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1 Frequency Moment Generalization

While our main focus is on estimating frequency moments (e.g., Fj, = >, fF), it is important to recognize
that many of the underlying sampling techniques can be extended to estimate more general functions of a
stream’s frequency vector, f. This is particularly true for functions that can be expressed as a sum over the
items in the universe, where each term in the sum depends only on the frequency of a single item. Such
functions are known as separable sum functions and have the general form: g(f) = S0, 6(f;), where U is
the size of the universe and ¢ is some function applied to the frequency of each item, where ¢(0) = 0. The

k-th frequency moment is a classic example of a separable sum function, where ¢(z) = z*.

2 F5 estimation

This lecture introduces sampling-based techniques for estimating frequency moments, Fj, = > " | flk , for
k > 2. These moments are fundamental statistics that capture the shape of a data distribution and are a
core component in many machine learning applications. For example, the second moment, Fb, is central to
computing Euclidean distances and related error measures like MSE. Exact computation is costly because
it requires maintaining the full frequency vector (f;);c[,). We will see that by sampling a few items in a
carefully manner and tracking only a small subset of frequencies, we can obtain accurate approximations
to F}, with sublinear space and per-update time.

2.1 Warm-up: Simple Algorithm via Uniform Sampling

Intuitively, a simple estimator of F}, can be obtained by storing the frequency of a single randomly sampled
element and using the result to estimate the k-th frequency moment. While this estimator is unbiased, it
suffers from high variance, as we will see.

Algorithm 1 Uniform Sampling Approach

: sample ¢ € [n] uniformly at random
fi<0
while an item e arrives in stream do
if ¢ = i then
Jicfi+1
returnn - fi.

AN A A

The resulting estimator can be formulated as Z = nfF. As mentioned previously, this estimator is
unbiased. To see this, we take the expectation E[Z] and note that it is equivalent to the frequency moment

Fy,, as follows: E[Z] = - Zze[n] nfk = = icn] k= F.
As only f; is stored, this algorithm uses O(log n) bits of space, which is efficient. However, the variance
of this estimator is quite large.

Lemma 2.1. Var[Z] = nFy, — F7.
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Proof. Compute the second moment: E[Z?] = E [n? f*] = n?. L 3" | f2F = nFyy. Therefore Var[Z] =

E[2?] — (B[Z])® = nFy, — F2. 0
Implication for averaging (why this is not useful). Let Z = % ZZ: %) be the average of ¢ inde-
pendent copies (using independent sampled indices). Then Var[Z] = 1 Va r[Z ] = }(nFor — F?). In the
worst case (e.g., when all mass is on a single coordinate), we have Fj, = |fi+|* and oy, = | fir ]%, hence

Var[Z]  nFy, — F}

= =n—1.
FE Fp

By Chebyshev’s inequality, to get a constant-probability constant-factor approximation (e.g., relative error
< 1/2 with probability > 2/3), one needs t > © <Va;[2Z]
independent repetitions, which defeats the purpose: it is comparable to tracking the entire frequency vector.
Consequently, this simple uniform-coordinate sampling approach has too large a variance to be useful for
(1 + €)-approximation, motivating more sophisticated sampling approaches that achieve small variance

with sublinear space.

> = O(n). Thus, naive averaging requires ©(n)

2.2 Importance Sampling Algorithm

How can we reduce the estimator’s variance without increasing the space? Previously we sampled an index
uniformly from [n], so the chance of selecting item ¢ did not reflect how often it appears in the stream. This
is a poor strategy for estimating Fj, (for £ > 2), which is dominated by high-frequency coordinates. A
natural fix is weighted sampling: choose item ¢ with probability proportional to its frequency f;. In this
part, we show a streaming implementation that uses small sketches and achieves much smaller variance at
essentially the same space cost. Algorithmically, this becomes

Algorithm 2 Importance Sampling Approach
Ji
F;

1: sample i € [n]
2. fi <0

3: while an item e arrives in stream do
4: if ¢ = i then

5 fi fit1

6: return F; - f,i.

Calculating the expectation under this sampling method, we see that this estimator is also unbiased.
f i k— 1 k
B2)= Y L mgi = Y gt
ze[n] S TL]

To see that the variance is well-bounded, we calculate

Lemma 2.2. Fork > 2, Var[Z] < nlféF,?.

Proof. As Var[Z] < E[Z?, it is sufficient to prove the stronger inequality E[Z?] < nl_sz

2 - k—1)2 . o2\ Ji 2k—1
E[Z*] = Z; (Flfi > - Pr[sample is i] = Z} (Flf ) = =F z;f = F1 Py
1= K2 K3

1
Our task is to prove that F Fo, 1 < nl_EFg.
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Claim 2.3. For any value of &k > 1, F1 Fo,_1 < nlfiF,f.

Proof. We use three standard inequalities that relate different frequency moments. For any frequency vector

f:
(i) Forany p > ¢ > 1, it holds that F,, < F}, - (max; f;)P~%.

(ii) The maximum frequency is bounded by the k-th moment: max; f; < (Zl fik) Vk _ Fkl/k.

(iii) By Holder’s inequality, the Ly and L norms are related: F; < nl_l/kal/k.
We can now bound the term E[Z?2] by applying these inequalities in sequence.
E[Z?] = Fi For_,
< F;- (Fk . (mjax fj)(%l)k) by Inequality (i)

= Fle(mjax fj)k_1

1/k\ k-1 o
< FiFy, (F 2 ) by Inequality (ii)
_ FleF]gk—n/k _ FlFIEQk—l)/k:
< (nl_l/kal/k) . F,g%_l)/k by Inequality (iii)

_ nl_l/]ka(:l—l-Qk—l)/k _ nl—l/kFl?
O

We have shown that E[Z?] < nl_%FkQ. Since Var(Z) < E[Z?], the lemma holds. O

This variance bound can be used to achieve a (1 £ ¢)-relative estimate with constant success probability.
By averaging m = O(&?*in*l/ *) independent copies of the base estimator Z, the variance of the resulting
average estimator, Z,yg, is reduced. An application of Chebyshev’s inequality shows this is sufficient for a
constant probability guarantee:

Var[Zay,] < n'=VEF2Z /m _ o)
(eFy)? e2F}?

Pr “Zavg - Fk| > 5Fk} <

Since we are tracking O(s~2n'~1/¥) estimators, each requiring polylogarithmic space, the overall space
complexity becomes O(s~2n!~1/k).

While this importance sampling estimator has low variance, it introduces a significant challenge: it
requires sampling an item ¢ with a probability, f;/F}, that depends on the final frequencies, which are
unknown at the start of the stream. This creates a classic “chicken-and-egg” problem, as the algorithm
needs a sample at the beginning based on information that is only available at the end. A standard method
like Weighted Reservoir Sampling might seem like a solution, as it can produce a sample with the desired
weighted probabilities. However, it can only guarantee this property for the sample available after the
entire stream has been processed.



CS 6104/5914: ALGORITHMS FOR BiG DATA Lecture 5 09-09-2025

2.3 AMS Sampling

The uniform random sampling nature of reservoir sampling enables it to be used as a subroutine in another
sampling method, AMS sampling [Alon et al., 1996]. We will see that AMS sampling results in an unbiased,
sublinear variance estimator of the frequency moment given a single pass over the stream.

Algorithm 3 AMS-Sample (Stream)

M+ 0,C<«+0,e+ L

2: for each item e; in the stream do

3: M—M+1
Maintain R; via reservoir sampling
if R; is kept the same as R;_; then

if e; = e then
C+—C+1

else
€ < €t
10: C+1
11: return M (C* — (C — 1)¥)

R O O A~

The algorithm uses three variables: e stores the value of the sampled item, R; records the stream index
where it was sampled, and C counts all subsequent occurrences of e after that index.

Lemma 2.4. The estimate Z returned by AMS-Sample is unbiased.

Proof. First note that by the guarantee of the Reservoir sampling, for every i € [n], Prle = i] = f;/F}. Let
t be the last time the reservoir sampling gets updated, i.e. ¢ = e; and R); = t. Consider an item i € [n].
If we know that the item sampled is ¢ (i.e., e = %), then R is uniformly distributed with probability %
among all possible occurrences of ¢ in the stream. Again, we are using the fact that Reservoir sampling,
pick any index in the stream uniformly at random; i.e., with probability 1 /M. As a result, the value of C' is
uniformly sampled from {1, ..., f.}.

n fi
E[Z] =) Prle=i) Pr[C=1] (M(tk - 1)‘“))

n i nJfi
fi 1
=2 w2 g (AU 1) =30 - -1
. i=1 t=1
= Z £ t> The inner sum telescopes to f*
=1

Next, we bound the variance of the estimate Z.

Theorem 2.5. Var[Z] < knl_%(Fk)z.
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Proof. We provide a stronger upperbound by showing an upperbound for E[Z2].

:zn:Pr[e ZPr _tM2(t’f (t—1)’“)2
Zfzzfpl ey Flzz (t - 1))

i=1 t=1

< F Z Z (t — 1)F)(kt*1) > Mean Value Theorem
i=1 t=1

<kF12f’“ IZ (= 1)")

< kFy Z ff_lfl-k > The inner sum telescopes to fzk
i=1
< kF1Fo

<k-n"%. (Fp)? > by Claim 2.3
U

By averaging O(¢~2n'~1/¥) independent estimators, Chebyshev’s inequality guarantees a (1 + ¢)-
relative estimate for F}, with constant probability. The space complexity of this approach, O(n!~1/*), is
known to be essentially almost optimal for any k > 2 [Bar-Yossef et al., 2004, Chakrabarti et al., 2003]. This
highlights a key distinction for the second moment, as we will see in a future lecture where we describe a
significantly improved, polylogarithmic-space estimator for F5.
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