
CS 6104/5914: Algorithms for Big Data Lecture 4 09-04-2025

Lecture 4: Frequency Moments Estimation
09-04-2025 Lecturer: Ali Vakilian | Scribe: Aryeh Keating | Editor: Ali Vakilian

1 Frequency Moments

While we have seen streaming methods for counting the total number of elements of streams in memory
limited settings, generalizations of this streaming problem are beneficial for a broader set of applications.

In order to generalize, we first consider the concept of k-th moments for applications: Given a large
data stream S = e1 . . . em, where items belong to {1, . . . , n}, for every i ∈ [n], we let fi denote the total
number of distinct indices j ∈ [m] such that ej = i and define for k ∈ R+ the k-th moment of the vector
f = (f1, . . . , fn) ∈ Zn

+ is given by:
Fk =

∑
j∈[n]

fk
j

It follows by considering the case where k ∈ {0, 1,∞}, F1 denotes the total length of the stream S, F0

denotes the total number of distinct items in the stream S, and F∞ denotes the maximum frequency of the
stream S, which is closely related to the heavy hitters problem (to be discussed in a future lecture). Hence
the moments {Fk}k≥0 provide a family of metrics to obtain information of interest of the stream S, that go
beyond the singular measure of stream length.

2 Estimation

Now that we have defined the notion of k-th moment of a data stream, we look toward methods of estimating
Fk for k ≥ 0 under the constraints of limit memory and only one pass of the stream.

Relative and Additive Approximation. In order to determine the accuracy of our approximations for
k-th moments of a stream, we denote two measures of approximation accuracy.

We say an algorithmA has a α-relative approximation to a non-negative function g over the stream S if∣∣∣∣A(S)g(S)
− 1

∣∣∣∣ ≤ α

and a (ϵ, δ)-relative approximation if Pr
[∣∣∣∣A(S)

g(S) − 1

∣∣∣∣ ≤ ϵ

]
≥ 1− δ.

We say an algorithmA has a α-additive approximation to a non-negative function g over the stream S if∣∣A(S)− g(S)
∣∣ ≤ α

and a (ϵ, δ)-additive approximation if Pr
[∣∣A(S)− g(S)

∣∣ ≤ ϵ
]
≥ 1− δ.

3 Distinct Element Problem (F0 Estimation)

Now equipped with measures of algorithm accuracy, we focus our attention to estimation of F0 of a large
stream S given limited memory space. In other words, we look to estimate the number of unique item
within S.

1

CS 6104/5914: Algorithms for Big Data Lecture 4 09-04-2025

3.1 Applications and Baseline Solutions

Applications. Knowledge of the number of distinct elements of a stream is relevant in real-time tracking
of unique visitors of a website, estimation of the number of unique values in different columns for efficient
execution of queries relevant in database query planning, and in online advertisement for establishing the
count of unique people who view an advertisement.

Non-Streaming Solutions. While streaming is beneficial in most scenarios with memory limitations,
we consider alternative dictionary methods for estimation of F0 for reference. In the case we are counting
d distinct items from a stream of m elements, each belonging to {1, . . . , n), Binary Search Trees require
O(d) space and O(n log d) time, while Hashing requires O(d) space and O(n) time. Here we present a
basic dictionary based algorithm for counting the number of distinct elements of a stream:

Algorithm 1 Dictionary Based Distinct Elements
1: Initialize: Dictionary D ← ∅, Counter d← 0.
2: while an item e arrives in stream do
3: if e /∈ D then
4: Insert e into D.
5: d← d+ 1.
6: return d.

While this approach is suitable for small scale data streams, we wish find an alternative capable of
handling much larger streams that requires significantly less memory.

3.2 Idealized Flajolet-Martin Algorithm

One efficient estimation approach to the distinct element problem is given via the Flajolet-Martin Algorithm.
This algorithm utilizes a hash function h : [n]→ [m], wherem is typically polynomial in n. It only stores the
minimum hash value seen so far, mini∈[n] h(ei), and uses space complexity O(logm) = O(log(poly(n))) =
O(log n), disregarding hash function storage.

The idealized version, used for analysis, assumes the hash function maps elements to continuous values
in [0, 1].

Algorithm 2 Idealized Flajolet-Martin Algorithm
1: Initialize: Ideal hash function h : U → [0, 1], y ← 1.
2: while an item e enters stream do
3: y = min(y, h(e))

4: return d̂ = 1
y − 1.

3.3 Analysis of Idealized Estimator

We analyze the accuracy of estimations in the ideal case where our hash function maps the d distinct
elements to values chosen independently and uniformly at random from [0, 1].

Theorem 3.1. Suppose X1, . . . , Xd are random variables that are independent and uniformly distributed in
[0, 1], and let Y = mini∈[d]Xi. Then:

E[Y] =
1

d+ 1
and Var[Y] ≤ 1

(d+ 1)2

2

CS 6104/5914: Algorithms for Big Data Lecture 4 09-04-2025

Proof. First, calculate the Cumulative Distribution Function (CDF) for Y . For any t ∈ [0, 1]:

Pr[Y > t] = Pr[{X1 > t} ∧ · · · ∧ {Xd > t}] =
∏
i∈[d]

Pr[Xi > t] = (1− t)d

The CDF is Pr[Y ≤ t] = 1− (1− t)d. The Probability Density Function (PDF) is found by differentiation:
fY (t) =

d
dt(1− (1− t)d) = d(1− t)d−1.

Calculating E[Y]: We calculate the expectation by integrating t · fY (t). The integral can be solved using
a change of variables.

E[Y] =

∫ 1

0
t · fY (t)dt =

∫ 1

0
td(1− t)d−1dt

Let z = 1− t. This implies t = 1− z and dt = −dz. We update the integration bounds: when t = 0, z = 1;
when t = 1, z = 0.

E[Y] = d

∫ z=0

z=1
(1− z)zd−1(−dz)

= d

∫ 1

0
(1− z)zd−1dz (Flipping bounds changes sign)

= d

∫ 1

0
(zd−1 − zd)dz

= d

[
zd

d
− zd+1

d+ 1

]1
0

= d

((
1

d
− 1

d+ 1

)
− (0− 0)

)
= d

(
d+ 1− d

d(d+ 1)

)
=

1

d+ 1

Calculating Variance Bound: A similar calculation yields the second moment: E[Y 2] =
∫ 1
0 t2d(1−

t)d−1dt = 2
(d+1)(d+2) . Now, we calculate the variance:

Var[Y] = E[Y 2]− E[Y]2 =
2

(d+ 1)(d+ 2)
− 1

(d+ 1)2
=

2(d+ 1)− (d+ 2)

(d+ 1)2(d+ 2)
=

d

(d+ 1)2(d+ 2)

Since d < d+ 2, we have d
d+2 < 1. Therefore, Var[Y] < 1

(d+1)2
.

Concentration Analysis and Bias Remark The theorem shows that Y is a good estimator for 1/(d+1)
on average. However, we must check if the estimator for d, which is d̂ = 1/Y − 1, concentrates near d. In
particular, note that while E[Y] = 1/(d+ 1), the final estimator d̂ = 1/Y − 1 is not an unbiased estimator
for d. By Jensen’s Inequality, for a convex function g(x) = 1/x, we have E[g(Y)] > g(E[Y]). Therefore:

E[d̂] = E
[
1

Y
− 1

]
= E

[
1

Y

]
− 1 >

1

E[Y]
− 1 =

1

1/(d+ 1)
− 1 = (d+ 1)− 1 = d

The estimator systematically overestimates the true value d.
Back to the estimator Y , let’s apply Chebyshev’s Inequality to bound the concentration of Y around its

mean:

Pr[|Y − E[Y]| ≥ ϵE[Y]] ≤ Var[Y]

(ϵE[Y])2
≤ 1/(d+ 1)2

ϵ2(1/(d+ 1))2
=

1

ϵ2

3

CS 6104/5914: Algorithms for Big Data Lecture 4 09-04-2025

This concentration bound is too weak for our purpose of finding a good relative approximation for d. To
see why, consider what a good approximation requires. We want our final estimate d̂ to be within (1± ϵ′)
of d. Let’s analyze the failure condition. If Y deviates significantly from E[Y], say Y = (1 + ϵ)E[Y], then
the estimate d̂ becomes:

d̂ ∈
[

1

(1 + ϵ)E[Y]
− 1,

1

(1− ϵ)E[Y]
− 1

]
=

[
d+ 1

1 + ϵ
− 1,

d+ 1

1− ϵ
− 1

]
=

[
d− ϵ

1 + ϵ
,
d+ ϵ

1− ϵ

]
≈ [d(1− ϵ), d(1 + ϵ)]

The relative error in d̂ is roughly proportional to the relative error ϵ in Y . The Chebyshev bound
Pr[failure] ≤ 1/ϵ2 only provides a non-trivial probability guarantee (i.e., less than 1) when ϵ > 1. An error
factor ϵ > 1 (i.e., > 100% relative error) is far too large to be useful for approximation purposes. To achieve
a small relative error (e.g., ϵ = 0.1), the bound 1/ϵ2 = 100 provides no information. This high variance
necessitates techniques like averaging to improve concentration.

3.4 Improving Concentration via Averaging and Median Trick

As we have seen, the variance of a single estimator is too high for reliable approximation. We apply a
standard two-step technique to improve accuracy and confidence.

Step 1: Variance Reduction via Averaging To reduce variance, we run k independent copies of the
estimator in parallel. Let Y (1), . . . , Y (k) be the results from k independent hash functions. Define the
average estimator Yavg := 1

k

∑
i∈[k] Y

(i). The final estimate is given by 1
Yavg
− 1.

The expectation remains E[Yavg] =
1

d+1 , but the variance improves significantly: Var[Yavg] =
Var[Y]

k ≤
1

k(d+1)2
. Applying Chebyshev’s Inequality to the average:

Pr[|Yavg − E[Yavg]| ≥ ϵE[Yavg]] ≤
Var[Yavg]

(ϵE[Yavg])2
≤ 1/(k(d+ 1)2)

ϵ2/(d+ 1)2
=

1

kϵ2

By choosing k = O(1/ϵ2), we can achieve a constant success probability. For example, setting k = 1/ϵ2

gives a failure probability of at most ϵ2, but to guarantee failure probability ≤ 1/4, we set k = 4/ϵ2. This
provides an (ϵ, O(1))-relative estimator.

Step 2: Probability Amplification via Median Trick To amplify the success probability from constant
to 1− δ, we apply the median trick. We repeat the entire averaging process (from Step 1) ℓ = O(log(1/δ))
times and compute the median of the resulting ℓ estimates. This value is an (ϵ, δ)-relative estimator.

3.5 Practical Implementation Details

Implementing Hash Function. The assumption of an ideal hash function h : U → [0, 1] is not practical.
Instead, we use hash functions from a familyH where h : [n]→ [N] for some sufficiently large integer N .
For the analysis to hold, we do not need full independence, but rather a weaker condition called pairwise
independence.

A family H = {h : [n] → [m]} is pairwise-independent (or strongly 2-universal) if, for all distinct
x ̸= y ∈ [n] and all i, j ∈ [m]:

Pr
h∼H

[{h(x) = i} ∧ {h(y) = j}] = 1

m2

4

CS 6104/5914: Algorithms for Big Data Lecture 4 09-04-2025

An implication is that the hash function distributes elements uniformly: Prh∼H[h(x) = i] = 1
m . A common

construction uses modular arithmetic: for a prime p ∈ [n, 2n],1 the family H = {ha,b(x) = (ax + b)
mod p | a, b ∈ {1, . . . , p− 1}} is pairwise independent.

Flajolet-Martin Algorithm A practical variant of the algorithm estimates d using the number of trailing
zeros in the binary representation of hash values. Let h : [n]→ [2L] where L = ⌈log n⌉. Let zeros(s) be
the number of trailing zeros of binary string s. The algorithm tracks Z = maxe∈stream{zeros(h(e))}.

The intuition is that for a random value, Pr[zeros(h(e)) ≥ r] = 1/2r . If we observe d distinct elements,
we expect d · (1/2r) ≈ 1 element to have roughly r ≈ log2 d trailing zeros. Thus, d can be estimated as 2Z .

Analysis with Pairwise Independence Alon, Matias, and Szegedy (1999) proved that pairwise indepen-
dence suffices for this analysis. Let Yr be the number of distinct elements ei such that zeros(h(ei)) ≥ r.
Under pairwise independence, one can showE[Yr] = d/2r and bound Var[Yr]. The concentration arguments
(averaging and median trick) can then be applied to achieve accurate estimation.

Takeaway 3.1

Limited Independence as a Key Design Tool: While many analyses for randomized algorithms
initially assume full independence (i.e., truly random hash functions), this assumption is impractical,
in particular in the streaming setting, as storing a fully random function requires enormous space.
A powerful and practical alternative is to use hash functions drawn from a family with limited
independence, such as pairwise independence. The primary advantages are twofold:

1. Space Efficiency: A pairwise independent hash function can be represented very compactly,
typically requiring only O(log n) bits of space. More generally, a k-wise independent hash
function requires only O(k log n) bits.

2. Analytical Sufficiency: For many algorithms, including Flajolet-Martin and its improvements,
pairwise independence provides enough structure to prove the necessary bounds on expectation
and variance. This allows us to apply standard concentration techniques like averaging and the
median trick, achieving strong (ϵ, δ) guarantees without the cost of full independence.

1Bertrand-Chebyshev theorem proves that for every integer n, there exists a prime number in [n, 2n]. See this Wiki page.

5

https://en.wikipedia.org/wiki/Bertrand%27s_postulate

	Frequency Moments
	Estimation
	Distinct Element Problem (F0 Estimation)
	Applications and Baseline Solutions
	Idealized Flajolet-Martin Algorithm
	Analysis of Idealized Estimator
	Improving Concentration via Averaging and Median Trick
	Practical Implementation Details

