for which for all $x \in \mathbb{R}^d$

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

- If it holds for all unit vectors y, then it is satisfied for all vectors x by scaling.
- Consider an ε -net N over the sphere S^{d-1} .
 - **Definition:** For all $x \in S^{d-1}$, there exists y such that $||x y||_2 \le \varepsilon$
 - Greedy Construction: While $\exists x \in S^{d-1}$ of distance larger than ε from N; include x in N.
 - Size Analysis:
 - Consider a ball of radius $\varepsilon/2$ around every point in N. By construction they are disjoint.
 - All are contained in a ball of radius $(1 + \varepsilon/2)$ around the origin.

•
$$\Rightarrow |N| \le \frac{(1+\varepsilon/2)^d}{(\varepsilon/2)^d} = \left(1 + \frac{\varepsilon}{2}\right)^d$$

A $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for column space of an $n \times d$ matrix A is a matrix S for which for all $x \in \mathbb{R}^d$

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

- If it holds for all unit vectors y, then it is satisfied for all vectors x by scaling.
- Consider an ε -net N over the sphere S^{d-1} .
- Let $M = \{Ux \mid x \in N\}$

Claim. For every $x \in S^{d-1}$, there is a $y \in M$ for which $||Ux - y||_2 \le \varepsilon$.

Proof. Let $x' \in S^{d-1}$ be s.t. $||x' - x||_2 \le \varepsilon$. Then $||Ux - Ux'||_2 = ||x' - x||_2 \le \varepsilon$. Set y = Ux'.

Subspace Embedding (Net Argument)

Claim I. For every $x \in S^{d-1}$, there is a $y' \in M$ for which $||Ux - y'||_2 \le \varepsilon$.

- Let y = Ax for an arbitrary $x \in \mathcal{S}^{d-1}$
- By Claim I, there exists $y_1 \in M$ s.t. $||y y_1||_2 \le \varepsilon$.
- Let α be s.t. $\|\alpha(y-y_1)\|_2=1$. In particular, $\alpha\leq 1/\varepsilon$
- By Claim I, there exists $y_2' \in M$ s.t. $\|\alpha(y y_1) y_2'\|_2 \le \varepsilon$.
 - Then, $||y y_1' (y_2')/\alpha||_2 \le \varepsilon/\alpha \le \varepsilon^2$
 - Set $y_2 = y_2' / \alpha$
- Repeat the process to obtain y_1, y_2, y_3, \cdots s.t. for all i, $\|y-y_1-y_2-\cdots-y_i\|_2 \leq \varepsilon^i$
- By triangle inequality, for all i, $||y_i||_2 \le \varepsilon^{i-1} + \varepsilon^i \le 2\varepsilon^{i-1}$

Subspace Embedding (Net Argument)

Claim I. For every $x \in S^{d-1}$, there is a $y' \in I$

- Let y = Ax for an arbitrary $x \in S^{d-1}$
- There exist y_1, y_2, y_3, \dots s.t. $y = \sum_i y_i$, and

```
||Sy||_{2}^{2} = ||S \sum_{i} y_{i}||_{2}^{2}
||Sy||_{2}^{2} = \sum_{i} ||Sy_{i}||_{2}^{2} + 2 \sum_{i,j} \langle Sy_{i}, Sy_{j} \rangle
||Sy||_{2}^{2} = \sum_{i} ||y_{i}||_{2}^{2} + 2 \sum_{i,j} \langle y_{i}, y_{j} \rangle \pm O(\varepsilon) \sum_{i,j} ||y_{i}||_{2} ||y_{j}||_{2}
```

```
For unit vectors y, y' \in M,

• ||Sy||_2^2 = (1 \pm \varepsilon)||y||_2^2

• ||Sy'||_2^2 = (1 \pm \varepsilon)||y'||_2^2

• ||S(y - y')||_2^2 = (1 \pm \varepsilon)||y - y'||_2^2

• ||S(y - y')||_2^2 = ||Sy||_2^2 + ||Sy'||_2^2 - 2\langle Sy, Sy' \rangle

||y - y'||_2^2 = ||y||_2^2 + ||y'||_2^2 - 2\langle y, y' \rangle

\Rightarrow (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2\langle Sy, Sy' \rangle

= (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2(1 \pm \varepsilon)\langle y, y' \rangle

\Rightarrow \langle Sy, Sy' \rangle = \langle y, y' \rangle \pm O(\varepsilon)

\Rightarrow \langle \alpha Sy, \beta Sy' \rangle = \langle \alpha y, \beta y' \rangle \pm O(\varepsilon \alpha \beta)
```

Subspace Embedding (Net Argument)

Claim I. For every $x \in S^{d-1}$, there is a $y' \in I$

- Let y = Ax for an arbitrary $x \in S^{d-1}$
- There exist y_1, y_2, y_3, \dots s.t. $y = \sum_i y_i$, and

```
||Sy||_{2}^{2} = ||S \sum_{i} y_{i}||_{2}^{2}
||Sy||_{2}^{2} = \sum_{i} ||Sy_{i}||_{2}^{2} + 2 \sum_{i,j} \langle Sy_{i}, Sy_{j} \rangle
||Sy||_{2}^{2} = \sum_{i} ||y_{i}||_{2}^{2} + 2 \sum_{i,j} \langle y_{i}, y_{j} \rangle \pm O(\varepsilon) \sum_{i,j} ||y_{i}||_{2} ||y_{j}||_{2}
||Sy||_{2}^{2} = ||\sum_{i} y_{i}||_{2}^{2} \pm O(\varepsilon) (\sum_{i} 2\varepsilon^{i-1} (\sum_{j>i} 2\varepsilon^{j-1}))
||Sy||_{2}^{2} = ||y||_{2}^{2} \pm O(\varepsilon) (\sum_{i} 4\varepsilon^{2i-1}/(1-\varepsilon)) = 1 \pm O(\varepsilon)
```

For unit vectors
$$y, y' \in M$$
,
• $||Sy||_2^2 = (1 \pm \varepsilon)||y||_2^2$
• $||Sy'||_2^2 = (1 \pm \varepsilon)||y'||_2^2$
• $||S(y - y')||_2^2 = (1 \pm \varepsilon)||y - y'||_2^2$
 $||S(y - y')||_2^2 = ||Sy||_2^2 + ||Sy'||_2^2 - 2\langle Sy, Sy' \rangle$
 $||y - y'||_2^2 = ||y||_2^2 + ||y'||_2^2 - 2\langle y, y' \rangle$
 $\Rightarrow (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2\langle Sy, Sy' \rangle$
 $= (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2(1 \pm \varepsilon)\langle y, y' \rangle$
 $\Rightarrow \langle Sy, Sy' \rangle = \langle y, y' \rangle \pm O(\varepsilon)$
 $\Rightarrow \langle \alpha Sy, \beta Sy' \rangle = \langle \alpha y, \beta y' \rangle \pm O(\varepsilon \alpha \beta)$

Applications of Subspace Embedding

Regression

Applications of Subspace Embedding

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea. Want to perform operations on matrix A with n data columns (in a large dimension \mathbb{R}^h) with small actual rank d.

Our goal is to reduce to a matrix of size roughly $\mathbb{R}^{d \times d}$ by spending time proportional to the number of non-zero entries in A.

Regression: Linear Model Fitting

A classic problem in data analysis

- n data points in $a_1, \dots, a_n \in \mathbb{R}^d$
- Each data point a_i is associated with a value $b_i \in \mathbb{R}$

What model should one use to explain the data?

Simplest model? Linear fitting:

- $b_i = w_0 + \sum_{1 \le j \le d} w_j \cdot a_{i,j}$ for a vector $w \coloneqq (w_0, \dots, w_d)$
- However, usually data is noisy and won't be able to satisfy for all data points
- Without loss of generality, we can restrict to $w_0 = 0$ by lifting to d + 1 dimensions

Regression

Goal: want to choose w_1, \dots, w_d to estimate $b_i \sim \sum_{1 \leq j \leq d} w_j \cdot a_{i,j}$

Let A be matrix with one row per data point a_i . We write x_1, \dots, x_d as

 $A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,d} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,d} \\ & \vdots & & & & \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,d} \end{pmatrix}$

variables for finding $w_1, ..., w_d$.

Ideally: Find $x \in \mathbb{R}^d$ such that Ax = b

Best fit: Find $x \in \mathbb{R}^d$ to minimize Ax - b under some norm

• $||Ax - b||_1$, $||Ax - b||_2$, $||Ax - b||_{\infty}$

Least Squares Error Regression

Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$, find x to minimize $||Ax - b||_2$

Interesting when $n \gg d$; there is no solution to Ax = b and want to find the best fit

- Ax is a linear combination of columns in A
- $z \in \operatorname{colspace}(A)$ that is closest to b in ℓ_2 -norm
- So, z is the projection of b onto colspace(A)

How to find it?

15

Least Squares Regression

Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$, find x to minimize $||Ax - b||_2$

- Closest vector to b is the projection of b onto colspace(A)
 - Find orthonormal basis z_1, \dots, z_r for the columns of A
 - Compute projection c of b to colspace(A) which is $c = \sum_{1 \le j \le r} \langle b, z_j \rangle z_j$
- Back to our question, what is x?
 - Ax = c. We need to solve the linear system.
 - By solving normal equation: $x^* = (A^T A)^- b^T A$ (Moore-Penrose Pseudoinverse)
 - Naively requires $O(nd^2)$ time to compute

Can we speed up the process with some potential approximation?

LSE Regression via Subspace Embedding

Let E denote the subspace spanned by columns of A and b. It has dimension at most d+1.

Use Subspace Embedding S on E with $k = O(d/\varepsilon^2)$ rows to reduce $\{A^{(1)}, A^{(2)}, \cdots, A^{(d)}, b\}$ to $\{A'^{(1)}, A'^{(2)}, \cdots, A'^{(d)}, b'\}$ which are in \mathbb{R}^k .

Solve
$$\min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2$$

Lemma. With probability $1-\delta$, $(1-\varepsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2\leq \min_{x'\in\mathbb{R}^d}\|A'x'-b'\|_2\leq (1+\varepsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2$

LSE Regression via Subspace Embedding

Lemma. With probability $1 - \delta$,

$$(1 - \varepsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2 \le \min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2 \le (1 + \varepsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2$$

With probability $(1 - \delta)$, via subspace embedding guarantee, for all $z \in E$, $(1 - \varepsilon) ||z||_2 \le ||Sz||_2 \le (1 + \varepsilon) ||z||_2$

- Let x^* , y^* be respectively the optimal solution to $\min_{x \in \mathbb{R}^d} ||Ax b||_2$ and $\min_{x' \in \mathbb{R}^d} ||A'x' b'||_2$
- Let $z = Ax^* b$. Since $z \in E$, $||Sz||_2 \le (1 + \varepsilon)||z||_2$.
- Since x^* is a feasible solution to $\min_{x' \in \mathbb{R}^d} ||A'x' b'||_2$,

$$||A'y^* - b'||_2 \le ||A'x^* - b'||_2 \le (1 + \varepsilon)||Ax^* - b||_2$$

• Since for any $y \in \mathbb{R}^d$, $||A'y - b'||_2 = ||SAy - Sb||_2 \le (1 + \varepsilon)||Ay - b||_2$ $||Ay^* - b||_2 \le (1 + \varepsilon)||A'y^* - b'||_2 \le (1 + \varepsilon)||A'x^* - b'||_2 \le (1 + 3\varepsilon)||Ax^* - b||_2$

Running Time

- Reduce the problem for d vectors in \mathbb{R}^n to d vectors in \mathbb{R}^k with $k = O(d/\varepsilon^2)$.
- Computing SA and Sb can be done in nnz(A) via sparse/fast JL
- The reduced problem can be solved in time $O(d^3/\varepsilon^2)$
- Useful when $n \gg d/\varepsilon^2$