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Lecture 1: Background on Probability and Linear Algebra
08-26-2025 Lecturer: Prof. Ali Vakilian | Scribe: Ali Vakilian

1 Motivation

The topics covered in this course, and more broadly, most developments in algorithms for massive data,
rely on two key concepts:

1. Probability. Concentration inequalities tell us when a random variable or sample behaves like its
expectation.

2. Linear Algebra. Matrix factorizations and spectral bounds sit at the heart of dimensionality reduction
and numerical subroutines.

This lecture captures the core facts you will invoke throughout the course.

2 Probability Refresher

We assume familiarity with basic probability spaces and random variables (r.v.s). Unless stated otherwise,
all r.v.s are defined on the same probability space (2.

2.1 Independence, Conditional Probability, Random Variables

Independence. Two events A and B are independent if
Pr[A N B] = Pr[4] Pr[B].

A collection (F1, ..., Ey) is mutually independent if every sub-collection obeys this equality. Pairwise
independence, which requires independence for every pair of events, is strictly weaker than full (mutual)
independence. In upcoming lectures we will often work with pairwise independence or with the slightly
broader notion of c-wise independence (the special case ¢ = 2 coincides with pairwise independence).

Conditional Probability. For Pr[B] > 0 the probability of A given B is

Pr[AN B]

PrA| B) = s

Key consequences include the Law of Total Probability Pr[A] = >, Pr[A | B;] Pr[B;] for a partition { B;},
and Bayes’ Rule

Pr[A | B;| Pr[B)]
> Pr[A | Bi] Pr[B;]

Pr(B; | A =
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Random Variables (an informal view). A random variable! is simply a rule that assigns a number to
each outcome w € (2. Think “roll a die, record the number of pips” or “run Quicksort algorithm, record the
running time”. We denote the set of possible values by range(X') and write

Pr[X =z] forx € range(X).

The most useful derived quantities are the expectation E[X] = )"z Pr[X = z] (or [ dPr in the
continuous case) and the variance Var[X] = E[(X — EX)?].

A handy special case is an indicator variable 1 that equals 1 when event E occurs and 0 otherwise;
then E[15] = Pr[E].

Independence of random variables. Random variables X7, ..., X} are independent if, for every choice
of real numbers a1, ..., ag,

k
PI‘[Xl :al,Xg :CLQ,...,Xk :ak] :HPI'[XZ‘ :ai].
i=1

Intuitively, knowing the outcome of any subset of the variables tells us nothing about the rest. (For two
events this reduces to the familiar rule Pr[XY] = Pr[X]| Pr[Y] when X and Y are indicator variables.)

Expectation. The expectation or mean of a random variable X is its long-run average value:

—00

E[X] = Z:L’ Pr[X =] (discrete) or E[X] = /OO x fx(x)dx (continuous).

Two key facts we will use constantly:

1. Linearity of expectation. For any random variables X and Y and constants a, b,
ElaX +bY] = aE[X]+bE[Y];
in particular, no independence required.

2. Expectation of a function. If g is any real function then E[g(X)] = > g(z) Pr[X = z] (or the
analogous integral in the continuous case).

These properties let us break complicated expressions into simple, computable pieces; we will see many
examples of this in later lectures.

2.2 Union Bound
k k
Theorem 2.1 (Union Bound). For events E1, ..., Ey, Pr [ U El} < Z Pr[E;].
i=1 i=1

Proof. By induction on k. For k = 1 equality holds trivially. For k = 2,

Pr [El U EQ} — Pr [El] 4 Pr [EQ] _Pr [El N Eﬂ < Pr [El] 4 Pr [EQ]

'Formally, a random variable is a measurable function X : (Q, F) — (R, B), where B is the Borel o-algebra on R.
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following exclusion-inclusion identity for two sets and the fact that probabilities are non-negative. Assume
the claim for £ — 1 events. Write

pe[ U] =re[(U ) o

1=

k—1 k—1
< Pr [ U EZ} + Pr[Ey] > set B/ = U E; and apply union bound on E’ and E,
i=1 i=1
k
< Z Pr[E;] > by induction hypothesis on E’
i=1
O
2.3 Markov and Chebyshev
Theorem 2.2 (Markov’s inequality). Let X > 0 be any random variable and a > 0. Then Pr[X > a] < IE[(‘ZX].
Proof. Observe that E[X] > E[1{x>,) a] = aPr[X > a]. O

Theorem 2.3 (Chebyshev inequality). Let X be any random variable with finite variance. Fort > 0,

Pr[|X —EX| > ¢] < YaXI,

Proof. Apply Markov22toY = (X —EX)%: Pr[Y > %] < % where E[Y] = Var[X]. O

2.4 Chernoff and Hoeffding Bounds

Before proving the main inequalities we recall a standard tool.

Lemma 2.4 (Moment Generating Function (MGF) Trick). Foranyr.v. X and \ > 0, Pr[X > a] = Pr[e?X >
er < e M E[eM] by Markov.

Theorem 2.5 (Chernoff Bound, multiplicative). Let X =Y " | X; where the X; € [0, 1] are independent
and set u = E[X]. Then for0 < e < 1,

2 2
Pr[X > (1+¢)u] < exp(—5F), PriX < (1 —e)u] <exp(—5£).
Proof. We prove the upper tail; the lower tail is analogous. Let A > 0 (to be chosen) and apply Lemma 2.4:

Pr[X > (14 ¢e)u] < e M+eH E[e)‘x] = ¢ A1Fe)m HE[@’\X"] (independence).
=1

Because 0 < X; < 1, E[e*¥i] < 1+ (e — 1)E[X;] (by convexity of *). Thus
E[X] < exp((¢ — ).
Combine and set A = In(1 + ¢) to minimize the bound; algebra yields the stated exponent —&2;1/3. [

Theorem 2.6 (Hoeffding’s Inequality). Let X; € [a;, b;] be independent with S, = > " | X; and E[S,,] = p.
Foranyt > 0,

2t
Pr[|S, — ul >t < 26Xp<——).
15 =pi 21 ST 0
Sketch. Apply Lemma 2.4 to (.S, — 1) and use the fact that the MGF of each centered X is bounded by
2(h. _4.)2
exp(w) (Hoeftding’s lemma). Optimizing over A produces the claimed bound. O
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Takeaway 2.1

Markov & Chebyshev provide polynomial tails under minimal assumptions; Chernoff & Hoeffding
give exponential tails when independence (and boundedness) hold.

3 Linear Algebra Refresher

3.1 Vector Norms
For a vector 2 € R? we use three standard norms
d 12 d
il = (;xi) =2k e = ol
Lemma 3.1 (Norm inequalities). For every z € RY,

Izl < llzllz < llzfls < Vallz]e.

Proof. First note |x;| < m = ||z

Cauchy-Schwarz:
Izl =Y lzl -1 < Jzllz |1z = Vd 2.

7

9, which gives ||z]c < ||z||2. For the last inequality apply

3.2 Dot Product and Angles

For z,y € R? the dot product 2"y measures the cosine of the angle between them. The Cauchy-Schwarz
inequality states |z " y| < ||z||2 ||y||2, with equality if and only if = and y are colinear.

3.3 Singular Values and the SVD

Informal picture. Any linear map A : R®” — R™ can be viewed as rotate — stretch — rotate. The
stretching factors are the singular values of A.

Singular Value Decomposition (formal). For every A € R"*" there exist orthogonal matrices U €
R™*™ and V' € R™*™ such that
A=UxV',

where ¥ = diag(oy,...,0,,0,...,0),01 > 09 > --- > 0, > 0. The non-zero o; are the singular values
of A and r is called the rank.

Rank. Because each non-zero singular value contributes an independent column direction, we have

rank(4) = r < min{m,n}.

3.4 Eigenvalues, Eigenvectors and Positive Semidefinite Matrices

Eigenvalues and eigenvectors (informal view). For most vectors a square matrix changes both length
and direction. An eigenvector keeps its direction and is scaled by a factor called the eigenvalue.

Formally, a non-zero vector v € R" is an eigenvector of A € R™*" with eigenvalue A € R if Av = \v.
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Positive semidefinite (PSD) matrices. A symmetric matrix A is positive semidefinite if
Az > 0 forallz € R™.

Proposition 3.2 (PSD characterised by eigenvalues). Let A € R"*" be symmetric with eigenvalues
Al,y..., Ap. Then
Ais PSD <= \; > 0 for everyi.

Proof. (=)1If Ais PSD and (), v) is any eigenpair with ||v||o = 1 then A = v " Av > 0.

(<) If all eigenvalues are non-negative, write A = >, \; u;u, with an orthonormal eigenbasis {w;}.
For x = ), ojju; we have

n
o' Az = Z)\ia? > 0.
i=1
Hence A is PSD. O

3.5 Spectral and Frobenius Norms

Definitions. For A € R™*" with singular values o1 > - -+ > 0, > 0 set

r
1Allz = o1, [lAIF = Yot
=1

Lemma 3.3. For any matrix A,

[Allz < |Allr < v/rank(A) [|All2.

Proof. Treat the vector of singular values (071, ..., 0,) and apply Lemma 3.1 with d = r:

.
lolloe = 01 = |All2, llollz = Allr, ol =) oi < Vrllo]2:
i=1

The middle inequality yields || A||r < v/ ||Al|2 and r = rank(A). O

Takeaway 3.1

Spectral norm controls worst—case distortion; Frobenius norm captures average distortion. Many
sketching results bound both simultaneously.

4 Further Reading

For further readings on related topics, refer to
« Chandra Chekuri, Background on Probability, lecture notes.
 Krzysztof Onak, Useful Probabilistic Inequalities, lecture notes.

« Martin Wainwright, High-Dimensional Statistics, Chapter 2 (concentration).

Joel Tropp, Introduction to Matrix Concentration Inequalities.


http://chekuri.cs.illinois.edu/teaching/probability-notes.pdf
https://onak.pl/teaching/download/2024-spring-ds563/useful_facts.pdf
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