Lecture 5: Frequency Moments and AMS Sampler

09-09-2025 Lecturer: Ali Vakilian | Scribe: Caleb McIrvin | Editor: Ali Vakilian

1 Frequency Moment Generalization

While our main focus is on estimating frequency moments (e.g., $F_k = \sum_i f_i^k$), it is important to recognize that many of the underlying sampling techniques can be extended to estimate more general functions of a stream's frequency vector, f. This is particularly true for functions that can be expressed as a sum over the items in the universe, where each term in the sum depends only on the frequency of a single item. Such functions are known as *separable sum functions* and have the general form: $g(f) = \sum_{i=1}^{U} \phi(f_i)$, where U is the size of the universe and ϕ is some function applied to the frequency of each item, where $\phi(0) = 0$. The k-th frequency moment is a classic example of a separable sum function, where $\phi(z) = z^k$.

2 F_2 estimation

This lecture introduces sampling-based techniques for estimating frequency moments, $F_k = \sum_{i=1}^n f_i^k$, for $k \geq 2$. These moments are fundamental statistics that capture the shape of a data distribution and are a core component in many machine learning applications. For example, the second moment, F_2 , is central to computing Euclidean distances and related error measures like MSE. Exact computation is costly because it requires maintaining the full frequency vector $(f_i)_{i \in [n]}$. We will see that by sampling a few items in a carefully manner and tracking only a small subset of frequencies, we can obtain accurate approximations to F_k with sublinear space and per-update time.

2.1 Warm-up: Simple Algorithm via Uniform Sampling

Intuitively, a simple estimator of F_k can be obtained by storing the frequency of a single randomly sampled element and using the result to estimate the k-th frequency moment. While this estimator is unbiased, it suffers from high variance, as we will see.

Algorithm 1 Uniform Sampling Approach

```
1: sample i \in [n] uniformly at random

2: f_i \leftarrow 0

3: while an item e arrives in stream do

4: if e = i then

5: f_i \leftarrow f_i + 1

6: return n \cdot f_k^i.
```

The resulting estimator can be formulated as $Z = nf_i^k$. As mentioned previously, this estimator is unbiased. To see this, we take the expectation $\mathbb{E}[Z]$ and note that it is equivalent to the frequency moment F_k , as follows: $\mathbb{E}[Z] = \frac{1}{n} \sum_{i \in [n]} nf_i^k = \sum_{i \in [n]} f_i^k = F_k$.

 F_k , as follows: $\mathbb{E}[Z] = \frac{1}{n} \sum_{i \in [n]} n f_i^k = \sum_{i \in [n]} f_i^k = F_k$. As only f_i is stored, this algorithm uses $O(\log n)$ bits of space, which is efficient. However, the variance of this estimator is quite large.

Lemma 2.1.
$$Var[Z] = nF_{2k} - F_k^2$$
.

Proof. Compute the second moment:
$$\mathbb{E}[Z^2] = \mathbb{E}\left[n^2 f_i^{2k}\right] = n^2 \cdot \frac{1}{n} \sum_{i=1}^n f_i^{2k} = nF_{2k}$$
. Therefore $\operatorname{Var}[Z] = \mathbb{E}[Z^2] - \left(\mathbb{E}[Z]\right)^2 = nF_{2k} - F_k^2$.

Implication for averaging (why this is not useful). Let $\bar{Z} = \frac{1}{t} \sum_{\ell=1}^t Z^{(\ell)}$ be the average of t independent copies (using independent sampled indices). Then $\mathrm{Var}[\bar{Z}] = \frac{1}{t} \, \mathrm{Var}[Z] = \frac{1}{t} \, (nF_{2k} - F_k^2)$. In the worst case (e.g., when all mass is on a single coordinate), we have $F_k = |f_{i^\star}|^k$ and $F_{2k} = |f_{i^\star}|^{2k}$, hence

$$\frac{\text{Var}[Z]}{F_k^2} = \frac{nF_{2k} - F_k^2}{F_k^2} = n - 1.$$

By Chebyshev's inequality, to get a constant-probability constant-factor approximation (e.g., relative error $\leq 1/2$ with probability $\geq 2/3$), one needs $t \geq \Theta\left(\frac{\mathrm{Var}[Z]}{F_k^2}\right) = \Theta(n)$. Thus, naive averaging requires $\Theta(n)$ independent repetitions, which defeats the purpose: it is comparable to tracking the entire frequency vector. Consequently, this simple uniform-coordinate sampling approach has too large a variance to be useful for $(1 \pm \varepsilon)$ -approximation, motivating more sophisticated sampling approaches that achieve small variance with *sublinear* space.

2.2 Importance Sampling Algorithm

How can we reduce the estimator's variance without increasing the space? Previously we sampled an index uniformly from [n], so the chance of selecting item i did not reflect how often it appears in the stream. This is a poor strategy for estimating F_k (for $k \geq 2$), which is dominated by high-frequency coordinates. A natural fix is *weighted* sampling: choose item i with probability proportional to its frequency f_i . In this part, we show a streaming implementation that uses small sketches and achieves much smaller variance at essentially the same space cost. Algorithmically, this becomes

Algorithm 2 Importance Sampling Approach

- 1: sample $i \in [n] \propto \frac{f_i}{F_i}$
- $f_i \leftarrow 0$
- 3: **while** an item e arrives in stream **do**
- 4: **if** e = i then
- 5: $f_i \leftarrow f_i + 1$
- 6: **return** $F_1 \cdot f_k^i$.

Calculating the expectation under this sampling method, we see that this estimator is also unbiased.

$$\mathbb{E}[Z] = \sum_{i \in [n]} \frac{f_i}{F_1} (F_1 f_i^{k-1}) = \sum_{i \in [n]} f_i^k = F_k$$

To see that the variance is well-bounded, we calculate

Lemma 2.2. For $k \ge 2$, $Var[Z] \le n^{1-\frac{1}{k}} F_k^2$.

Proof. As $Var[Z] \leq \mathbb{E}[Z^2]$, it is sufficient to prove the stronger inequality $\mathbb{E}[Z^2] \leq n^{1-\frac{1}{k}}F_k^2$.

$$\mathbb{E}[Z^2] = \sum_{i=1}^n \left(F_1 f_i^{k-1}\right)^2 \cdot \Pr[\text{sample is } i] = \sum_{i=1}^n \left(F_1^2 f_i^{2k-2}\right) \cdot \frac{f_i}{F_1} = F_1 \sum_{i=1}^n f_i^{2k-1} = F_1 F_{2k-1}$$

Our task is to prove that $F_1 F_{2k-1} \leq n^{1-\frac{1}{k}} F_k^2$.

Claim 2.3. For any value of $k \ge 1$, $F_1 F_{2k-1} \le n^{1-\frac{1}{k}} F_k^2$.

Proof. We use three standard inequalities that relate different frequency moments. For any frequency vector *f*:

- (i) For any $p \ge q \ge 1$, it holds that $F_p \le F_q \cdot (\max_j f_j)^{p-q}$.
- (ii) The maximum frequency is bounded by the k-th moment: $\max_j f_j \leq \left(\sum_i f_i^k\right)^{1/k} = F_k^{1/k}$.
- (iii) By Hölder's inequality, the L_1 and L_k norms are related: $F_1 \leq n^{1-1/k} F_k^{1/k}$.

We can now bound the term $\mathbb{E}[Z^2]$ by applying these inequalities in sequence.

$$\begin{split} \mathbb{E}[Z^2] &= F_1 F_{2k-1} \\ &\leq F_1 \cdot \left(F_k \cdot (\max_j f_j)^{(2k-1)-k} \right) & \text{by Inequality (i)} \\ &= F_1 F_k (\max_j f_j)^{k-1} \\ &\leq F_1 F_k \left(F_k^{1/k} \right)^{k-1} & \text{by Inequality (ii)} \\ &= F_1 F_k F_k^{(k-1)/k} = F_1 F_k^{(2k-1)/k} \\ &\leq \left(n^{1-1/k} F_k^{1/k} \right) \cdot F_k^{(2k-1)/k} & \text{by Inequality (iii)} \\ &= n^{1-1/k} F_k^{(1+2k-1)/k} = n^{1-1/k} F_k^2 \end{split}$$

We have shown that $\mathbb{E}[Z^2] \leq n^{1-\frac{1}{k}} F_k^2$. Since $\mathrm{Var}(Z) < \mathbb{E}[Z^2]$, the lemma holds. \square

This variance bound can be used to achieve a $(1\pm\varepsilon)$ -relative estimate with constant success probability. By averaging $m=O(\varepsilon^{-2}n^{1-1/k})$ independent copies of the base estimator Z, the variance of the resulting average estimator, $Z_{\rm avg}$, is reduced. An application of Chebyshev's inequality shows this is sufficient for a constant probability guarantee:

$$\Pr\left[|Z_{\text{avg}} - F_k| > \varepsilon F_k\right] \le \frac{\operatorname{Var}[Z_{\text{avg}}]}{(\varepsilon F_k)^2} \le \frac{n^{1-1/k} F_k^2/m}{\varepsilon^2 F_k^2} = O(1)$$

Since we are tracking $O(\varepsilon^{-2}n^{1-1/k})$ estimators, each requiring polylogarithmic space, the overall space complexity becomes $\widetilde{O}(\varepsilon^{-2}n^{1-1/k})$.

While this importance sampling estimator has low variance, it introduces a significant challenge: it requires sampling an item i with a probability, f_i/F_1 , that depends on the final frequencies, which are unknown at the start of the stream. This creates a classic "chicken-and-egg" problem, as the algorithm needs a sample at the beginning based on information that is only available at the end. A standard method like Weighted Reservoir Sampling might seem like a solution, as it can produce a sample with the desired weighted probabilities. However, it can only guarantee this property for the sample available after the entire stream has been processed.

2.3 AMS Sampling

The uniform random sampling nature of reservoir sampling enables it to be used as a subroutine in another sampling method, *AMS sampling* [Alon et al., 1996]. We will see that AMS sampling results in an unbiased, sublinear variance estimator of the frequency moment given a single pass over the stream.

Algorithm 3 AMS-Sample (Stream)

```
1: M \leftarrow 0, C \leftarrow 0, e \leftarrow \bot
 2: for each item e_t in the stream do
         M \leftarrow M + 1
         Maintain R_t via reservoir sampling
 4:
         if R_t is kept the same as R_{t-1} then
 5:
             if e_t = e then
 6:
                  C \leftarrow C + 1
 7:
         else
 8:
 9:
             e \leftarrow e_t
11: return M(C^k - (C-1)^k)
```

The algorithm uses three variables: e stores the value of the sampled item, R_t records the stream index where it was sampled, and C counts all subsequent occurrences of e after that index.

Lemma 2.4. The estimate Z returned by AMS-Sample is unbiased.

Proof. First note that by the guarantee of the Reservoir sampling, for every $i \in [n]$, $\Pr[e=i] = f_i/F_1$. Let t be the last time the reservoir sampling gets updated, i.e. $e=e_t$ and $R_M=t$. Consider an item $i \in [n]$. If we know that the item sampled is i (i.e., e=i), then R_M is uniformly distributed with probability $\frac{1}{f_i}$ among all possible occurrences of i in the stream. Again, we are using the fact that Reservoir sampling, pick any index in the stream uniformly at random; i.e., with probability 1/M. As a result, the value of C is uniformly sampled from $\{1,\ldots,f_e\}$.

$$\begin{split} \mathbb{E}[Z] &= \sum_{i=1}^n \Pr\left[e=i\right] \sum_{t=1}^{f_i} \Pr\left[C=t\right] \left(M(t^k - (t-1)^k) \right) \\ &= \sum_{i=1}^n \frac{f_i}{F_1} \sum_{t=1}^{f_i} \frac{1}{f_i} \left(F_1(t^k - (t-1)^k) \right) = \sum_{i=1}^n \sum_{t=1}^{f_i} (t^k - (t-1)^k) \\ &= \sum_{i=1}^n f_i^k \\ &= F_k \end{split}$$
 \rhd The inner sum telescopes to f_i^k

Next, we bound the variance of the estimate Z.

Theorem 2.5. Var $[Z] \leq kn^{1-\frac{1}{k}}(F_k)^2$.

Proof. We provide a stronger upperbound by showing an upperbound for $\mathbb{E}[Z^2]$.

$$\begin{split} \mathbb{E}[Z^2] &= \sum_{i=1}^n \Pr\left[e = i\right] \sum_{t=1}^{f_i} \Pr\left[C = t\right] M^2 \left(t^k - (t-1)^k\right)^2 \\ &= \sum_{i=1}^n \frac{f_i}{F_i} \sum_{t=1}^{f_i} \frac{1}{f_i} F_1^2 (t^k - t^{k-1})^2 = F_1 \sum_{i=1}^n \sum_{t=1}^{f_i} (t^k - (t-1)^k)^2 \\ &\leq F_1 \sum_{i=1}^n \sum_{t=1}^{f_i} (t^k - (t-1)^k) (kt^{k-1}) \\ &\leq kF_1 \sum_{i=1}^n f_i^{k-1} \sum_{t=1}^{f_i} (t^k - (t-1)^k) \\ &\leq kF_1 \sum_{i=1}^n f_i^{k-1} f_i^k \\ &\leq kF_1 F_{2k-1} \\ &\leq k \cdot n^{1-\frac{1}{k}} \cdot (F_k)^2 \\ & \rhd \text{ by Claim 2.3} \end{split}$$

By averaging $O(\varepsilon^{-2}n^{1-1/k})$ independent estimators, Chebyshev's inequality guarantees a $(1 \pm \epsilon)$ -relative estimate for F_k with constant probability. The space complexity of this approach, $\widetilde{O}(n^{1-1/k})$, is known to be essentially almost optimal for any k>2 [Bar-Yossef et al., 2004, Chakrabarti et al., 2003]. This highlights a key distinction for the second moment, as we will see in a future lecture where we describe a significantly improved, polylogarithmic-space estimator for F_2 .

References

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pages 20–29, 1996.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. *Journal of Computer and System Sciences*, 68(4):813–844, 2004. doi: 10.1016/j.jcss.2003.11.006.

Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-pass space complexity of approximating frequency moments. In *Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 367–376, 2003. doi: 10.1109/SFCS.2003.1238221.