CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

Lecture 8: CountSketch, and Sketching Applications
09-18-2025 Lecturer: Ali Vakilian | Scribe: Pratibha Zunjare | Editor: Ali Vakilian

1 CountSketch

The Count sketch [Charikar et al., 2002] is a linear sketch; similar to CountMin sketch algorithm. However,
inspired by AMS Sketch, instead of only adding to a counter, the CountSketch uses a second hash function
to decide if a item’s frequency should add to or subtract from the counter.

Algorithm 1 CountSketch Algorithm

1: let hy ...~y : [n] = [w] be independent pairwise hash functions.

2: letgi...gq: [n] = {—1,+1} be independent pairwise hash functions.
3: for { = 1toddo

4 initialize counters C[/, j] <— 0 for all j € [w].

o

for each stream update (i, A¢) do
6: for { = 1toddo
7: CLE, he(ir)] = CLE he(in)] + gelir) - A

> after the stream is over
8: for/ =1toddo
90: & = gu(i) - C[l, hy(i)]

return median{z}, ..., 7¢}

1.1 Description of CountSketch

The CountSketch uses two hash families. Let H{ be a pairwise-independent family C {[n] — [w]} and let
G be a pairwise-independent family C {[n| — {—1,+1}}. For each row ¢ € [d], independently sample
hy ~ H, and gy ~ G. In particular,

1. hy: [n] — [w] maps each item to a bucket (column).

2. gy : [n] = {—1,+1} is a sign hash that determines the sign of the update.
Update: For a stream update (i, A), for every £ € [d] set Cylhe(i)] < Colhe(i)] + ge(4) - A.

Query: Estimate f; by f; = mediane g (ge(i) Cylhe(i)]).
Unlike the Count-Min sketch, which is a biased estimator that always overestimates an item’s frequency,

we will show that the Count-Sketch provides an unbiased estimate.

Theorem 1.1. Consider strict turnstile streaming (i.e., f > 0 always). Let d = Q(log %) and w > 6% Then,
for any fixedi € [n], E{f]] = fs, and Pr[|fi — fil >]| fll2) < 6.
Proof. Consider a fixed row ¢ € [d]. For each item j # i, lets the random variable Y indicating whether
he(j) = he(i). Observe that by pairwise independence of hy, E[Y;] = E[Yf] =1/w.

Define the random variable Z; = g,(i)C[¢, hy(7)]. By linearity of expectation,

Zo = fi+ge()) - 9eG) Y5 = fi+) 90(0)g9e(5) fY5-
i#i i#i

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

Since E[g¢(i)ge(j)] = 0 for j # i, we have E[Z,] = f;. moreover, the variance is
Var[Z] = E[(Z — f)°]
=E[(0:() > fi90(1)Y;)’]

J#i
=E[> 7Y+ > filyad)Y;Yy]
J#i JJ'#i
2
ij Y2 +E Z f]fj’gé ij < ”{0’2
J# J:J' #4 J?él

Hence, Chebyshev’s inequality bounds its failure probability:

Var[Zg]
2|l f13

Then, we take the median of d such independent estimates to amplify the success probability. The final
median estimate is incorrect only if at least half of the row-estimates are bad (i.e., deviate from their
expectation by more than || f||2). Since the expected number of bad estimates is less than d/3, the Chernoff
bound guarantees that the probability of observing such a large deviation (at least d/2 bad estimates) is
exponentially small in d. Therefore,

<

Pr{|Z, = fil 2 el fll2] <

1
< il
- 3

1
we

Pr(|fi = fil 2 ellf]l2) < 6
Thus, E[fi] = fi and Prllf; — fil > ellf]l2) <5, -

Corollary 1.2. By setting the number of rows d = O(log(n/d)), we can guarantee that with probability at
least 1 — 0, all n frequency estimates are simultaneously correct. That is:

Pr [vi e [nl, Ifi = fil <ellflls] > 136,

Proof. Let E; be the event that the estimate for a single item i is incorrect, i.e., | f; — fi| > €| f||2. From the
theorem, we can set the number of rows d = O(log(1/dy)) to make the failure probability for one specific
item PI‘[EZ] < .

We want to bound the probability that any of the n estimates fail. Using the union bound:

n

e

i=1

Pr[any estimate fails] = Pr < Z Pr[E;] <n-dp

To make this total failure probability at most J, we can choose 9 = J/n. Substituting this into the
requirement for the number of rows: d = O(log(1/d)) = O(log(1/(6/n))) = O(log(n/d)). For failure
probability § = 1/poly(n), this simplifies to d = O(logn). O

2 Applications of CountMin and CountSketch
Next, we will explore several applications of the CountMin and CountSketch data structures.

2.1 Heavy Hitters: Point Queries

Given a parameter « € (0, 1], the goal is to find all items ¢ whose frequency f; exceeds «| f||1. allowing
approximation, the output includes any ¢ such that f; > (o — ¢)|| f||1 for a small error parameter ¢.

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

First Attempt: Query All Items. A straightforward approach is to first build a CountMin sketch over
the stream. After processing the stream, one could iterate through every item i € [n], query the sketch to
get its estimated frequency f;, and report any item for which f; > || f||1.

This approach correctly identifies items with high frequency. The CountMin guarantee states that
with high probability,]i < fi+¢|lf|l1 for all 7. This allows us to lower-bound the true frequency of any
reported item by f; > f — = flli > (& —)| flln.

However, the significant drawback of this method is that it requires querying every possible item in the
universe [n]. If the universe size n is very large, this query phase with runtime 9] (n) is computationally
infeasible and negates the primary benefits of using a sublinear space sketch.

Solution: Hierarchy of CountMin Sketches. The core idea is to maintain a hierarchy of CountMin
sketches over the universe [n].

« Levels: The structure has L = [logyn| + 1 levels, indexed from ¢ = 0 (the root) to ¢ = L — 1 (the
leaves).

. Intervals: At each level /, the universe [n] is partitioned into 2¢ disjoint intervals, or “super-items”
denoted as /1, - - , €y o¢. Each interval at level £ corresponds to a node in the conceptual binary tree
and covers a range of items.

« Sketches: A separate CountMin sketch, C' My, is maintained for each level. When an item ¢ arrives in the
stream, its corresponding super-item is identified at each of the L levels, and all L sketches are updated
accordingly.

The Query Algorithm. The query process is an efficient top-down search through this hierarchy to find
items whose frequencies exceed the threshold «|| f||1. The algorithm begins with a queue @) containing
just the root of the tree and repeatedly performs the following steps:

1. Pop & Query: Dequeue anode (¢, b), representing the b-th interval at level £. Query its corresponding
sketch C'Mj to get an estimate of its total frequency (i.e., the frequency of corresponding super-item
to the b-th interval).

2. Prune or Expand:

« If the estimated frequency is less than the threshold «|| f||1, this entire branch of the tree is
pruned, as no item in this branch could have a frequency larger than the target threshold.

+ Otherwise, when the frequency is high enough and we are not at a leaf level, add its two children
nodes (¢ + 1,2b — 1) and (¢ + 1, 2b) to the end of the queue Q.

3. Identify Candidates: If a leaf node (level L — 1) has an estimated frequency above the threshold,

its corresponding item is added to the candidate set.

Theorem 2.1. The Hierarchical CountMin sketch, using a total space of O (% lognlog %) can find a candidate
set H that solves the («, €)-heavy hitters problem in O (é log n) query time. With probability at least 1 — ¢,
the set H satisfies:

(i) (No False Negatives) Every item i with f; > «||f||1 is in H.
(ii) (Bounded False Positives) No item i with f; < (o« — €)||f]|1 is in H.

Proof. The proof consists of analyzing the space complexity and then proving the two correctness properties,
which rely on the overall success probability.

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

Algorithm 2 Dyadic Hierarchical Search for Heavy Hitters

1: Input: Threshold «, error parameter £, CountMin sketches {CMg}fz_Ol
2: initialize queue @ < {(0,1)} > start with root level and bucket
3: initialize candidate set C' < ()
4: while () is non-empty do
5: pop (¢,b) from @
6: estimate f/I%(i(e&b) by querying CM, > frequency estimate of super-item
7. if freq(egy) < (o —€)||f||: then
8: prune this branch (do not expand)
9: else
10: if { =L — 1 then > leaf level
11: add b to candidate set C
12: else
13: push children (¢ + 1,2b — 1) and (¢ + 1,2b) to Q

14: Return candidate set C

Space Complexity. The data structure consists of L = O(logn) levels. To ensure the guarantees hold
over all queries in the hierarchy with overall success probability 1 — §, each of the L. CountMin sketches is
constructed with a width w = O(1/¢€) and a depth of d = O(log(n/J)) rows. The total space is the number
of sketches multiplied by the size of each sketch:

L x d x w = O(logn) - Olog(n/8)) - O(1 /) = O <1 log n log ’;)

Proof of Correctness. The proof relies on the one-sided error guarantee of the Count-Min sketch, which
states that for any item j, its estimated frequency f; satisfies f; < f; < f; + €| f||1.

(i) No False Negatives: Consider a true heavy hitter ¢ with f; > «|| f||1. For the algorithm to report
this item, the query process must follow the path from the root of the hierarchy down to the leaf
node corresponding to ¢. This path is never pruned.

Consider any ancestor node (¢,b) on this path. The frequency of its corresponding super-item,
freq(esp), is the sum of frequencies of all items in its interval. Since i is in this interval, freq(e; ;) >
fi > a||f|l1. As the CountMin sketch always overestimates (%(6(71)) > freq(egp)), the estimated
frequency will also be at least «|| f||1. Since the estimate never falls below the threshold, the node is
never pruned. This holds for all nodes on the path to i, so ¢ will be added to the candidate set H.

(ii) Bounded False Positives: Suppose an item ¢ is returned in the candidate set H. This means its
estimated frequency at the leaf level satisfied f; > af| f||1. From the Count-Min guarantee, we know
that with high probability, f; < f; + €| f||1. Combining these two inequalities gives:

alflh < fi < fi+elfl

Rearranging, this gives us a lower bound on the true frequency of any reported item f; > (a—¢)|| f]|1-
Therefore, no item with a frequency significantly smaller than the threshold is reported.

Success Probability. The correctness proofs above rely on the CountMin error bounds holding for every
node that is queried. By setting the number of rows in each sketch to d = O(log(n/d)), we can use a union

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

bound to guarantee that, with probability at least 1 — J, the estimate for every possible item (and thus every
super-item at every level) has the required precision. Since the query algorithm only inspects a small subset
of these nodes, this guarantee is sufficient to ensure the entire query process succeeds with probability at
least 1 — . O]

2.2 Range Queries via Dyadic Intervals

In many applications, the domain [n] has a natural total ordering of items. For example, [n] may represent a
discretized timeline for a signal, with = corresponding to the signal values; in databases, [n] often represents
ordered numerical attributes such as age, height, or salary. In these scenarios, range queries are particularly
useful.

A range query is an interval of the form [i, j] where i,j € [n] and i < j. The goal is to compute
Zig < fe There are O(n?) possible range queries and the naive approach of estimating all items in the
range takes O(j — i) time which can be as large as O(n) in the worst case. However, as in Homework
1 (Problem 5), it is possible to support such queries in O(logn) time by only increasing the total space
complexity with a O(log n) factor.

2.3 Sparse Recovery

Sparsity is a central theme in modern data analysis, referring to data that is dominated by a few significant
values. This structure can be explicit, as seen in naturally sparse data like graphs or document-term vectors,
or implicit, where data like images and signals become sparse after a transformation into a different basis (e.g.,
a Fourier or wavelet basis). Leveraging sparsity provides significant algorithmic advantages, improving the
speed, memory usage, and quality of data processing, while also revealing important underlying information,
such as topics in a set of documents.

The sparse recovery problem formalizes the goal of finding this underlying structure. Given a dense
vector or signal € R™ and an integer k, the task is to find a k-sparse vector z (meaning z has at most k
non-zero entries, denoted ||z||p < k) that best approximates x. “Best” is typically defined as minimizing the
error ||z — z||, for a given norm, most commonly the Euclidean norm (p = 2).

Optimal Offline Solution. The optimal offline solution to the sparse recovery problem is a straightfor-
ward greedy algorithm. To construct the best k-sparse approximation z for a vector x:

1. Identify the k entries in x with the largest absolute values.
2. Set the corresponding entries of z equal to these k values.

3. Set the remaining n — k entries of z to zero.

This approach is optimal because to minimize the error ||z — z||,, one must zero out the entries of =
that contribute the least to its overall magnitude. By preserving the k largest-magnitude entries of x, we
ensure that the “error vector” x — z (which contains the n — k smallest-magnitude entries of) has the
minimum possible norm.

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 8 09-18-2025

References

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Proceedings of the 29th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 2380 of Lecture Notes in Computer Science, pages 693—-703. Springer, 2002.

	CountSketch
	Description of CountSketch

	Applications of CountMin and CountSketch
	Heavy Hitters: Point Queries
	Range Queries via Dyadic Intervals
	Sparse Recovery

