## Algorithms for Big Data (FALL 25)

**Lecture 11** 

FINAL NOTES ON JL AND SUBSPACE EMBEDDING

ALI VAKILIAN (vakilian@vt.edu)

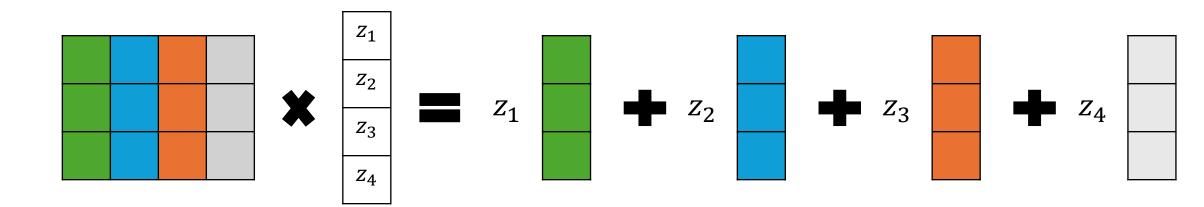




#### A main motivation

- reduce the dimensionality of the input with the hope to solve the problem faster!  $(X \subset \mathbb{R}^d; \max X \text{ down in } \mathbb{R}^m \text{ for } m \ll d \text{ using a map } f)$
- but, how fast can we compute the map f?
- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix  $\Pi \in \mathbb{R}^{m \times d}$  with similar guarantees (entries are independently chosen at random; equal to  $\frac{1}{\sqrt{s}}$  w.p.  $\frac{1}{3}$ ,  $\frac{-1}{\sqrt{s}}$  w.p.  $\frac{1}{3}$ ; 0 otherwise)
  - s = m/3
  - $\Pi z = \sum_{i} z_{i} \Pi^{i}$  (where  $\Pi^{i}$  is the *i*-th column in  $\Pi$ )

- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix  $\Pi \in \mathbb{R}^{m \times d}$  with similar guarantees (entries are independently chosen at random; equal to  $\frac{1}{\sqrt{s}}$  w.p.  $\frac{1}{3}$ ,  $\frac{-1}{\sqrt{s}}$  w.p.  $\frac{1}{3}$ ; 0 otherwise)
  - s = m/3
  - $\Pi z = \sum_{i} z_{i} \Pi^{i}$  (where  $\Pi^{i}$  is the *i*-th column in  $\Pi$ )



- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix  $\Pi \in \mathbb{R}^{m \times d}$  with similar guarantees
- 3. Fast JL Transform: main idea is to pick a sampling matrix  $S \in \mathbb{R}^{m \times d}$ 
  - S has a single 1 in a random location per row (zero elsewhere in the row); Rows are chosen at random
  - Computing  $z \mapsto \Pi z$  is fast (takes O(m) time)
  - $\mathbb{E}\left[\left\|\frac{1}{\sqrt{m}}\Pi z\right\|_{2}^{2}=\|z\|_{2}^{2}\right]$ ; however, the variance might be quite high
    - if z has its mass concentrated in one or few coordinates
  - Apply a pre-conditioning operation R (for a certain orthogonal matrix R) s.t.  $\frac{\|Rz\|_{\infty}}{\|Rz\|_{2}}$  is small w.h.p.
    - Rz is "well-spread", with no coordinate having too much mass
  - $\frac{1}{\sqrt{m}}SRz$  has roughly the same norm as z; the runtime to compute  $\frac{1}{\sqrt{m}}SRz$  is  $O(d \log d + m^3)$

- 1. For the original construction of JL [JL84] requires O(md) time.
- 2. Achlioptas [Achlioptas03] gave a sparser matrix  $\Pi \in \mathbb{R}^{m \times d}$  with similar guarantees
- 3. Fast JL Transform: main idea is to pick a sampling matrix  $S \in \mathbb{R}^{m \times d}$ 
  - While fast, it does not utilize the sparsity of z (when they're).
- **4.** Sparse JL Transform: If  $\Pi$  has s non-zero per column,  $\Pi x$  can be multiplied in  $O(s \cdot ||z||_0)$  time
  - Then, the name of the game is to make m and s as small as possible.
  - CountSketch provides DJL with  $m = O(1/(\varepsilon^2 \delta))$  and s = 1.
  - [KN'14]: similar to CountSkecth with s > 1. Improves to  $m = O(\log(1/\delta)/\varepsilon^2)$  and  $s = \varepsilon m$ .

### **Sparse JL Transform**

 $\Pi \in \mathbb{R}^{m \times d}$  s.t.  $\Pi_{r,i} = (\eta_{r,i} \cdot \sigma_{r,i}) / \sqrt{s}$ , where  $\sigma_{r,i}$  are independent Rademacher and  $\eta_{r,i}$  are Bernoulli random variable satisfying:

- For all r, i,  $\mathbb{E}[\eta_{r,i}] = s/m$
- For any  $i, \sum_{1 \le r \le m} \eta_{r,i} = s$ : I.e., each column of  $\Pi$  has exactly s non-zero entries.
- $\eta_{r,i}$  are negatively correlated: for any  $S \subset [m] \times [d]$ ,  $\mathbb{E} \left[ \Pi_{(r,i) \in S} \eta_{r,i} \right] \leq \Pi_{(r,i) \in S} \mathbb{E} \left[ \eta_{r,i} \right] \leq \left( \frac{s}{m} \right)^{|S|}$

**Theorem.** If  $m = O(\log(1/\delta)/\varepsilon^2)$  and  $s = \varepsilon m$ , then for all z of unit norm,  $\Pr_{\Pi}(\left|\|\Pi z\| - 1\right| > \varepsilon) \le \delta$ 

What more? Fast JL by Ailon and Chazelle [AC'09] where  $\Pi x$  can be computed in  $O(d \log d)$  time

- $\Pi = \frac{1}{\sqrt{m}}SHD$ :
  - $S_{m \times d}$  is a sampling matrix
  - H is Hadamard matrix, and
  - *D* is a diagonal matrix with independent Rademacher

# Dimensionality Reduction

JL Lemma and Subspace Embedding

### Distributional Johnson-Lindenstrauss Lemma

**Distributional JL Lemma.** Fix  $x \in \mathbb{R}^d$ , and let  $\Pi \in \mathbb{R}^{k \times d}$  be a matrix whose entries are chosen independently according to standard normal distribution  $\mathcal{N}(\mathbf{0}, \mathbf{1})$ . If  $k = \Omega(\varepsilon^{-2} \log(1/\delta))$ , then with probability at least  $1 - \delta$ ,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

### Sum of Independent Normal Distribution

**Lemma.** Let *X* and *Y* be independent random variables.

Suppose 
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and  $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ . Let  $Z = X + Y$ . Then,  $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ 

**Corollary.** Let X and Y be independent random variables. Suppose  $X \sim \mathcal{N}(0,1)$  and  $Y \sim \mathcal{N}(0,1)$ . Let Z = aX + bY where a,b are arbitrary real numbers. Then,  $Z \sim \mathcal{N}(\mathbf{0}, a^2 + b^2)$ 

Normal distribution is a *stable distribution*: adding two indep. r.v. within the same class gives a distribution inside the class. Other exist and useful in  $F_p$  estimation for  $p \in (0, 2)$ .

### Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distributions.

**Random Gaussian vector:**  $Z = (Z_1, ..., Z_k)$  if  $Z_i \sim \mathcal{N}(0,1)$  for each i, and  $Z_1, ..., Z_k$  are independent.

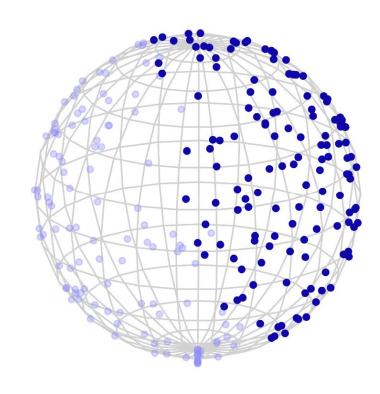
- Density function is  $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2 + \dots + y_k^2}{2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^k e^{-\|y\|_2/2}$
- Only depends on  $||y||_2$
- The distribution is **centrally symmetric**. (can be used to generate a random unit vector in  $\mathbb{R}^k$ ).  $U = \frac{Z}{\|Z\|}$  is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$ . Length is concentrated around k.

### Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distribution

Random Gaussian vector:  $Z = (Z_1, ..., Z_k)$  if  $Z_1, ..., Z_k$  are independent.

- Density function is  $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2}{\sqrt{2\pi}}\right)^k$
- Only depends on  $||y||_2$
- The distribution is **centrally symmetric**. (can be used vector in  $\mathbb{R}^k$ ).  $U = \frac{Z}{\|Z\|}$  is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$ . Length is concentrated are



# Concentration of sum of squares of normally distributed variables

 $\chi^2(k)$  distribution: distribution of sum of squares of k independent standard normally distributed random variables,

$$Y = \sum_{1 \le i \le k} Z_i^2$$
 where each  $Z_i \sim \mathcal{N}(0,1)$ 

**Lemma.** Let  $Z_1, ..., Z_k$  be independent  $\mathcal{N}(0,1)$  r.v.s. and let  $Y = \sum_i Z_i^2$ . Then, for  $\varepsilon \in (0,1/2)$ , there is a constant c such that,

$$\Pr[(1-\varepsilon)^2 k \le Y \le (1+\varepsilon)^2 k] \ge 1 - 2e^{-c\varepsilon^2 k}$$

• Recall Chernoff for bounded independent non-negative rv.  $Z_i^2$  are not bounded, however, Chernoff bounds extend to sums of random variables with exponentially decaying tails.

### Distributional Johnson-Lindenstrauss Lemma

**Distributional JL Lemma.** Fix  $x \in \mathbb{R}^d$  and let  $\Pi \in \mathbb{R}^{k \times d}$  be a matrix whose entries are chosen independently according to standard normal distribution  $\mathcal{N}(\mathbf{0}, \mathbf{1})$ . If  $k = \Omega(\varepsilon^{-2} \log(1/\delta))$ , then with probability at least  $1 - \delta$ ,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

Can we guarantee this property for all  $x \in \mathbb{R}^d$ ?
Not possible. Why? No! Since  $\Pi$  maps an n-dimension to a d-dimension space, some non-zero vectors must be mapped to zero under  $\Pi$ .

Question. Suppose  $E \subset \mathbb{R}^n$  is a linear subspace of dimension d. Can we find a projection  $\Pi: \mathbb{R}^d \to \mathbb{R}^k$  such that for  $every \ x \in E$ ,  $\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$ ?

Not possible if k < d.

Possible if k = d. Why? Pick  $\Pi$  to be an orthonormal basis for E.

• This requires knowing E and computing orthonormal basis which is slow.

Goal. Find an oblivious subspace embedding; JL based on random projections

You can think of E as column space of  $n \times d$  matrix A

Then, one has to show  $||SAx||_2 = (1 \pm \varepsilon)||Ax||_2$  for all  $x \in \mathbb{R}^d$ 

### Oblivious Subspace Embedding

Theorem. Suppose  $E \subset \mathbb{R}^n$  is a linear subspace of dimension d. Let  $\Pi \in \mathbb{R}^{k \times n}$  with  $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$  rows. Then with probability  $(1-\delta)$ , for every  $x \in E$ ,  $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$ 

In other words, JL Lemma extends from one dimension to arbitrary number of dimensions in a smoothly.

### **Proof Challenges**

How do we prove that  $\Pi$  works for all  $x \in E$  which is an **infinite set**?

In particular, union bound doesn't work as is.

#### Useful Idea. Net Argument

- Choose a large but finite set of vectors T carefully (the net)
- Prove that  $\Pi$  preserves length of vectors in T (via union bound)
- Argue that any vector  $x \in E$  is sufficiently close to a vector in T; hence,  $\Pi$  also preserves the length of x

**Observation.** It is sufficient to focus on unit vectors in *E*. Why?

Theorem. Suppose  $E \subset \mathbb{R}^n$  is a linear subspace of dimension d. Let  $\Pi \in \mathbb{R}^{k \times n}$  with  $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$  rows. Then with probability  $(1-\delta)$ , for every  $x \in E$ ,  $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$ 

**Observation.** It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net T of size  $e^{O(d)}$  such that preserving lengths of vectors in T suffices.

Use DJL with  $k = O(\frac{d}{\varepsilon^2}\log(1/\delta))$  and union bound to show that all vectors in T are preserved in length up to  $(1 \pm \varepsilon)$ -factor.

**Observation.** It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size  $e^{O(d)}$  such that preserving lengths of vectors in T suffices.

**Definition** ( $\varepsilon$ -net). A subset T is an  $\varepsilon$ -net for a space S if for every point  $p \in S$ , there is a point x in the net T such that

- In  $\ell_2$  space:  $\|\mathbf{x} \mathbf{p}\|_2 \le \varepsilon$ , or
- In  $\ell_{\infty}$  space:  $\|x p\|_{\infty} \le \varepsilon$ , or

**Observation.** It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size  $e^{O(d)}$  such that preserving lengths of vectors in T suffices.

#### A weaker $\varepsilon$ -net construction.

- For  $[-1,1]^d$ , make a grid of length  $(\varepsilon/d)$
- Number of grid points is  $(2d/\varepsilon)^d$
- Better net constructions exist too.

### Proof via Net Argument Analysis

Theorem. Let  $E \subset \mathbb{R}^n$  be a linear subspace of dimension d. Let  $\Pi \in \mathbb{R}^{k \times n}$  with  $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$  rows. Then with probability  $(1 - \delta)$ , for every  $x \in E$ ,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$$

Fix any  $x \in E$  such that  $||x||_2 = 1$ 

•  $\exists$  a grid point  $y \in T$  s.t.  $\|y\|_2 \le 1$  and  $\|x - y\|_\infty \le \frac{\varepsilon}{d}$ . Let z = x - y  $\|\Pi x\|_2 = \|\Pi(y + (x - y))\|_2 \le \|\Pi x\|_2 + \|\Pi z\|_2$   $\le (1 + \varepsilon) + (1 + \varepsilon) \sum_{i \in [d]} |z_i|$   $\le (1 + \varepsilon) + (1 + \varepsilon)\varepsilon \le 1 + 3\varepsilon.$ 

Similarly,  $\|\Pi x\|_2 \ge 1 - O(\varepsilon)$ 

# Proof of Subspace Embedding

A  $(1 \pm \varepsilon)$   $\ell_2$ -subspace embedding for column space of an  $n \times d$  matrix A is a matrix S for which for all  $x \in \mathbb{R}^d$ 

$$||SAx||_2^2 = (1 \pm \varepsilon)||Ax||_2^2$$

S is also an  $\ell_2$ -subspace embedding for U, where U is an orthonormal basis for column space of A. So,

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

A  $(1 \pm \varepsilon)$   $\ell_2$ -subspace embedding for column space of an  $n \times d$  matrix A is a matrix S for which for all  $x \in \mathbb{R}^d$ 

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

- If it holds for all unit vectors y, then it is satisfied for all vectors x by scaling.
- Consider an  $\varepsilon$ -net N over the sphere  $S^{d-1}$ .
  - **Definition:** For all  $x \in S^{d-1}$ , there exists y such that  $||x y||_2 \le \varepsilon$
  - Greedy Construction: While  $\exists x \in S^{d-1}$  of distance larger than  $\varepsilon$  from N; include x in N.
  - Size Analysis:
    - Consider a ball of radius  $\varepsilon/2$  around every point in N. By construction they are disjoint.
    - All are contained in a ball of radius  $(1 + \varepsilon/2)$  around the origin.

• 
$$\Rightarrow |N| \le \frac{(1+\varepsilon/2)^d}{(\varepsilon/2)^d} = \left(1 + \frac{\varepsilon}{2}\right)^d$$

A  $(1 \pm \varepsilon)$   $\ell_2$ -subspace embedding for column space of an  $n \times d$  matrix A is a matrix S for which for all  $x \in \mathbb{R}^d$ 

$$||SUx||_2^2 = (1 \pm \varepsilon)||Ux||_2^2$$

- If it holds for all unit vectors y, then it is satisfied for all vectors x by scaling.
- Consider an  $\varepsilon$ -net N over the sphere  $S^{d-1}$ .
- Let  $M = \{Ux \mid x \in N\}$

**Claim.** For every  $x \in S^{d-1}$ , there is a  $y \in M$  for which  $||Ux - y||_2 \le \varepsilon$ .

**Proof.** Let  $x' \in S^{d-1}$  be s.t.  $||x' - x||_2 \le \varepsilon$ . Then  $||Ux - Ux'||_2 = ||x' - x||_2 \le \varepsilon$ . Set y = Ux'.

### Subspace Embedding (Net Argument)

**Claim I.** For every  $x \in S^{d-1}$ , there is a  $y' \in M$  for which  $||Ux - y'||_2 \le \varepsilon$ .

- Let y = Ax for an arbitrary  $x \in \mathcal{S}^{d-1}$
- By Claim I, there exists  $y_1 \in M$  s.t.  $||y y_1||_2 \le \varepsilon$ .
- Let  $\alpha$  be s.t.  $\|\alpha(y-y_1)\|_2=1$ . In particular,  $\alpha\leq 1/\varepsilon$
- By Claim I, there exists  $y_2' \in M$  s.t.  $\|\alpha(y y_1) y_2'\|_2 \le \varepsilon$ .
  - Then,  $||y y_1' (y_2')/\alpha||_2 \le \varepsilon/\alpha \le \varepsilon^2$
  - Set  $y_2 = y_2' / \alpha$
- Repeat the process to obtain  $y_1, y_2, y_3, \cdots$  s.t. for all i,  $\|y-y_1-y_2-\cdots-y_i\|_2 \leq \varepsilon^i$
- By triangle inequality, for all i,  $||y_i||_2 \le \varepsilon^{i-1} + \varepsilon^i \le 2\varepsilon^{i-1}$

### Subspace Embedding (Net Argument)

**Claim I.** For every  $x \in S^{d-1}$ , there is a  $y' \in I$ 

- Let y = Ax for an arbitrary  $x \in S^{d-1}$
- There exist  $y_1, y_2, y_3, \dots$  s.t.  $y = \sum_i y_i$ , and

```
||Sy||_{2}^{2} = ||S \sum_{i} y_{i}||_{2}^{2}
||Sy||_{2}^{2} = \sum_{i} ||Sy_{i}||_{2}^{2} + 2 \sum_{i,j} \langle Sy_{i}, Sy_{j} \rangle
||Sy||_{2}^{2} = \sum_{i} ||y_{i}||_{2}^{2} + 2 \sum_{i,j} \langle y_{i}, y_{j} \rangle \pm O(\varepsilon) \sum_{i,j} ||y_{i}||_{2} ||y_{j}||_{2}
```

```
For unit vectors y, y' \in M,

• ||Sy||_2^2 = (1 \pm \varepsilon)||y||_2^2

• ||Sy'||_2^2 = (1 \pm \varepsilon)||y'||_2^2

• ||S(y - y')||_2^2 = (1 \pm \varepsilon)||y - y'||_2^2

• ||S(y - y')||_2^2 = ||Sy||_2^2 + ||Sy'||_2^2 - 2\langle Sy, Sy' \rangle

||y - y'||_2^2 = ||y||_2^2 + ||y'||_2^2 - 2\langle y, y' \rangle

\Rightarrow (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2\langle Sy, Sy' \rangle

= (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2(1 \pm \varepsilon)\langle y, y' \rangle

\Rightarrow \langle Sy, Sy' \rangle = \langle y, y' \rangle \pm O(\varepsilon)

\Rightarrow \langle \alpha Sy, \beta Sy' \rangle = \langle \alpha y, \beta y' \rangle \pm O(\varepsilon \alpha \beta)
```

### Subspace Embedding (Net Argument)

**Claim I.** For every  $x \in S^{d-1}$ , there is a  $y' \in I$ 

- Let y = Ax for an arbitrary  $x \in S^{d-1}$
- There exist  $y_1, y_2, y_3, \dots$  s.t.  $y = \sum_i y_i$ , and

```
||Sy||_{2}^{2} = ||S \sum_{i} y_{i}||_{2}^{2}
||Sy||_{2}^{2} = \sum_{i} ||Sy_{i}||_{2}^{2} + 2 \sum_{i,j} \langle Sy_{i}, Sy_{j} \rangle
||Sy||_{2}^{2} = \sum_{i} ||y_{i}||_{2}^{2} + 2 \sum_{i,j} \langle y_{i}, y_{j} \rangle \pm O(\varepsilon) \sum_{i,j} ||y_{i}||_{2} ||y_{j}||_{2}
||Sy||_{2}^{2} = ||\sum_{i} y_{i}||_{2}^{2} \pm O(\varepsilon) (\sum_{i} 2\varepsilon^{i-1} (\sum_{j>i} 2\varepsilon^{j-1}))
||Sy||_{2}^{2} = ||y||_{2}^{2} \pm O(\varepsilon) (\sum_{i} 4\varepsilon^{2i-1}/(1-\varepsilon)) = 1 \pm O(\varepsilon)
```

For unit vectors 
$$y, y' \in M$$
,  
•  $||Sy||_2^2 = (1 \pm \varepsilon)||y||_2^2$   
•  $||Sy'||_2^2 = (1 \pm \varepsilon)||y'||_2^2$   
•  $||S(y - y')||_2^2 = (1 \pm \varepsilon)||y - y'||_2^2$   
 $||S(y - y')||_2^2 = ||Sy||_2^2 + ||Sy'||_2^2 - 2\langle Sy, Sy' \rangle$   
 $||y - y'||_2^2 = ||y||_2^2 + ||y'||_2^2 - 2\langle y, y' \rangle$   
 $\Rightarrow (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2\langle Sy, Sy' \rangle$   
 $= (1 \pm \varepsilon)||y||_2^2 + (1 \pm \varepsilon)||y'||_2^2 - 2(1 \pm \varepsilon)\langle y, y' \rangle$   
 $\Rightarrow \langle Sy, Sy' \rangle = \langle y, y' \rangle \pm O(\varepsilon)$   
 $\Rightarrow \langle \alpha Sy, \beta Sy' \rangle = \langle \alpha y, \beta y' \rangle \pm O(\varepsilon \alpha \beta)$ 

# Applications of Subspace Embedding

Regression

### Applications of Subspace Embedding

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

**Basic idea.** Want to perform operations on matrix A with n data columns (in a large dimension  $\mathbb{R}^h$ ) with small actual rank d.

Our goal is to reduce to a matrix of size roughly  $\mathbb{R}^{d \times d}$  by spending time proportional to the number of non-zero entries in A.

### Regression: Linear Model Fitting

A classic problem in data analysis

- n data points in  $a_1, \dots, a_n \in \mathbb{R}^d$
- Each data point  $a_i$  is associated with a value  $b_i \in \mathbb{R}$

What model should one use to explain the data?

#### Simplest model? Linear fitting:

- $b_i = w_0 + \sum_{1 \le j \le d} w_j \cdot a_{i,j}$  for a vector  $w \coloneqq (w_0, \dots, w_d)$
- However, usually data is noisy and won't be able to satisfy for all data points
- Without loss of generality, we can restrict to  $w_0 = 0$  by lifting to d + 1 dimensions

### Regression

**Goal:** want to choose  $w_1, \dots, w_d$  to estimate  $b_i \sim \sum_{1 \leq j \leq d} w_j \cdot a_{i,j}$ 

Let A be matrix with one row per data point  $a_i$ . We write  $x_1, \dots, x_d$  as

 $A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,d} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,d} \\ & \vdots & & & & \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,d} \end{pmatrix}$ 

variables for finding  $w_1, ..., w_d$ .

**Ideally:** Find  $x \in \mathbb{R}^d$  such that Ax = b

**Best fit:** Find  $x \in \mathbb{R}^d$  to minimize Ax - b under some norm

•  $||Ax - b||_1$ ,  $||Ax - b||_2$ ,  $||Ax - b||_{\infty}$ 

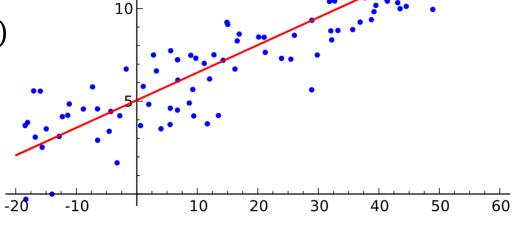
### Least Squares Error Regression

Given  $A \in \mathbb{R}^{n \times d}$  and  $b \in \mathbb{R}^d$ , find x to minimize  $||Ax - b||_2$ 

Interesting when  $n \gg d$ ; there is no solution to Ax = b and want to find the best fit

- Ax is a linear combination of columns in A
- $z \in \operatorname{colspace}(A)$  that is closest to b in  $\ell_2$ -norm
- So, z is the projection of b onto colspace(A)

How to find it?



15

### **Least Squares Regression**

Given  $A \in \mathbb{R}^{n \times d}$  and  $b \in \mathbb{R}^d$ , find x to minimize  $||Ax - b||_2$ 

- Closest vector to b is the projection of b onto colspace(A)
  - Find orthonormal basis  $z_1, \dots, z_r$  for the columns of A
  - Compute projection c of b to colspace(A) which is  $c = \sum_{1 \le j \le r} \langle b, z_j \rangle z_j$
- Back to our question, what is x?
  - Ax = c. We need to solve the linear system.
  - By solving normal equation:  $x^* = (A^T A)^- b^T A$  (Moore-Penrose Pseudoinverse)
  - Naively requires  $O(nd^2)$  time to compute

Can we speed up the process with some potential approximation?

### LSE Regression via Subspace Embedding

Let E denote the subspace spanned by columns of A and b. It has dimension at most d+1.

Use Subspace Embedding S on E with  $k = O(d/\varepsilon^2)$  rows to reduce  $\{A^{(1)}, A^{(2)}, \cdots, A^{(d)}, b\}$  to  $\{A'^{(1)}, A'^{(2)}, \cdots, A'^{(d)}, b'\}$  which are in  $\mathbb{R}^k$ .

Solve 
$$\min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2$$

**Lemma.** With probability  $1-\delta$ ,  $(1-\varepsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2\leq \min_{x'\in\mathbb{R}^d}\|A'x'-b'\|_2\leq (1+\varepsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2$ 

### LSE Regression via Subspace Embedding

**Lemma.** With probability  $1 - \delta$ ,

$$(1 - \varepsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2 \le \min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2 \le (1 + \varepsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2$$

With probability  $(1 - \delta)$ , via subspace embedding guarantee, for all  $z \in E$ ,  $(1 - \varepsilon) ||z||_2 \le ||Sz||_2 \le (1 + \varepsilon) ||z||_2$ 

- Let  $x^*$ ,  $y^*$  be respectively the optimal solution to  $\min_{x \in \mathbb{R}^d} ||Ax b||_2$  and  $\min_{x' \in \mathbb{R}^d} ||A'x' b'||_2$
- Let  $z = Ax^* b$ . Since  $z \in E$ ,  $||Sz||_2 \le (1 + \varepsilon)||z||_2$ .
- Since  $x^*$  is a feasible solution to  $\min_{x' \in \mathbb{R}^d} ||A'x' b'||_2$ ,

$$||A'y^* - b'||_2 \le ||A'x^* - b'||_2 \le (1 + \varepsilon)||Ax^* - b||_2$$

• Since for any  $y \in \mathbb{R}^d$ ,  $||A'y - b'||_2 = ||SAy - Sb||_2 \le (1 + \varepsilon)||Ay - b||_2$  $||Ay^* - b||_2 \le (1 + \varepsilon)||A'y^* - b'||_2 \le (1 + \varepsilon)||A'x^* - b'||_2 \le (1 + 3\varepsilon)||Ax^* - b||_2$ 

### **Running Time**

- Reduce the problem for d vectors in  $\mathbb{R}^n$  to d vectors in  $\mathbb{R}^k$  with  $k = O(d/\varepsilon^2)$ .
- Computing SA and Sb can be done in nnz(A) via sparse/fast JL
- The reduced problem can be solved in time  $O(d^3/\varepsilon^2)$
- Useful when  $n \gg d/\varepsilon^2$