Algorithms for Big Data (FALL 25)

Lecture 10
SUBSPACE EMBEDDING

ALI VAKILIAN (vakilian@vt.edu)

Dimensionality Reduction

JL Lemma and Subspace Embedding

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

- i. We can instead choose entries from $\{-1, +1\}$ as well.
- ii. Unlike AMS sketch, entries of Π are independent.

Basically, we've projected x from \mathbb{R}^d into \mathbb{R}^k while preserving length to a $(1 \pm \varepsilon)$ -factor.

Dimensionality Reduction

Metric JL Lemma. Let $v_1, ..., v_n$ be n points in \mathbb{R}^d . For any $\varepsilon \in (0, \frac{1}{2})$, there is a linear map $f: \mathbb{R}^d \to \mathbb{R}^k$ where $k \leq 8\varepsilon^{-2} \ln n$, such that for all $i \neq j \in [n]$,

$$(1 - \varepsilon) \|v_i - v_j\|_2 \le \|f(v_i) - f(v_j)\|_2 \le (1 + \varepsilon) \|v_i - v_j\|_2$$

- The linear map is simply given the random matrix Π ; i.e., $f(v) = \Pi v$
- The mapping is oblivious (to data)

Proof. Apply DJL with $\delta = n^{-2}$, and union bound over the $\binom{n}{2}$ vectors $\boldsymbol{v_i} - \boldsymbol{v_j}$, for all pairs $\boldsymbol{i} \neq \boldsymbol{j} \in [\boldsymbol{n}]$.

More on JL

Questions.

- Are the bounds achieved by the lemmas tight or can we do better?
- How about non-linear maps?
- Essentially optimal modulo constant factors for worst-case point sets.

Fast JL and Sparse JL

- The described projection matrix Π is dense and takes $\Theta(kd)$ to compute.
- Can we find Π to improve time bound?
- Each entry of Π is either -1/0/1 with similar probability
- Sparse JL: Each column is s-sparse for $s = O(\varepsilon^{-1} \log(1/\delta))$ / CountSketch

Oblivious Subspace Embedding

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$ and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

Can we guarantee this property for all $x \in \mathbb{R}^d$?
Not possible. Why? No! Since Π maps an n-dimension to a d-dimension space, some non-zero vectors must be mapped to zero under Π .

Subspace Embedding

Question. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for $every \ x \in E$, $\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$?

Not possible if k < d.

Possible if k = d. Why? Pick Π to be an orthonormal basis for E.

• This requires knowing E and computing orthonormal basis which is slow.

Goal. Find an oblivious subspace embedding; JL based on random projections

You can think of E as column space of $n \times d$ matrix A

Then, one has to show $||SAx||_2 = (1 \pm \varepsilon)||Ax||_2$ for all $x \in \mathbb{R}^d$

Oblivious Subspace Embedding

Theorem. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1-\delta)$, for every $x \in E$, $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$

In other words, JL Lemma extends from one dimension to arbitrary number of dimensions in a smoothly.

Proof Challenges

How do we prove that Π works for all $x \in E$ which is an **infinite set**?

In particular, union bound doesn't work as is.

Useful Idea. Net Argument

- Choose a large but finite set of vectors T carefully (the net)
- Prove that Π preserves length of vectors in T (via union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T; hence, Π also preserves the length of x

Observation. It is sufficient to focus on unit vectors in E. Why?

Theorem. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1 - \delta)$, for every $x \in E$, $\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Use DJL with $k = O(\frac{d}{\varepsilon^2}\log(1/\delta))$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \varepsilon)$ -factor.

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Definition (ε -net). A subset T is an ε -net for a space S if for every point $p \in S$, there is a point x in the net T such that

- In ℓ_2 space: $\|\mathbf{x} \mathbf{p}\|_2 \le \varepsilon$, or
- In ℓ_{∞} space: $\|x p\|_{\infty} \le \varepsilon$, or

Observation. It is sufficient to focus on unit vectors in *E*. Why?

Without loss of generality, lets assume that E is the subspace formed by the first d coordinate in the standard basis.

Claim 1. There is a net of size T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

A weaker ε -net construction.

- For $[-1,1]^d$, make a grid of length (ε/d)
- Number of grid points is $(2d/\varepsilon)^d$
- Better net constructions exist too.

Proof via Net Argument Analysis

Theorem. Let $E \subset \mathbb{R}^n$ be a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1 - \delta)$, for every $x \in E$,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$$

Fix any $x \in E$ such that $||x||_2 = 1$

• \exists a grid point $y \in T$ s.t. $\|y\|_2 \le 1$ and $\|x - y\|_\infty \le \frac{\varepsilon}{d}$. Let z = x - y $\|\Pi x\|_2 = \|\Pi(y + (x - y))\|_2 \le \|\Pi x\|_2 + \|\Pi z\|_2$ $\le (1 + \varepsilon) + (1 + \varepsilon) \sum_{i \in [d]} |z_i|$ $\le (1 + \varepsilon) + (1 + \varepsilon)\varepsilon \le 1 + 3\varepsilon.$

Similarly, $\|\Pi x\|_2 \ge 1 - O(\varepsilon)$

Sum of Independent Normal Distribution

Lemma. Let *X* and *Y* be independent random variables.

Suppose
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then, $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Corollary. Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY where a,b are arbitrary real numbers. Then, $Z \sim \mathcal{N}(\mathbf{0}, a^2 + b^2)$

Normal distribution is a *stable distribution*: adding two indep. r.v. within the same class gives a distribution inside the class. Other exist and useful in F_p estimation for $p \in (0, 2)$.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_i \sim \mathcal{N}(0,1)$ for each i, and $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2 + \dots + y_k^2}{2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^k e^{-\|y\|_2/2}$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used to generate a random unit vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated around k.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distribution

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2}{\sqrt{2\pi}}\right)^k$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated are

Concentration of sum of squares of normally distributed variables

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed random variables,

$$Y = \sum_{1 \le i \le k} Z_i^2$$
 where each $Z_i \sim \mathcal{N}(0,1)$

Lemma. Let $Z_1, ..., Z_k$ be independent $\mathcal{N}(0,1)$ r.v.s. and let $Y = \sum_i Z_i^2$. Then, for $\varepsilon \in (0,1/2)$, there is a constant c such that,

$$\Pr[(1-\varepsilon)^2 k \le Y \le (1+\varepsilon)^2 k] \ge 1 - 2e^{-c\varepsilon^2 k}$$

• Recall Chernoff for bounded independent non-negative rv. Z_i^2 are not bounded, however, Chernoff bounds extend to sums of random variables with exponentially decaying tails.

Applications of Subspace Embedding

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea. Want to perform operations on matrix A with n data columns (in a large dimension \mathbb{R}^h) with small actual rank d.

Our goal is to reduce to a matrix of size roughly $\mathbb{R}^{d \times d}$ by spending time proportional to the number of non-zero entries in A.