CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 9 09-23-2025

Lecture 9: Sparse Recovery, JL Lemma
09-23-2025 Lecturer: Ali Vakilian | Scribe: Shih-Han Huang | Editor: Ali Vakilian

1 Sparse Recovery

In our last lecture, we introduced the concept of sparsity, a key structure in modern data analysis where
data is dominated by a few significant values. We formalized this with the sparse recovery problem: given a
vector z, find the best k-sparse approximation z (meaning z has at most k non-zero entries) that minimizes
the error ||z — z||. We concluded by showing that the optimal offline solution is a simple greedy algorithm:
select the k entries in x with the largest absolute values and set all other entries to zero.

More formally, given a vector z € R™ and an integer k£ > 1, the optimal k-sparse approximation error of
r under the /2-norm is defined as erry(z) = min,.| ;| <z [z — 2||2. The optimal solution, denoted w, is
the best k-sparse approximation of x. It can be found via hard-thresholding, which involves keeping the
k entries of with the largest absolute values and setting the rest to zero.

The error of this optimal solution is the norm of the “tail" of the vector, which contains the n — k entries

(2)

that were zeroed out: err,” (x) = ||taily (x)]|2.

1.1 Sparse Recovery in the Streaming Model

Next, we focus on solving the sparse recovery problem in the streaming model. Formally,

Theorem 1.1 (Streaming ¢5-sparse recovery). There is a linear sketch of size O (8% polylog(n)) returning z

with || 2o < k such that wh.p. ||z — z|2 < (1 + E)err](f)(x).
In particular, if x is exactly k-sparse, the algorithm recovers it exactly.

CountSketch Recap. CountSketch uses d rows, each with width w. For each row ¢: hy : [n] — [w], and
s¢ @ [n] = {—1,+1}. Moreover, the sketch maintains counters C[/, 1..w] = 0. Update on (i, A) in the
stream is as follows: C[¢, hy(3)] <— C[€, he(7)] + se(7) - A.

Then, the estimate of the frequency of item 4 is computed as Z; = medianyeq) (se(%) - C[£, hy(i)]).

Sparse Recovery via CountSketch. At a high level, the hope is that once we have estimated the
frequency of each item, we can find a good k-sparse approximation by simply keeping the & coordinates
with the largest absolute values. The CountSketch algorithm is a natural candidate for this approach.

However, the analysis of CountSketch from Lecture 6, which resulted in an error guarantee in terms of
||z||2, is insufficient for this task. To overcome this, we will now provide a tighter analysis showing that
CountSketch can estimate frequencies with an additive error proportional to [|tail (z)||2, which is precisely
the optimal k-sparse recovery error, errg(x).

Theorem 1.2 (Tighter analysis of CountSketch). Ifw = ©(k/e?), d = ©(logn), then w.h.p.
T — x| < % - errf)(m), Vi € [n].
Proof. Fix an index ¢. For a single row ¢, define the row estimate

Zy = s0(i) - Ol hy()] = i + > s0(i)s0() Yy,
JF#i

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 9 09-23-2025

where indicator random variable Y; = 1{h,(j) = hy(i)} indicates collision with item ¢ in row {. By
pairwise independence of hy, E[Z)] = x;.
To bound the error erry(z), we will analyze collisions separately for two groups of items: those
corresponding to the k largest coordinates of = and the remaining items in the tail. Let 7},;; be the indices
(2)

of the k largest |z;| and Tyman = [n] \ Thig. Note that 3. x? = err; (z)*.

For j € Tig \ {i}, Pr[Y; = 1] = 1/w. Let Y = ZjeTbig\{i} Y;. Then E[Y] < k/w. Choosing width
w= 2—12“ by Markov’s inequality Pr[Y > 1] < E[Y] < % Thus with probability at least 1 — £2/3, no large
coordinate collides with i.

Conditioning on no collision with large coordinates/frequencies, for j € Tsman, s¢(4)s¢(j)Yjz; has
mean 0 and variance E[Y}] = x?/w Hence

errl? (z)?2
Var(Z Sg(i)Sg(j)Y}a?j) zi Z g;?:kw()

jETsmall jETsmall

By Chebyshey,

(2) ()2 2
k1 1

Pr (\Zg — x| > %err,(f)(ac) ‘ no large collision) < W =—-—=_.
(cerr)” (z)/k)2 € w 3

By union bound, for sufficiently small values of ¢, the failure probability per row is

52

Pr (\Zg—xi| > %-err,?)(:r)) <=+

- <
<3 <

[SA1\)

Wl =

Thus each estimate deviates from the true frequency by at most - err](f) (x), with probability at least 3/5.

Take d = O(logn) independent rows. The median of Z1, ..., Z; is within the desired error bound with
probability > 1 — n~2 by Chernoff bounds. By union bound over all i € [n], the failure probability is at
most 1/n. Thus w.h.p. simultaneously for all 4,

1@ — | < £ - errl?(2).
]

, then ||z —z||2 < (1+0(e))-err”) (x).

Theorem 1.3. If||z—yl|c0 < %-errf) (x) and z keeps the k largest |y;

Proof. Let T be the indices of the & largest |z;|, and S be the indices of the & largest |y;|. Let 6 = %errg) (z).
Ifi € T\ S, then some j € S\ T must replace it, and |z;| — |z;| < 20 by triangle inequality since
lyi — ;| < dand |y; — 25| < 6. Thus swaps occur only among nearly equal magnitudes. So,

Iz — 23 < llerns — yraslls + llzmsls + lus\rlls + (@i |13-

Each term is bounded by either ||z — y|| (on shared indices) or ¢ (on swapped indices). Hence the total
additional error is at most O(¢) err,(f) (z)% Thus ||z — 2|j2 < (1 + O(¢)) errgf) (x). O

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 9 09-23-2025

Algorithm 1 Sparse Recovery via CountSketch (¢3)

Require: Stream updates (i;, A;); sparsity k; accuracy ¢; universe size n
Ensure: k-sparse z with ||z — 2|2 < (1 +¢) - errg) ()
1w < [ck/e?], and d < [c;logn]
2: maintain a CountSketch C' with d rows and w width and updates it in the stream.
3: > estimate coordinates after the stream
4: fori € [n] do
5 for/=1toddo
6: z! < go(i) - C[l, hy(i)]
7: 7; < median{z}, ..., 71}
8: S < indices of the top-k values of | 7]
9: fori € [n] do

10: ifi € Sthen z; < 7; else z; + 0
return z

We remark that the space complexity of the proposed algorithm is O(g2 -logn).

2 Dimensionality Reduction

In many modern data science and machine learning applications, we work with data that lives in a very
high-dimensional space (large d). For example, an image can be represented as a vector of pixel values,
or a document as a vector of word counts. Processing and analyzing such high-dimensional data can
be computationally expensive and statistically challenging, a phenomenon often called the “curse of
dimensionality”.

Dimensionality reduction. is a set of techniques aimed at transforming data from a high-dimensional
space into a lower-dimensional space (small k) while preserving some essential structure of the original data.
The primary motivation is to make computations more tractable and to remove irrelevant or redundant
features, which can lead to better performance in downstream tasks like classification, clustering, and
visualization. A key question is: can we find a mapping f : R* — R* (with k < d) that preserves geometric
properties, such as distances between points?

2.1 The Johnson-Lindenstrauss (JL) Property

The Johnson-Lindenstrauss (JL) Lemma provides a remarkable answer to this question, showing that it’s
possible to project points into a much lower dimension while approximately preserving their pairwise
Euclidean distances. There are two main flavors of this result.

Distributional JL Lemma. The distributional version considers a single vector and guarantees that its
norm is preserved with high probability when projected by a random matrix.

Theorem 2.1 (Distributional JL). Fix a vector x € R?. Let II € R**? be a random matrix whose entries
are drawn independently from a standard normal distribution, N'(0,1). If the target dimension is k =
Q(c721log(1/5)), then with probability at least 1 — 6, the squared norm of the projected vector is preserved up
to a factor of (1 £ ¢):

1
Pr ||z = (1+e)llz]3| > 1-4.

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 9 09-23-2025

Metric JL Lemma. The metric version extends this idea from a single vector to a set of n points,
guaranteeing that all pairwise distances are simultaneously preserved by a single projection.

Theorem 2.2 (Metric JL). For any set of n points vy, ..., v, € RY, there exists a linear map f(v) = Iv that
projects them into a space of dimension k < 81n(n)/e? such that for all pairs of distinct points (v, v;):

(1 =e)llvi = vjllz < [[f(vi) = fvj)ll2 < (14 €)llvi — vjla.

This result is incredibly powerful because the required dimension k£ depends only logarithmically on
the number of points n, and not at all on the original dimension d.

Proof. Consider the N = (g) difference vectors u;; = v; — v;. By the DJL lemma, for a fixed u,
L = (1 £)l
m
with probability at least 1 — &', if m = Q(s=21og(1/8")). Applying this to each of the N vectors, the union

bound gives overall success probability at least 1 — N¢’. Choosing §' = 1/n? gives N§' < 1/2. Thus with
positive probability all distances are preserved, and m = O(¢~2logn). O

