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Dimensionality Reduction
JL Lemma and Subspace Embedding



Distributional Johnson-Lindenstrauss Lemma

i. We can instead choose entries from {−1, +1} as well.
ii. Unlike AMS sketch, entries of Π are independent.

Basically, we’ve projected 𝑥𝑥 from ℝ𝑑𝑑 into ℝ𝑘𝑘 while preserving length to 
a (1 ± 𝜀𝜀)-factor.

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 , and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 



Metric JL Lemma. Let 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 be 𝑛𝑛 points in ℝ𝑑𝑑 . For any 𝜀𝜀 ∈ (0, 1
2
), there is 

a linear map 𝑓𝑓:ℝ𝑑𝑑 → ℝ𝑘𝑘 where 𝑘𝑘 ≤ 8𝜀𝜀−2 ln𝑛𝑛, such that for all 𝑖𝑖 ≠ 𝑗𝑗 ∈ [𝑛𝑛],

𝟏𝟏 − 𝜺𝜺 𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋 𝟐𝟐
≤ 𝒇𝒇(𝒗𝒗𝒊𝒊) − 𝒇𝒇(𝒗𝒗𝒋𝒋) 𝟐𝟐

≤ 𝟏𝟏 + 𝜺𝜺 𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋 𝟐𝟐

Dimensionality Reduction

• The linear map is simply given the random matrix Π; i.e., 𝒇𝒇 𝒗𝒗 = 𝚷𝚷𝒗𝒗
• The mapping is oblivious (to data)

Proof. Apply DJL with 𝛿𝛿 = 𝑛𝑛−2, and union bound over the 𝑛𝑛
2  vectors 

𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋, for all pairs 𝒊𝒊 ≠ 𝒋𝒋 ∈ [𝒏𝒏]. 



More on JL

• Essentially optimal modulo constant factors for worst-case point sets.

• Each entry of Π is either -1/0/1 with similar probability
• Sparse JL: Each column is s-sparse for 𝑠𝑠 = 𝑂𝑂(𝜀𝜀−1 log 1/𝛿𝛿 ) / CountSketch

Questions. 
• Are the bounds achieved by the lemmas tight or can we do better? 
• How about non-linear maps? 

Fast JL and Sparse JL
• The described projection matrix Π is dense and takes Θ(𝑘𝑘𝑘𝑘) to compute.
• Can we find Π to improve time bound?



Oblivious Subspace Embedding



Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 

Can we guarantee this property for all 𝑥𝑥 ∈ ℝ𝑑𝑑?
Not possible. Why? No! Since Π maps an 𝑛𝑛-dimension to a 𝑑𝑑-dimension space, 
some non-zero vectors must be mapped to zero under Π. 



Subspace Embedding
Question. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Can we find a 
projection Π:ℝ𝑑𝑑 → ℝ𝑘𝑘 such that for every 𝑥𝑥 ∈ 𝐸𝐸, 𝟏𝟏

𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐? 

Not possible if 𝑘𝑘 < 𝑑𝑑.
Possible if 𝑘𝑘 = 𝑑𝑑. Why? Pick Π to be an orthonormal basis for 𝐸𝐸. 

• This requires knowing 𝐸𝐸 and computing orthonormal basis which is slow.

Goal. Find an oblivious subspace embedding; JL based on random projections
You can think of 𝐸𝐸 as column space of 𝑛𝑛 ×  𝑑𝑑 matrix A
Then, one has to show 𝑺𝑺𝑺𝑺𝒙𝒙 𝟐𝟐 = 𝟏𝟏 ± 𝜺𝜺 𝑨𝑨𝒙𝒙 𝟐𝟐 for all 𝑥𝑥 ∈ ℝ𝑑𝑑



Oblivious Subspace Embedding

In other words, JL Lemma extends from one dimension to arbitrary 
number of dimensions in a smoothly.

Theorem. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 
with 𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Proof Challenges

In particular, union bound doesn’t work as is.

How do we prove that Π works for all 𝑥𝑥 ∈ 𝐸𝐸 which is an infinite set?

Useful Idea. Net Argument
• Choose a large but finite set of vectors 𝑇𝑇 carefully (the net)
• Prove that Π preserves length of vectors in 𝑇𝑇 (via union bound)
• Argue that any vector 𝑥𝑥 ∈ 𝐸𝐸 is sufficiently close to a vector in 𝑇𝑇; hence, 
Π also preserves the length of 𝑥𝑥



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?

Theorem. Suppose 𝐸𝐸 ⊂ ℝ𝑛𝑛 is a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 
with 𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving lengths of 
vectors in 𝑇𝑇 suffices.

Use DJL with 𝑘𝑘 =  𝑂𝑂( 𝑑𝑑
𝜀𝜀2

log(1/𝛿𝛿)) and union bound to show that all vectors in 𝑇𝑇 are 
preserved in length up to (1 ± 𝜀𝜀)-factor.



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net of size 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving 
lengths of vectors in 𝑇𝑇 suffices.

Definition (𝜺𝜺-net). A subset 𝑇𝑇 is an 𝜀𝜀-net for a space 𝑆𝑆 if for every point 𝒑𝒑 ∈ 𝑆𝑆, there 
is a point 𝒙𝒙 in the net 𝑇𝑇 such that 
• In ℓ2 space: 𝒙𝒙 − 𝒑𝒑 2 ≤ 𝜀𝜀, or
• In ℓ∞ space: 𝒙𝒙 − 𝒑𝒑 ∞ ≤ 𝜀𝜀, or



Net Argument

Observation. It is sufficient to focus on unit vectors in 𝐸𝐸. Why?
Without loss of generality, lets assume that 𝑬𝑬 is the subspace formed 
by the first 𝑑𝑑 coordinate in the standard basis.

Claim 1. There is a net of size 𝑇𝑇 of size 𝑒𝑒𝑂𝑂(𝑑𝑑) such that preserving 
lengths of vectors in 𝑇𝑇 suffices.

A weaker 𝜺𝜺-net construction. 

• For −1,1 𝑑𝑑 , make a grid of length (𝜀𝜀/𝑑𝑑)
• Number of grid points is 2𝑑𝑑/𝜀𝜀 𝑑𝑑

• Better net constructions exist too.



Proof via Net Argument Analysis

Fix any 𝑥𝑥 ∈ 𝐸𝐸 such that 𝑥𝑥 2 = 1
• ∃ a grid point 𝑦𝑦 ∈ 𝑇𝑇 s.t. 𝑦𝑦 2 ≤ 1 and 𝑥𝑥 − 𝑦𝑦 ∞ ≤ 𝜀𝜀

𝑑𝑑
. Let 𝑧𝑧 = 𝑥𝑥 − 𝑦𝑦

Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ Π𝑥𝑥 2 + Π𝑧𝑧 2 
Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ (1 + 𝜀𝜀) + 1 + 𝜀𝜀 ∑𝑖𝑖∈[𝑑𝑑] |𝑧𝑧𝑖𝑖| 
Π𝑥𝑥 2 = Π(𝑦𝑦 + (𝑥𝑥 − 𝑦𝑦)) 2 ≤ 1 + 𝜀𝜀 + 1 + 𝜀𝜀 𝜀𝜀 ≤ 1 + 3𝜀𝜀.

Similarly, Π𝑥𝑥 2 ≥ 1 − 𝑂𝑂(𝜀𝜀)

Theorem. Let 𝐸𝐸 ⊂ ℝ𝑛𝑛 be a linear subspace of dimension 𝑑𝑑. Let Π ∈ ℝ𝑘𝑘×𝑛𝑛 with 
𝑘𝑘 = 𝑂𝑂 𝑑𝑑

𝜀𝜀2
log 1

𝛿𝛿
 rows. Then with probability (1 − 𝛿𝛿), for every 𝑥𝑥 ∈ 𝐸𝐸, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐



Lemma. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. 
Suppose 𝑋𝑋 ∼ 𝒩𝒩(𝜇𝜇𝑋𝑋,𝜎𝜎𝑋𝑋2) and 𝑌𝑌 ∼ 𝒩𝒩(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2). Let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌. Then, 

𝒁𝒁 ∼ 𝓝𝓝(𝝁𝝁𝑿𝑿 + 𝝁𝝁𝒀𝒀,𝝈𝝈𝑿𝑿𝟐𝟐 + 𝝈𝝈𝒀𝒀𝟐𝟐)

Sum of Independent Normal Distribution 

Normal distribution is a stable distribution: adding two indep. r.v. within 
the same class gives a distribution inside the class. Other exist and 
useful in 𝑭𝑭𝒑𝒑 estimation for 𝒑𝒑 ∈ (𝟎𝟎,𝟐𝟐).

Corollary. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. Suppose 𝑋𝑋 ∼
𝒩𝒩(0,1) and 𝑌𝑌 ∼ 𝒩𝒩(0,1). Let 𝑍𝑍 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 where 𝑎𝑎, 𝑏𝑏 are arbitrary real 
numbers. Then, 𝒁𝒁 ∼ 𝓝𝓝(𝟎𝟎,𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐)



Random Gaussian Vector

One can consider higher dimensional normal distributions, also called 
multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: 𝑍𝑍 = (𝑍𝑍1, … ,𝑍𝑍𝑘𝑘) if 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1) for each 𝑖𝑖, 
and 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 are independent.

• Density function is 𝑓𝑓 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 = 1
2𝜋𝜋

𝑘𝑘
exp −𝑦𝑦12+⋯+𝑦𝑦𝑘𝑘

2

2
= 𝟏𝟏

𝟐𝟐𝟐𝟐

𝒌𝒌
𝒆𝒆− 𝒚𝒚 𝟐𝟐/𝟐𝟐

• Only depends on 𝑦𝑦 2

• The distribution is centrally symmetric. (can be used to generate a random unit 
vector in ℝ𝑘𝑘). 𝑈𝑈 = 𝑍𝑍

𝑍𝑍
 is uniform on the unit sphere.

• 𝔼𝔼 𝑍𝑍 2
2 = ∑𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖2 = 𝑘𝑘. Length is concentrated around 𝑘𝑘.



Random Gaussian Vector

One can consider higher dimensional normal distributions, also called 
multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: 𝑍𝑍 = (𝑍𝑍1, … ,𝑍𝑍𝑘𝑘) if 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1) for each 𝑖𝑖, 
and 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 are independent.

• Density function is 𝑓𝑓 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 = 1
2𝜋𝜋

𝑘𝑘
exp −𝑦𝑦12+⋯+𝑦𝑦𝑘𝑘

2

2
= 𝟏𝟏

𝟐𝟐𝟐𝟐

𝒌𝒌
𝒆𝒆− 𝒚𝒚 𝟐𝟐/𝟐𝟐

• Only depends on 𝑦𝑦 2

• The distribution is centrally symmetric. (can be used to generate a random unit 
vector in ℝ𝑘𝑘). 𝑈𝑈 = 𝑍𝑍

𝑍𝑍
 is uniform on the unit sphere.

• 𝔼𝔼 𝑍𝑍 2
2 = ∑𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖2 = 𝑘𝑘. Length is concentrated around 𝑘𝑘.



Concentration of sum of squares of
normally distributed variables
𝝌𝝌𝟐𝟐(𝒌𝒌) distribution: distribution of sum of squares of 𝑘𝑘 independent 
standard normally distributed random variables,

𝑌𝑌 = ∑1≤𝑖𝑖≤𝑘𝑘 𝑍𝑍𝑖𝑖2 where each 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1)

• Recall Chernoff for bounded independent non-negative rv. 𝑍𝑍𝑖𝑖2 are not 
bounded, however, Chernoff bounds extend to sums of random 
variables with exponentially decaying tails.

Lemma. Let 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 be independent 𝒩𝒩(0,1) r.v.s. and let 𝑌𝑌 = ∑𝑖𝑖 𝑍𝑍𝑖𝑖2. Then, 
for 𝜀𝜀 ∈ (0,1/2), there is a constant 𝑐𝑐 such that,

𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝜺𝜺 𝟐𝟐𝒌𝒌 ≤ 𝒀𝒀 ≤ 𝟏𝟏 + 𝜺𝜺 𝟐𝟐𝒌𝒌 ≥ 𝟏𝟏 − 𝟐𝟐𝒆𝒆−𝒄𝒄𝜺𝜺𝟐𝟐𝒌𝒌



Applications of Subspace Embedding

Faster algorithms for approximate 
• matrix multiplication
• regression
• SVD

Basic idea. Want to perform operations on matrix 𝐴𝐴 with 𝑛𝑛 data columns (in a 
large dimension ℝℎ) with small actual rank 𝑑𝑑. 
Our goal is to reduce to a matrix of size roughly ℝ𝑑𝑑×𝑑𝑑 by spending time 
proportional to the number of non-zero entries in 𝐴𝐴.
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