CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 7 09-16-2025

Lecture 7: Heavy Hitters, Misra-Gires Algorithms, and CountMin
09-16-2025 Lecturer: Ali Vakilian | Scribe: Achintya Sunil | Editor: Ali Vakilian

In a previous lecture, we discussed the Boyer-Moore Voting algorithm for efficiently finding a single
majority item (i.e., an item with frequency f; > m/2). We will now extend the core “canceling” intuition of
this algorithm to solve the more general heavy hitters problem: identifying all items whose frequency is at
least m /k.

1 Misra-Gries Algorithm

The premise of this algorithm is simple. Instead of keeping one word of memory and a counter, we keep
track of an array of size k instead.

Algorithm 1 Misra Gries (k):
1: let D be an empty array
2: for each item e; in the stream do
3: if e; is akey in D then

4: Dle;] < Dlej] +1

5 else

6: if the number of keys in D is less than k then
7: add e; to D with value 1

8: else

9: for each key ¢ in D do
10: D[l < D[{] —1
11: remove all keys from D whose value is 0

12: return the key-value pairs in D

The space complexity of this algorithm is O(k log m), where M is the size of the stream. The following
theorem provides a bound on our estimator f;.

Theorem 1.1. Foreachi € [n], fi — 775 < fi < fi. In particular, any item with f; > 7 will bein D.
Proof. The algorithm maintains at most k& counters. When an item e; arrives, one of three cases occurs:
(i) If e; is currently being tracked, its counter is incremented.
(ii) If e; is not tracked and there are fewer than % counters, a new counter is created for e; with value 1.

(iii) If e; is not tracked and all k counters are in use, all k& counters are decremented by 1.

Let ¢ be the total number of times Case (iii) (the “decrement-all” step) is triggered. Each time this step
occurs, it is caused by the arrival of an item that is not among the £ items being tracked. This single new
item, along with the k items whose counters are decremented, account for at least £ + 1 items from the
stream. Since this happens ¢ times, we can bound the total items involved:

m
. < < —.
E(k+1)_m:>€_k+1

Define the under-count for an item ¢ as o; = f; — f;. Let’s analyze how «; changes when an item e; arrives:

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 7 09-16-2025

(i) (ej = 1, counter exists): f; and f, both increase by one, so «; is unchanged.

(ii) (e; = i, no counter, counters full): f; increases by one, but fl (currently 0) does not. «; increases
by one. This is a decrement event.

(iii) (ej # 7, counters full): f; is unchanged, but f; (if it exists) is decremented by one. «; increases by
one. This is also a decrement event.

In all cases, the under-count «; increases by at most 1, and only when one of the ¢ decrement events occurs.
The total under-count for any item ¢ is bounded by the total number of decrement events. Therefore, we
can combine our bounds:
o m
—fi<t< ——
fi-fises
O

Note that Misra and Gries [1982] is a purely deterministic algorithm. Surprisingly, we cannot make
any changes to significantly improve the space complexity of O(klog m). This is quite impressive for a
purely deterministic algorithm. However, we are still on the lookout for randomized solutions as they have
additional properties such as supporting both insertions and deletions. Before that, let’s introduce some
useful notions on hashing.

2 Sketching-Based Approach: Hashing Ideas

We can introduce hashing for solving the heavy hitters problem using the following idea: Let’s say we have
k heavy hitters by, ba, . . ., by. Suppose we pick a hash function such that h : [n] — [ck] for some ¢ > 1
(the hash function is mapping the heavy hitters to different buckets. Note that each heavy hitter will be
mapped to the same bucket, but we can expect collision to occur between between different items). Then
we can estimate the frequency of one of our heavy hitters by using a count of the items from one of the
buckets. Repeating this idea with independent hashes, we can improve our estimate. This is the premise
behind CountMin Sketch [Cormode and Muthukrishnan, 2005].

2.1 CountMin Sketch

To setup CountMin sketch, we need to use the following data structures.

« d pairwise independent hash functions hy, . .., hg; each mapping [n] — [w]

« Store one counter per entry in the table, C'[¢, s|, which is keeping the aggregate frequency of items
mapped into the bucket s by the hash function /.

Equivalently, this data structure is table of counters with d rows and w columns.

Note that for £ € [d] and s € [w], C[(,s] = > .,
items, for every ¢ € [d], C[¢, hy(i)] is an overestimate of f;. If we have d such estimates, the closest one to
the true frequency of the item is given by the minimum C[¢, hy(7)].

)=s fi. Since we allow for collisions between the

Algorithm 2 CountMin Sketch (stream):

1: let hy, ..., hy be pairwise independent hash functions from [n] — [w]
: for each item e; = (iz, A;) in the stream do
3: for ¢ = 1toddo C[l, hy(ir)] < Cl, he(ir)] + Ay

)

~ > Once the stream is over
4: for each i € [n] do set f; = minge(q) C[l, he(i)]

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 7 09-16-2025

Theorem 2.1. Consider strict turnstile streaming (i.e., always f > 0). Let d = Q(log %) and w > % Then,
for fixedi € [n], fi < fi and Pr[f; > fi + €||f]]1] < 0.

We remark that unlike Misra-Gries, CountMin is overestimating the frequency of items. The items are
not stored, they have to be accessed by querying CountMin to find their frequency estimate. It is a more
robust algorithm as it handles deletions (A; = —1) too, and the space complexity is O(e ! log(1/5) logm)
bits.

Proof. Let’s define Zy = C[¢, hy(i)] the value of the counter in row ¢ that i is being hashed to. Then

) . 1
ElZ] = fi+ Z Prihe(j) = he(i))fj = fi + Z i
i#] JF
This last equality comes from the pairwise independence of hy (the probability of a collision between
two items is 1/w). Since »,,; f; < [|f|[1 and choosing € > 2/w, E[Z,] < €| f[|1/2. Applying Markov’s
inequality, Pr[Z; — f; >]| f]|1] < 1/2, and since d hash functions are independent,

Prmin Z, > fi +el| f|\] < Pr[N\ Ze> fi+ellfl] <270 <6
Leld] teld]

O]

If we set § = 1/n?, for every i € [n], Pr[fi > f; + el|f]l1] < n~2. Applying a union bound on all
elements, with probability at least 1 — 1/n, for alli € [n], fi < fi + || f]|1.

2.2 CountMin as a Linear Sketch

To prove that Count-Min is a linear sketch, we must show that the sketch vector it produces can be obtained
by multiplying a fixed sketch matrix by the input’s frequency vector. Specifically, a hash function A that
maps a universe of n items to w buckets corresponds to a w X n binary matrix, let’s call it I1. Each column
1 of this matrix represents an item from the universe. The column contains exactly one non-zero entry,
a ‘1’, at the row corresponding to the bucket the item is mapped to. In other words, the entry II;; = 1 if
h(i) = j, and is 0 otherwise. When this matrix II is multiplied by the frequency vector f, the result is a
vector of size w representing the counters in the hash buckets. The example in Figure 1-(a) illustrates this
for a single hash function.

The CountMin sketch uses d independent hash functions, hy, ..., hg, each mapping from [n] to [w].
Each of these functions can be represented by its own w X n matrix, Iy, ..., II;. The entire CountMin
data structure can be viewed as a single, larger matrix, Il), formed by vertically concatenating (stacking)
these d individual hash matrices.

IT;
11y
ey =

g
The full sketch is then the product of this large (d - w) X n matrix and the frequency vector f. The resulting

vector of size d - w is the “flattened” d x w table of counters. Figure 1-(b) provides a perfect visual of this
concatenation.

CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 7 09-16-2025
fi
1 fo fa
(@ HY €{0,1}*° 11 f3 f2t fs
1 1 Ja fi+fs
f5
_ 1 - _
1 1 fo+ f
1 1 fi+fs
HW 1 fo fit+tfs
(b) R= |H®| €{0,1}9%5 1 1 f3 fot fa
H®) 1 fa I3
1 1 I5 i+ fo
1 1 J3+ fa
| L /5 i

Figure 1: An illustration of the CountMin sketch as a linear projection. (a) A single hash function (d =
1,w = 3) represented by a 3 x 5 matrix. (b) A full Count-Min sketch (d = 3, w = 3) represented by a single
9 x 5 matrix formed by vertically stacking the three individual hash matrices.

References

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min sketch

and its applications. Journal of Algorithms, 55(1):58-75, 2005.

Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming, 2(2):143-152,

1982.

	Misra-Gries Algorithm
	Sketching-Based Approach: Hashing Ideas
	CountMin Sketch
	CountMin as a Linear Sketch

