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1 F2 Estimation Problem

In the previous lecture, we studied a general method to compute the k-th moment Fk of a given stream.
We recall that the generic AMS sampler for F2 gives us a (1± ε) - estimation in O(

√
n

ϵ2
) space.

In this lecture, we focus our attention to the case where k = 2. Formally the problem can be stated
as, given a stream E = (e1, e2, . . . , eN ) where ei ∈ [n], 1 ≤ i ≤ N with f = (f1, f2, . . . , fn) denoting the
frequencies of each item j ∈ [n]. We also look to improve on the generic AMS estimator.

Optional Reading: note on k-wise independence

Definition 1.1 (k-wise Independence). A set of random variables Y1, Y2, . . . , Yn is said to be k-wise
independent if for any subset of k distinct indices I = {i1, i2, . . . , ik} ⊆ [n], and any corresponding
values y1, y2, . . . , yk, we have,

Pr(Yi1 = y1, Yi2 = y2, . . . , Yik = yk) =

k∏
j=1

Pr(Yij = yj)

In essence, any subset of k variables behaves as if they were fully independent. We note that k wise
independence implies j wise independence for j < k.

Example 1.2. Consider flipping two fair coins. Let the events be:

• A: The first coin is heads, Pr(A) = 1/2.

• B: The second coin is heads, Pr(B) = 1/2.

• C: The two coins show different outcomes, Pr(C) = 1/2.

We claim that these events are pairwise (2-wise) independent.

To verify this we can simply check that, Pr(A ∩ B) = 1/4 = Pr(A) Pr(B), Pr(A ∩ C) = 1/4 =
Pr(A) Pr(C) and Pr(B ∩ C) = Pr(B) Pr(C) = 1/4. However, they are not 3-wise independent,
because Pr(A∩B ∩C) = 0, but Pr(A) Pr(B) Pr(C) = 1/8. Alternatively, one can also verify that
Pr(C|A) = Pr(C) and a similar equality holds for the other pairs.

2 AMS Estimator

In their seminal paper, Alon et al. [1996] proposed the efficient AMS-F2 estimation algorithm as described
below.
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Algorithm 1 AMS-Sample (Stream)
1: let h : [n]→ {−1, 1} be chosen from a 4-wise independent hash familyH
2: z ← 0
3: for each item ei in the stream do
4: z ← z + h(ei)

5: return z2

We must first show that the estimator z2 is unbiased. But first, let us define the set of random variables
Y1, . . . , Yn, where Yi = h(ei) and by construction of the hash function is chosen uniformly from {−1, 1}.
We require these variables to be 4-wise independent. A simple calculation reveals the following identities,

• E[Yi] = (−1) · 12 + (1) · 12 = 0.

• E[Y 2
i ] = (−1)2 · 12 + (1)2 · 12 = 1.

• For i ̸= j, by pairwise independence, E[YiYj ] = E[Yi]E[Yj ] = 0.

The AMS estimator is the random variable Z =
∑n

i=1 fi · Yi. In the streaming context, we initialize a
counter z = 0. For each item ej in the stream, we update z ← z + Yej . The final value of z is our random
variable Z . The estimate for F2 is Z2.

Lemma 2.1. Z2 is an unbiased estimator for F2.

Proof.

E[Z2] = E

( n∑
i=1

fiYi

)2
 = E

 n∑
i=1

f2
i Y

2
i +

n∑
i=1

n∑
j=1
j ̸=i

fifjYiYj


=

n∑
i=1

f2
i E[Y 2

i ] +

n∑
i=1

n∑
j=1
j ̸=i

fifjE[YiYj ] (by linearity of expectation)

=
n∑

i=1

f2
i · (1) +

n∑
i=1

n∑
j=1
j ̸=i

fifj · (0) =
n∑

i=1

f2
i = F2

Thus, Z2 is an unbiased estimator for F2.

To analyze the quality of the estimator, we need to bound the variance of Z2 too.

Lemma 2.2. Var[Z2] ≤ 2F 2
2 .

Proof. Var[Z2] = E[Z4]− (E[Z2])2. We already know E[Z2] = F2. Now we compute E[Z4].

E[Z4] = E

( n∑
i=1

fiYi

)4
 =

∑
i,j,k,l∈[n]

fifjfkflE[YiYjYkYl]

This is where 4-wise independence is crucial. For the term E[YiYjYkYl], if any index appears an odd number
of times (e.g., just once), the expectation is 0. To see this, suppose i is such that from i ̸= j, k, l, then
E[YiYjYkYl] = E[Yi]E[YjYkYl] = 0 from what we computed earlier. The non-zero terms arise only when
each index appears an even number of times. This leads to two possibilities,
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1. i = j = k = l: Terms are of the form f4
i E[Y 4

i ] = f4
i · 1 = f4

i . The sum of these is
∑

f4
i = F4.

2. Indices appear in two pairs, e.g., i = j, k = l with i ̸= k: Terms are of the form f2
i f

2
kE[Y 2

i Y
2
k ] =

f2
i f

2
kE[Y 2

i ]E[Y 2
k ] = f2

i f
2
k . There are 3

(
n
2

)
such distinct terms. Thus, the sum containing terms of

this form can be written as 6
∑

i<j f
2
i f

2
j .

So this leads to the equation, E[Z4] =
∑n

i=1 f
4
i + 6

∑
i<j f

2
i f

2
j . We also have the equality,

(F2)
2 =

(∑
f2
i

)2
=
∑

f4
i + 2

∑
i<j

f2
i f

2
j .

The variance of Z2 can now be computed as follows,

Var[Z2] = E[Z4]− (E[Z2])2 =

∑ f4
i + 6

∑
i<j

f2
i f

2
j

− (∑ f2
i

)2

=

∑ f4
i + 6

∑
i<j

f2
i f

2
j

−
∑ f4

i + 2
∑
i<j

f2
i f

2
j


= 4

∑
i<j

f2
i f

2
j ≤ 2

(∑
f2
i

)2
= 2F 2

2

Finally, we get the following bound on the variance of Z2, Var[Z2] ≤ 2F 2
2 .

2.1 Achieving an (ε, δ)-Approximation

Since the variance Var[Z2] ≤ 2F 2
2 is large, a single estimator Z2 is not reliable. We improve its accuracy

using the usual averaging and median trick,

1. Averaging: Run k = O(1/ε2) independent copies of the algorithm to get estimators X1, . . . , Xk.
Let X̄ = 1

k

∑
Xi. By Chebyshev’s inequality, this average provides an (ε, 1/4)-relative estimate.

2. Median Trick: To boost the success probability, run m = O(log(1/δ)) parallel groups of averaged
estimators. The final estimate is the median of the results from these m groups. This gives an
(ε, δ)-relative estimate.

The total space required is O( 1
ε2

log 1
δ log n) to store the counters and the description of the hash functions.

2.2 Negative updates

So far the examples only consider streams where elements are being inserted into the stream. However, in
some practical settings we might have applications where the frequency of elements may be reduced (or even
made negative) as we pass through the stream. Some examples include, Amazon inventory management
and bank balances. A fundamental difference in these two applications is that bank balances can be negative
(in cases of overdraft) however, inventory cannot fall below 0.
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3 Linear Sketching

Definition 3.1 (Linear Sketch). A sketch is a small summary of a data stream (or more generally a large
scale data). A sketch is linear if the sketch of a concatenated stream can be computed from the sketches of
the individual streams as shown below,

sketch(S1 ◦ S2) = sketch(S1) + sketch(S2)

In particular, linear sketches are of form

sketch(S) = Π · S,

where Π is a k × n matrix for some small k (ideally, k ≪ n).
For example, the described AMS algorithm provides a linear sketch for F2 estimation. The sketch is

the vector of counters z = (z1, . . . , zk)
⊤, where each zj is an independent AMS estimator. The sketch

matrix Π has entries Πji = hj(i), where hj is the 4-wise independent hash function for the j-th estimator.
Linear sketches are powerful because they naturally handle dynamic streams, where items can be inserted
or deleted (negative updates).

3.1 The AMS Algorithm as a Linear Sketch

The full AMS algorithm, incorporating averaging and the median trick to achieve an (ϵ, δ)-approximation,
can be formalized as a single linear sketch.

Algorithm 2 AMS-F2 as linear sketching algorithm
1: let m = k × t
2: Let Π be a m× n matrix with entries in {−1, 1}

1. rows are independent

2. elements of each row are 4-wise independent

3: z ← 0 is a m× 1 vector
4: for each item ij do
5: z ← z +M(eij )

6: return z (the sketch of the stream)

After processing the entire stream, the sketch vector z holds the values of m different estimators. To
get the final, robust estimate for F2, we perform the averaging and median steps on the components of z.
This gives us the final estimate,

F̂2 = mediang=1,...,k

1

t

∑
j∈Gg

z2j


where Gg are the partitions of m rows (m = tk).

Takeaway 3.1

The AMS algorithm can be formulated as a linear sketching algorithm. We note that the sketch z
derived from the AMS algorithm is linear however the final estimator F̂2 is a nonlinear function of z.
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4 Heavy Hitters

The heavy hitters problem is about finding the most frequent items in a stream. This is related to the F∞
moment, but since F∞ is hard to estimate, we aim for slightly different guarantees. Given a stream and
a parameter k, the goal is to find all items i such that their frequency fi exceeds a certain threshold, for
example fi > m/k, where m is the total length of the stream.

4.1 Finding the Majority Element

A simple version of this problem is finding an item that appears more than m/2 times. The Boyer-Moore
Voting algorithm solves this using constant space.

Algorithm 3 Boyer-Moore Voting algorithm
1: Initialize a counter c← 0 and a stored item s← null.
2: For each item ej in the stream:

• If ej = s, increment the counter: c← c+ 1.

• Else if c = 0, set s← ej and c← 1.

• Else, decrement the counter: c← c− 1.

3: Return s as the candidate majority item.

Lemma 4.1. If there is a majority item i (with frequency fi > m/2), the Boyer-Moore algorithm will return
s = i.

Proof sketch. Consider the true majority item, i. Each time we see an item that is not i, its effect is to
potentially decrement the counter c. In the worst case, every non-i item pairs up with an instance of i to
decrement the counter. Since there are more occurrences of i than all other items combined, the counter
for i can never be zeroed out by the non-i items once s is set to i.

Note: If no majority item exists, the algorithm will still return a candidate. A second pass over the data
is required to verify if the returned candidate s is truly a majority element.
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