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Dimensionality Reduction: Motivations

• A main motivation
• reduce the dimensionality of the input with the hope to solve the problem faster!
(𝑋𝑋 ⊂ ℝ𝑑𝑑 ; map 𝑋𝑋 down in ℝ𝑚𝑚 for 𝑚𝑚 ≪ 𝑑𝑑 using a map 𝑓𝑓)
• but, how fast can we compute the map 𝑓𝑓?

1. For the original construction of JL [JL84] requires 𝑂𝑂(𝑚𝑚𝑚𝑚) time.
2. Achlioptas [Achlioptas03] gave a sparser matrix Π ∈ ℝ𝑚𝑚×𝑑𝑑 with similar guarantees

(entries are independently chosen at random; equal to 1
𝑠𝑠

w.p. 1
3
, −1

𝑠𝑠
w.p. 1

3
; 0 otherwise)

• 𝑠𝑠 = 𝑚𝑚/3
• Π𝑧𝑧 = ∑𝑖𝑖 𝑧𝑧𝑖𝑖Π𝑖𝑖 (where Π𝑖𝑖 is the 𝑖𝑖-th column in Π)
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Dimensionality Reduction: Motivations

1. For the original construction of JL [JL84] requires 𝑂𝑂(𝑚𝑚𝑚𝑚) time.
2. Achlioptas [Achlioptas03] gave a sparser matrix Π ∈ ℝ𝑚𝑚×𝑑𝑑 with similar guarantees
3. Fast JL Transform: main idea is to pick a sampling matrix 𝑆𝑆 ∈ ℝ𝑚𝑚×𝑑𝑑

• 𝑆𝑆 has a single 1 in a random location per row (zero elsewhere in the row); Rows are chosen at random
• Computing 𝑧𝑧 ↦ Π𝑧𝑧 is fast (takes 𝑂𝑂(𝑚𝑚) time)

• 𝔼𝔼 1
𝑚𝑚
Π𝑧𝑧

2

2
= 𝑧𝑧 2

2 ; however, the variance might be quite high 

• if 𝑧𝑧 has its mass concentrated in one or few coordinates

• Apply a pre-conditioning operation 𝑅𝑅 (for a certain orthogonal matrix 𝑅𝑅) s.t. 𝑅𝑅𝑅𝑅 ∞
𝑅𝑅𝑅𝑅 2

 is small w.h.p.
• 𝑅𝑅𝑅𝑅 is “well-spread”, with no coordinate having too much mass

• 1
𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆 has roughly the same norm as 𝑧𝑧; the runtime to compute 1

𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆 is 𝑂𝑂(𝑑𝑑 log𝑑𝑑 + 𝑚𝑚3)
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1. For the original construction of JL [JL84] requires 𝑂𝑂(𝑚𝑚𝑚𝑚) time.
2. Achlioptas [Achlioptas03] gave a sparser matrix Π ∈ ℝ𝑚𝑚×𝑑𝑑 with similar guarantees
3. Fast JL Transform: main idea is to pick a sampling matrix 𝑆𝑆 ∈ ℝ𝑚𝑚×𝑑𝑑

• While fast, it does not utilize the sparsity of 𝑧𝑧 (when they’re).

4. Sparse JL Transform: If Π has 𝑠𝑠 non-zero per column, Π𝑥𝑥 can be multiplied in 𝑂𝑂(𝑠𝑠 ⋅ 𝑧𝑧 0) time
• Then, the name of the game is to make 𝑚𝑚 and 𝑠𝑠 as small as possible.
• CountSketch provides DJL with 𝑚𝑚 = 𝑂𝑂(1/(𝜀𝜀2𝛿𝛿)) and 𝑠𝑠 = 1.
•  [KN’14]: similar to CountSkecth with 𝑠𝑠 > 1. Improves to 𝑚𝑚 = 𝑂𝑂(log 1/𝛿𝛿 /𝜀𝜀2) and 𝑠𝑠 = 𝜀𝜀𝜀𝜀.



Sparse JL Transform

Π ∈ ℝ𝑚𝑚×𝑑𝑑 s.t. Π𝑟𝑟,𝑖𝑖 = (𝜂𝜂𝑟𝑟,𝑖𝑖⋅ 𝜎𝜎𝑟𝑟,𝑖𝑖) / 𝑠𝑠, where 𝜎𝜎𝑟𝑟,𝑖𝑖 are independent Rademacher and 𝜂𝜂𝑟𝑟,𝑖𝑖 
are Bernoulli random variable satisfying:

• For all 𝑟𝑟, 𝑖𝑖, 𝔼𝔼 𝜂𝜂𝑟𝑟,𝑖𝑖 = 𝑠𝑠/𝑚𝑚
• For any 𝑖𝑖, ∑1≤𝑟𝑟≤𝑚𝑚 𝜂𝜂𝑟𝑟,𝑖𝑖 = 𝑠𝑠: I.e., each column of Π has exactly 𝑠𝑠 non-zero entries.

• 𝜂𝜂𝑟𝑟,𝑖𝑖 are negatively correlated: for any 𝑆𝑆 ⊂ 𝑚𝑚 × [𝑑𝑑], 𝔼𝔼 Π 𝑟𝑟,𝑖𝑖 ∈𝑆𝑆𝜂𝜂𝑟𝑟,𝑖𝑖 ≤ Π 𝑟𝑟,𝑖𝑖 ∈𝑆𝑆𝔼𝔼 𝜂𝜂𝑟𝑟,𝑖𝑖 ≤ 𝑠𝑠
𝑚𝑚

𝑆𝑆

What more? Fast JL by Ailon and Chazelle [AC’09] where Π𝑥𝑥 can be computed in 𝑂𝑂(𝑑𝑑 log𝑑𝑑) time

• Π = 1
𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆: 

 𝑆𝑆𝑚𝑚×𝑑𝑑 is a sampling matrix 
 𝐻𝐻 is Hadamard matrix, and
 𝐷𝐷 is a diagonal matrix with independent Rademacher 

Theorem. If 𝑚𝑚 = 𝑂𝑂(log 1/𝛿𝛿 /𝜀𝜀2) and 𝑠𝑠 = 𝜀𝜀𝜀𝜀, then for all 𝑧𝑧 of unit norm, Pr
Π

Π𝑧𝑧 − 1 > 𝜀𝜀 ≤ 𝛿𝛿



Dimensionality Reduction
JL Lemma and Subspace Embedding



Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 , and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 



Lemma. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. 
Suppose 𝑋𝑋 ∼ 𝒩𝒩(𝜇𝜇𝑋𝑋,𝜎𝜎𝑋𝑋2) and 𝑌𝑌 ∼ 𝒩𝒩(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2). Let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌. Then, 

𝒁𝒁 ∼ 𝓝𝓝(𝝁𝝁𝑿𝑿 + 𝝁𝝁𝒀𝒀,𝝈𝝈𝑿𝑿𝟐𝟐 + 𝝈𝝈𝒀𝒀𝟐𝟐)

Sum of Independent Normal Distribution 

Normal distribution is a stable distribution: adding two indep. r.v. within 
the same class gives a distribution inside the class. Other exist and 
useful in 𝑭𝑭𝒑𝒑 estimation for 𝒑𝒑 ∈ (𝟎𝟎,𝟐𝟐).

Corollary. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. Suppose 𝑋𝑋 ∼
𝒩𝒩(0,1) and 𝑌𝑌 ∼ 𝒩𝒩(0,1). Let 𝑍𝑍 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 where 𝑎𝑎, 𝑏𝑏 are arbitrary real 
numbers. Then, 𝒁𝒁 ∼ 𝓝𝓝(𝟎𝟎,𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐)



Random Gaussian Vector

One can consider higher dimensional normal distributions, also called 
multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: 𝑍𝑍 = (𝑍𝑍1, … ,𝑍𝑍𝑘𝑘) if 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1) for each 𝑖𝑖, 
and 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 are independent.

• Density function is 𝑓𝑓 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 = 1
2𝜋𝜋

𝑘𝑘
exp −𝑦𝑦12+⋯+𝑦𝑦𝑘𝑘

2

2
= 𝟏𝟏

𝟐𝟐𝟐𝟐

𝒌𝒌
𝒆𝒆− 𝒚𝒚 𝟐𝟐/𝟐𝟐

• Only depends on 𝑦𝑦 2

• The distribution is centrally symmetric. (can be used to generate a random unit 
vector in ℝ𝑘𝑘). 𝑈𝑈 = 𝑍𝑍

𝑍𝑍
 is uniform on the unit sphere.

• 𝔼𝔼 𝑍𝑍 2
2 = ∑𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖2 = 𝑘𝑘. Length is concentrated around 𝑘𝑘.



Random Gaussian Vector

One can consider higher dimensional normal distributions, also called 
multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: 𝑍𝑍 = (𝑍𝑍1, … ,𝑍𝑍𝑘𝑘) if 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1) for each 𝑖𝑖, 
and 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 are independent.

• Density function is 𝑓𝑓 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 = 1
2𝜋𝜋

𝑘𝑘
exp −𝑦𝑦12+⋯+𝑦𝑦𝑘𝑘

2

2
= 𝟏𝟏

𝟐𝟐𝟐𝟐

𝒌𝒌
𝒆𝒆− 𝒚𝒚 𝟐𝟐/𝟐𝟐

• Only depends on 𝑦𝑦 2

• The distribution is centrally symmetric. (can be used to generate a random unit 
vector in ℝ𝑘𝑘). 𝑈𝑈 = 𝑍𝑍

𝑍𝑍
 is uniform on the unit sphere.

• 𝔼𝔼 𝑍𝑍 2
2 = ∑𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖2 = 𝑘𝑘. Length is concentrated around 𝑘𝑘.



Concentration of sum of squares of
normally distributed variables
𝝌𝝌𝟐𝟐(𝒌𝒌) distribution: distribution of sum of squares of 𝑘𝑘 independent 
standard normally distributed random variables,

𝑌𝑌 = ∑1≤𝑖𝑖≤𝑘𝑘 𝑍𝑍𝑖𝑖2 where each 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1)

• Recall Chernoff for bounded independent non-negative rv. 𝑍𝑍𝑖𝑖2 are not 
bounded, however, Chernoff bounds extend to sums of random 
variables with exponentially decaying tails.

Lemma. Let 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 be independent 𝒩𝒩(0,1) r.v.s. and let 𝑌𝑌 = ∑𝑖𝑖 𝑍𝑍𝑖𝑖2. Then, 
for 𝜀𝜀 ∈ (0,1/2), there is a constant 𝑐𝑐 such that,

𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝜺𝜺 𝟐𝟐𝒌𝒌 ≤ 𝒀𝒀 ≤ 𝟏𝟏 + 𝜺𝜺 𝟐𝟐𝒌𝒌 ≥ 𝟏𝟏 − 𝟐𝟐𝒆𝒆−𝒄𝒄𝜺𝜺𝟐𝟐𝒌𝒌



Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 

Can we guarantee this property for all 𝑥𝑥 ∈ ℝ𝑑𝑑?
Not possible. Why? No! Since Π maps an 𝑛𝑛-dimension to a 𝑑𝑑-dimension space, 
some non-zero vectors must be mapped to zero under Π. 



Subspace Embedding
Question. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Can we find a 
projection Π:ℝ𝑑𝑑 → ℝ𝑘𝑘 such that for every 𝑥𝑥 ∈ 𝐸𝐸, 𝟏𝟏

𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐? 

Not possible if 𝑘𝑘 < 𝑑𝑑.
Possible if 𝑘𝑘 = 𝑑𝑑. Why? Pick Π to be an orthonormal basis for 𝐸𝐸. 

• This requires knowing 𝐸𝐸 and computing orthonormal basis which is slow.

Goal. Find an oblivious subspace embedding; JL based on random projections
You can think of 𝐸𝐸 as column space of 𝑛𝑛 ×  𝑑𝑑 matrix A
Then, one has to show 𝑺𝑺𝑺𝑺𝒙𝒙 𝟐𝟐 = 𝟏𝟏 ± 𝜺𝜺 𝑨𝑨𝒙𝒙 𝟐𝟐 for all 𝑥𝑥 ∈ ℝ𝑑𝑑



Oblivious Subspace Embedding

In other words, JL Lemma extends from one dimension to arbitrary 
number of dimensions in a smoothly.

Theorem. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 
with 𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Proof Challenges

In particular, union bound doesn’t work as is.

How do we prove that Π works for all 𝑥𝑥 ∈ 𝐸𝐸 which is an infinite set?

Useful Idea. Net Argument
• Choose a large but finite set of vectors 𝑇𝑇 carefully (the net)
• Prove that Π preserves length of vectors in 𝑇𝑇 (via union bound)
• Argue that any vector 𝑥𝑥 ∈ 𝐸𝐸 is sufficiently close to a vector in 𝑇𝑇; hence, 
Π also preserves the length of 𝑥𝑥



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?

Theorem. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 
with 𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving lengths of 
vectors in 𝑇𝑇 suffices.

Use DJL with 𝑘𝑘 =  𝑂𝑂( 𝑑𝑑
𝜀𝜀2

log(1/𝛿𝛿)) and union bound to show that all vectors in 𝑇𝑇 are 
preserved in length up to (1 ± 𝜀𝜀)-factor.



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net of size 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving 
lengths of vectors in 𝑇𝑇 suffices.

Definition (𝜺𝜺-net). A subset 𝑇𝑇 is an 𝜀𝜀-net for a space 𝑆𝑆 if for every point 𝒑𝒑 ∈ 𝑆𝑆, there 
is a point 𝒙𝒙 in the net 𝑇𝑇 such that 
• In ℓ2 space: 𝒙𝒙 − 𝒑𝒑 2 ≤ 𝜀𝜀, or
• In ℓ∞ space: 𝒙𝒙 − 𝒑𝒑 ∞ ≤ 𝜀𝜀, or



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net of size 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving 
lengths of vectors in 𝑇𝑇 suffices.

A weaker 𝜺𝜺-net construction. 

• For −1,1 𝑑𝑑 , make a grid of length (𝜀𝜀/𝑑𝑑)
• Number of grid points is 2𝑑𝑑/𝜀𝜀 𝑑𝑑

• Better net constructions exist too.



Proof via Net Argument Analysis

Fix any 𝑥𝑥 ∈ 𝐸𝐸 such that 𝑥𝑥 2 = 1
• ∃ a grid point 𝑦𝑦 ∈ 𝑇𝑇 s.t. 𝑦𝑦 2 ≤ 1 and 𝑥𝑥 − 𝑦𝑦 ∞ ≤ 𝜀𝜀

𝑑𝑑
. Let 𝑧𝑧 = 𝑥𝑥 − 𝑦𝑦

Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ Π𝑥𝑥 2 + Π𝑧𝑧 2 
Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ (1 + 𝜀𝜀) + 1 + 𝜀𝜀 ∑𝑖𝑖∈[𝑑𝑑] |𝑧𝑧𝑖𝑖| 
Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ 1 + 𝜀𝜀 + 1 + 𝜀𝜀 𝜀𝜀 ≤ 1 + 3𝜀𝜀.

Similarly, Π𝑥𝑥 2 ≥ 1 − 𝑂𝑂(𝜀𝜀)

Theorem. Let 𝐸𝐸 ⊂ ℝ𝑛𝑛 be a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 with 
𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Proof of Subspace Embedding



Subspace Embedding

A (1 ± 𝜀𝜀) ℓ2-subspace embedding for column space of an 𝑛𝑛 × 𝑑𝑑 matrix 
𝐴𝐴 is a matrix 𝑆𝑆 for which for all 𝑥𝑥 ∈ ℝ𝑑𝑑

𝑆𝑆𝑆𝑆𝑆𝑆 2
2 = 1 ± 𝜀𝜀 𝐴𝐴𝐴𝐴 2

2

𝑆𝑆 is also an ℓ2-subspace embedding for 𝑈𝑈, where 𝑈𝑈 is an orthonormal 
basis for column space of 𝐴𝐴. So, 

𝑆𝑆𝑈𝑈𝑥𝑥 2
2 = 1 ± 𝜀𝜀 𝑈𝑈𝑥𝑥 2

2



Subspace Embedding

A (1 ± 𝜀𝜀) ℓ2-subspace embedding for column space of an 𝑛𝑛 × 𝑑𝑑 matrix 
𝐴𝐴 is a matrix 𝑆𝑆 for which for all 𝑥𝑥 ∈ ℝ𝑑𝑑

𝑆𝑆𝑈𝑈𝑥𝑥 2
2 = 1 ± 𝜀𝜀 𝑈𝑈𝑥𝑥 2

2

• If it holds for all unit vectors 𝑦𝑦, then it is satisfied for all vectors 𝑥𝑥 by scaling. 

• Consider an 𝜀𝜀-net 𝑁𝑁 over the sphere 𝒮𝒮𝑑𝑑−1.
• Definition: For all 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1, there exists 𝑦𝑦 such that 𝑥𝑥 − 𝑦𝑦 2 ≤ 𝜀𝜀
• Greedy Construction: While ∃ 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1 of distance larger than 𝜀𝜀 from 𝑁𝑁; include 𝑥𝑥 in 𝑁𝑁.
• Size Analysis:

• Consider a ball of radius 𝜀𝜀/2 around every point in 𝑁𝑁. By construction they are disjoint.
• All are contained  in a ball of radius 1 + ⁄𝜀𝜀 2  around the origin.

• ⇒ 𝑁𝑁 ≤ 1+ ⁄𝜀𝜀 2 𝑑𝑑

⁄𝜀𝜀 2 𝑑𝑑 = 1 + 𝜀𝜀
2

𝑑𝑑



Subspace Embedding

A (1 ± 𝜀𝜀) ℓ2-subspace embedding for column space of an 𝑛𝑛 × 𝑑𝑑 matrix 
𝐴𝐴 is a matrix 𝑆𝑆 for which for all 𝑥𝑥 ∈ ℝ𝑑𝑑

𝑆𝑆𝑈𝑈𝑥𝑥 2
2 = 1 ± 𝜀𝜀 𝑈𝑈𝑥𝑥 2

2

• If it holds for all unit vectors 𝑦𝑦, then it is satisfied for all vectors 𝑥𝑥 by scaling. 

• Consider an 𝜀𝜀-net 𝑁𝑁 over the sphere 𝒮𝒮𝑑𝑑−1.
• Let 𝑀𝑀 = 𝑈𝑈𝑈𝑈 𝑥𝑥 ∈ 𝑁𝑁}
Claim. For every 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1, there is a 𝑦𝑦 ∈ 𝑀𝑀 for which 𝑈𝑈𝑈𝑈 − 𝑦𝑦 2 ≤ 𝜀𝜀.

Proof. Let 𝑥𝑥′ ∈ 𝒮𝒮𝑑𝑑−1 be s.t. 𝑥𝑥′ − 𝑥𝑥 2 ≤ 𝜀𝜀. Then 𝑈𝑈𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑈 2 = 𝑥𝑥′ − 𝑥𝑥 2 ≤ 𝜀𝜀
            Set 𝑦𝑦 = 𝑈𝑈𝑈𝑈𝑈. 



Subspace Embedding (Net Argument)

Claim I. For every 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1, there is a 𝑦𝑦′ ∈ 𝑀𝑀 for which 𝑈𝑈𝑈𝑈 − 𝑦𝑦′ 2 ≤ 𝜀𝜀.

• Let 𝑦𝑦 = 𝐴𝐴𝐴𝐴 for an arbitrary 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1

• By Claim I, there exists 𝑦𝑦1 ∈ 𝑀𝑀 s.t. 𝑦𝑦 − 𝑦𝑦1 2 ≤ 𝜀𝜀. 
• Let 𝛼𝛼 be s.t. 𝛼𝛼 𝑦𝑦 − 𝑦𝑦1 2 = 1. In particular, 𝛼𝛼 ≤ 1/𝜀𝜀
• By Claim I, there exists 𝑦𝑦2′ ∈ 𝑀𝑀 s.t. 𝛼𝛼 𝑦𝑦 − 𝑦𝑦1 − 𝑦𝑦2′ 2 ≤ 𝜀𝜀.

• Then, 𝑦𝑦 − 𝑦𝑦1′ − ⁄𝑦𝑦2′ 𝛼𝛼 2 ≤ ⁄𝜀𝜀 𝛼𝛼 ≤ 𝜀𝜀2

• Set 𝑦𝑦2 = ⁄𝑦𝑦2′ 𝛼𝛼

• Repeat the process to obtain 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,⋯ s.t. for all 𝑖𝑖,
𝑦𝑦 − 𝑦𝑦1 − 𝑦𝑦2 −⋯− 𝑦𝑦𝑖𝑖 2 ≤ 𝜀𝜀𝑖𝑖

• By triangle inequality, for all 𝑖𝑖, 𝑦𝑦𝑖𝑖 2 ≤ 𝜀𝜀𝑖𝑖−1 + 𝜀𝜀𝑖𝑖 ≤ 2𝜀𝜀𝑖𝑖−1



Subspace Embedding (Net Argument)

Claim I. For every 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1, there is a 𝑦𝑦′ ∈ 𝑀𝑀 for which 𝑈𝑈𝑈𝑈 − 𝑦𝑦′ 2 ≤ 𝜀𝜀.

• Let 𝑦𝑦 = 𝐴𝐴𝐴𝐴 for an arbitrary 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1

• There exist 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,⋯ s.t. 𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖 , and for all 𝑖𝑖, 𝑦𝑦𝑖𝑖 2 ≤ 2𝜀𝜀𝑖𝑖−1

𝑆𝑆𝑆𝑆 2
2 = 𝑆𝑆 ∑𝑖𝑖 𝑦𝑦𝑖𝑖 2

2
 

𝑆𝑆𝑆𝑆 2
2 = ∑𝑖𝑖 𝑆𝑆𝑦𝑦𝑖𝑖 2

2 + 2∑𝑖𝑖,𝑗𝑗 𝑆𝑆𝑦𝑦𝑖𝑖 , 𝑆𝑆𝑦𝑦𝑗𝑗  

𝑆𝑆𝑆𝑆 2
2 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖 2

2 + 2∑𝑖𝑖,𝑗𝑗 𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗 ± 𝑂𝑂(𝜀𝜀)∑𝑖𝑖,𝑗𝑗 𝑦𝑦𝑖𝑖 2 𝑦𝑦𝑗𝑗 2
 

For unit vectors 𝑦𝑦,𝑦𝑦′ ∈ 𝑀𝑀, 
• 𝑆𝑆𝑆𝑆 2

2 = (1 ± 𝜀𝜀) 𝑦𝑦 2
2

• 𝑆𝑆𝑦𝑦𝑦 2
2 = (1 ± 𝜀𝜀) 𝑦𝑦𝑦 2

2

• 𝑆𝑆(𝑦𝑦 − 𝑦𝑦′) 2
2 = (1 ± 𝜀𝜀) 𝑦𝑦 − 𝑦𝑦′ 2

2

𝑆𝑆 𝑦𝑦 − 𝑦𝑦′ 2
2 = 𝑆𝑆𝑆𝑆 2

2 + 𝑆𝑆𝑦𝑦′ 2
2 − 2 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑦𝑦′

𝑦𝑦 − 𝑦𝑦𝑦 2
2 = 𝑦𝑦 2

2 + 𝑦𝑦𝑦 2
2 − 2 𝑦𝑦,𝑦𝑦′

⟹ 1 ± 𝜀𝜀 𝑦𝑦 2
2 + 1 ± 𝜀𝜀 𝑦𝑦′ 2

2 − 2 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑦𝑦′
 = 1 ± 𝜀𝜀 𝑦𝑦 2

2 + 1 ± 𝜀𝜀 𝑦𝑦′ 2
2 − 2(1 ± 𝜀𝜀) 𝑦𝑦,𝑦𝑦′

⟹ 𝑺𝑺𝑺𝑺,𝑺𝑺𝒚𝒚′ = 𝒚𝒚,𝒚𝒚′ ± 𝑶𝑶(𝜺𝜺)
⟹ 𝜶𝜶𝑺𝑺𝑺𝑺,𝜷𝜷𝑺𝑺𝒚𝒚′ = 𝜶𝜶𝒚𝒚,𝜷𝜷𝒚𝒚′ ± 𝑶𝑶(𝜺𝜺𝜺𝜺𝜺𝜺)



Subspace Embedding (Net Argument)

Claim I. For every 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1, there is a 𝑦𝑦′ ∈ 𝑀𝑀 for which 𝑈𝑈𝑈𝑈 − 𝑦𝑦′ 2 ≤ 𝜀𝜀.

• Let 𝑦𝑦 = 𝐴𝐴𝐴𝐴 for an arbitrary 𝑥𝑥 ∈ 𝒮𝒮𝑑𝑑−1
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• 𝑆𝑆𝑆𝑆 2

2 = (1 ± 𝜀𝜀) 𝑦𝑦 2
2
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2
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2 + 1 ± 𝜀𝜀 𝑦𝑦′ 2

2 − 2 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑦𝑦′
 = 1 ± 𝜀𝜀 𝑦𝑦 2

2 + 1 ± 𝜀𝜀 𝑦𝑦′ 2
2 − 2(1 ± 𝜀𝜀) 𝑦𝑦,𝑦𝑦′

⟹ 𝑺𝑺𝑺𝑺,𝑺𝑺𝒚𝒚′ = 𝒚𝒚,𝒚𝒚′ ± 𝑶𝑶(𝜺𝜺)
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Applications of Subspace Embedding

Faster algorithms for approximate 
• matrix multiplication
• regression
• SVD

Basic idea. Want to perform operations on matrix 𝐴𝐴 with 𝑛𝑛 data columns (in a 
large dimension ℝℎ) with small actual rank 𝑑𝑑. 
Our goal is to reduce to a matrix of size roughly ℝ𝑑𝑑×𝑑𝑑 by spending time 
proportional to the number of non-zero entries in 𝐴𝐴.



Regression: Linear Model Fitting

A classic problem in data analysis
• 𝑛𝑛 data points in 𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛 ∈ ℝ𝑑𝑑

• Each data point 𝑎𝑎𝑖𝑖 is associated with a value 𝑏𝑏𝑖𝑖 ∈ ℝ
What model should one use to explain the data?

Simplest model? Linear fitting:
• 𝑏𝑏𝑖𝑖 = 𝑤𝑤0 + ∑1≤𝑗𝑗≤𝑑𝑑 𝑤𝑤𝑗𝑗 ⋅ 𝑎𝑎𝑖𝑖,𝑗𝑗 for a vector 𝑤𝑤 ≔ (𝑤𝑤0,⋯ ,𝑤𝑤𝑑𝑑)
• However, usually data is noisy and won’t be able to satisfy for all data points
• Without loss of generality, we can restrict to 𝑤𝑤0 = 0 by lifting to 𝑑𝑑 + 1 dimensions



Regression

Goal: want to choose 𝑤𝑤1,⋯ ,𝑤𝑤𝑑𝑑 to estimate 𝑏𝑏𝑖𝑖  ~ ∑1≤𝑗𝑗≤𝑑𝑑 𝑤𝑤𝑗𝑗 ⋅ 𝑎𝑎𝑖𝑖,𝑗𝑗
Let 𝐴𝐴 be matrix with one row per data point 𝑎𝑎𝑖𝑖 . We write 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 as 
variables for finding 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 .

Ideally: Find 𝑥𝑥 ∈ ℝ𝑑𝑑 such that 𝐴𝐴𝐴𝐴 = 𝑏𝑏
Best fit: Find 𝑥𝑥 ∈ ℝ𝑑𝑑 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 under some norm
• 𝐴𝐴𝐴𝐴 − 𝑏𝑏 1, 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2, 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∞

𝐴𝐴 =

𝑎𝑎1,1 𝑎𝑎1,2 𝑎𝑎1,3  … 𝑎𝑎1,𝑑𝑑

𝑎𝑎2,1 𝑎𝑎2,2 𝑎𝑎2,3  … 𝑎𝑎2,𝑑𝑑

𝑎𝑎𝑛𝑛,1 𝑎𝑎𝑛𝑛,2 𝑎𝑎𝑛𝑛,3  … 𝑎𝑎𝑛𝑛,𝑑𝑑



Least Squares Error Regression

Given 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 , find 𝑥𝑥 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2

Interesting when 𝑛𝑛 ≫ 𝑑𝑑; there is no solution to 𝐴𝐴𝐴𝐴 = 𝑏𝑏 and want to 
find the best fit
• 𝐴𝐴𝐴𝐴 is a linear combination of columns in 𝐴𝐴
• 𝑧𝑧 ∈ colspace(𝐴𝐴) that is closest to b in ℓ2-norm
• So, 𝑧𝑧 is the projection of 𝑏𝑏 onto colspace(𝐴𝐴)

How to find it? 



Least Squares Regression

Given 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 , find 𝑥𝑥 to minimize 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
• Closest vector to 𝑏𝑏 is the projection of 𝑏𝑏 onto colspace(𝐴𝐴)
 Find orthonormal basis 𝑧𝑧1, … , 𝑧𝑧𝑟𝑟 for the columns of 𝐴𝐴
 Compute projection 𝑐𝑐 of 𝑏𝑏 to colspace(𝐴𝐴) which is 𝑐𝑐 = ∑1≤𝑗𝑗≤𝑟𝑟 𝑏𝑏, 𝑧𝑧𝑗𝑗  𝑧𝑧𝑗𝑗

• Back to our question, what is 𝑥𝑥?
 𝐴𝐴𝐴𝐴 = 𝑐𝑐. We need to solve the linear system. 
 By solving normal equation: 𝑥𝑥∗ = 𝐴𝐴⊤𝐴𝐴 −𝑏𝑏⊤𝐴𝐴 (Moore-Penrose Pseudoinverse)
 Naively requires 𝑂𝑂(𝑛𝑛𝑑𝑑2) time to compute

Can we speed up the process with some potential approximation?



LSE Regression via Subspace Embedding

Let 𝐸𝐸 denote the subspace spanned by columns of 𝐴𝐴 and 𝑏𝑏. It has 
dimension at most 𝑑𝑑 + 1.

Use Subspace Embedding 𝑆𝑆 on 𝐸𝐸 with 𝑘𝑘 = 𝑂𝑂(𝑑𝑑/𝜀𝜀2) rows to reduce 
{𝐴𝐴 1 ,𝐴𝐴 2 ,⋯ ,𝐴𝐴 𝑑𝑑 , 𝑏𝑏} to {𝐴𝐴′ 1 ,𝐴𝐴′ 2 ,⋯ ,𝐴𝐴′ 𝑑𝑑 , 𝑏𝑏′} which are in ℝ𝑘𝑘 .

Solve min
𝑥𝑥′∈ℝ𝑑𝑑

𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2 

Lemma. With probability 1 − 𝛿𝛿,
1 − 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2 ≤ min

𝑥𝑥′∈ℝ𝑑𝑑
𝐴𝐴′𝑥𝑥′ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 2



LSE Regression via Subspace Embedding

With probability 1 − 𝛿𝛿 , via subspace embedding guarantee, for all 𝑧𝑧 ∈ 𝐸𝐸,
1 − 𝜀𝜀 𝑧𝑧 2 ≤ 𝑆𝑆𝑆𝑆 2 ≤ 1 + 𝜀𝜀 𝑧𝑧 2

• Let 𝑥𝑥∗,𝑦𝑦∗ be respectively the optimal solution to min
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• Let 𝑧𝑧 = 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏. Since 𝑧𝑧 ∈ 𝐸𝐸, 𝑆𝑆𝑆𝑆 2 ≤ 1 + 𝜀𝜀 𝑧𝑧 2. 
• Since 𝑥𝑥∗ is a feasible solution to min
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𝐴𝐴′𝑦𝑦∗ − 𝑏𝑏′ 2 ≤ 𝐴𝐴′𝑥𝑥∗ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏 2
• Since for any 𝑦𝑦 ∈ ℝ𝑑𝑑 , 𝐴𝐴𝐴𝑦𝑦 − 𝑏𝑏𝑏 2 = 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆 2 ≤ (1 + 𝜀𝜀) 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2

𝐴𝐴𝑦𝑦∗ − 𝑏𝑏 2 ≤ 1 + 𝜀𝜀 𝐴𝐴′𝑦𝑦∗ − 𝑏𝑏′ 2 ≤ 1 + 𝜀𝜀 𝐴𝐴′𝑥𝑥∗ − 𝑏𝑏′ 2 ≤ (1 + 3𝜀𝜀) 𝐴𝐴𝑥𝑥∗ − 𝑏𝑏 2

Lemma. With probability 1 − 𝛿𝛿,
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Running Time

• Reduce the problem for 𝑑𝑑 vectors in ℝ𝑛𝑛 to 𝑑𝑑 vectors in ℝ𝑘𝑘 with 𝑘𝑘 =
𝑂𝑂(𝑑𝑑/𝜀𝜀2).

• Computing 𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆 can be done in 𝑛𝑛𝑛𝑛𝑛𝑛(𝐴𝐴) via sparse/fast JL

• The reduced problem can be solved in time 𝑂𝑂(𝑑𝑑3/𝜀𝜀2)

• Useful when 𝑛𝑛 ≫ 𝑑𝑑/𝜀𝜀2
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