
CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

Lecture 12: Applications of JL & Subspace Embedding

10-02-2025 Lecturer: Ali Vakilian | Scribe: Asha Barua | Editor: Ali Vakilian

Motivation: The subspace embedding and sketching approach provides a framework for developing
faster algorithms that offer approximate solutions to various matrix-related problems such as Matrix
Multiplication, Linear Regression, and Low-Rank approximation.

Basic Idea: We consider the setting where we want to perform computations on a large matrix A that
has n data columns in a high-dimensional space Rh, but whose actual rank d is much smaller. The main
objective is to reduce the computation to an equivalent problem involving a matrix of size roughly Rd×d by
spending time proportional to the number of non-zero entries in A.

In particular, to achieve this, we need to find a suitable projection or sketch of the data points into a
lower-dimensional space such that the important geometric properties of the original high-dimensional
space hold. Once such a projection is applied, the resulting lower-dimensional representation contains
enough information to allow us to solve the underlying problem efficiently without significant loss of
accuracy.

Next, we will discuss regression, one of the classical problems in data analysis and machine learning.

1 Regression: Linear Model Fitting

Given a collection of data points a1, . . . , an ∈ Rd together with their corresponding responses b1, . . . , bn ∈
R, our goal is to find a linear model that best explains the observed data. Formally, we want to find
parameters w0, w1, . . . , wd such that

bi = w0 +
d∑

j=1

wjai,j , for all i = 1, . . . , n.

The vector w = (w1, . . . , wd) represents the weights of the model, and w0 is the intercept term. In practice,
perfect equality is rarely possible due to noise or measurement error in the data.

Without loss of generality, the intercept can be absorbed into the feature representation by appending
an additional coordinate of 1 to each data vector, allowing us to set w0 = 0 in the augmented space of
dimension d+1.

Let A ∈ Rn×d be the matrix whose i-th row is a⊤i , and let b ∈ Rn be the vector of responses. The
regression problem can then be written compactly as

min
x∈Rd

∥Ax− b∥,

where the choice of norm (e.g., ℓ1, ℓ2, or ℓ∞) specifies the loss function used to measure the quality of fit. In
most applications, the ℓ2 norm—leading to the least-squares regression problem which is the most common
and mathematically convenient choice.

1.1 Least-Squares Regression

In the least-squares formulation, we adopt the ℓ2 norm as our measure of error. Given A ∈ Rn×d and
b ∈ Rn, the objective is to find

min
x∈Rd

∥Ax− b∥2.

1



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

When the number of data points n is much larger than the number of features d, that is n >> d, the linear
system Ax = b generally has no exact solution. In this case, we seek the best fit such as a vector Ax lying
in the column space of A that is as close as possible to b in the Euclidean space (ℓ2-norm) .

Since every vector Ax is a linear combination of the columns of A, the goal is to find a vector z ∈
colspace(A) that minimizes ∥z − b∥2. Geometrically, this vector z is the projection of b onto the column
space of A.

Normal Equations, Singular Value Decomposition, and the Pseudoinverse: As discussed earlier,
the closest vector to b within the column space of A is its projection onto that subspace. Let {z1, z2, . . . , zr}
be an orthonormal basis for the columns of A. Then the projection c of b to colspace(A) is given by

c =
∑

1≤j≤r

⟨b, zj⟩zj .

The optimal vector x∗ must satisfy Ax∗ = c, meaning that x∗ is the solution to the linear system whose
right-hand side is this projected vector.

To compute x∗ directly, we use the normal equation:

A⊤Ax = A⊤b.

If the columns of A are linearly independent, then A⊤A is full rank and invertible, and hence

x∗ = (A⊤A)−1A⊤b.

When the columns of A are not linearly independent, the system may have infinitely many solutions. In that
case, the unique solution with the smallest Euclidean norm is given by the Moore-Penrose pseudoinverse:

x∗ = A+b,

where A+ = (A⊤A)−1A⊤ when A has full column rank, and more generally A+ is defined via the singular
value decomposition of A.

To further understand the structure of the least-squares solution and the role of the pseudoinverse, it is
helpful to explore the singular value decomposition (SVD) of a matrix. For every matrix A ∈ Rm×d, there
exists matrices U ∈ Rm×m and V ∈ Rd×d with orthonormal columns such that

A = UΣV ⊤,

where Σ = diag(σ1, . . . , σr, 0, . . . , 0) is a diagonal matrix containing the singular values σ1 ≥ σ2 ≥ · · · ≥
σr > 0. The Moore-Penrose pseudoinverse of A is defined using this decomposition as

A+ = V Σ−1U⊤,

where
Σ−1 = diag

(
1
σ1
, . . . , 1

σr
, 0, . . . , 0

)
.

The pseudoinverse satisfies the following fundamental algebraic properties:

AA+A = A, (AA+)⊤ = AA+.

When A has linearly independent columns (i.e., full column rank), the pseudoinverse reduces to

A+ = (A⊤A)−1A⊤.

2



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

The product AA+ is the projection matrix in the column space of A.
Let P = AA+. Then Pv = A(A+)v, which is a linear combination of columns in A. Moreover, for any

vector y, assume that y ∈ colspan(A) (i.e., y = Ax for some x), then we have

Py = AA+(Ax) = Ax = y,

showing that P leaves all vectors in col(A) unchanged while projecting any general vector in Rm onto
that subspace.

However, computing x∗ exactly following these methods typically requiresO(nd2) time, which becomes
expensive when n is large. Perhaphs, can we obtain an approximate solution much faster by using a lower-
dimensional representation that still preserves the essential structure of the problem?

To answer this question, we now introduce the subspace embeddings which allow us to solve such
regression problems efficiently while maintaining strong approximation guarantees.

1.2 Least Squares Regression via Subspace Embedding

We now explore how least squares regression can be made more efficient through the use of subspace
embeddings. Let E denote the subspace spanned by the columns of A together with the vector b. This
subspace has dimension at most d + 1. The goal is to reduce the regression problem to a much smaller
equivalent problem that can be solved faster while preserving its geometric structure.

We apply Subspace Embedding Π on E with k = O(d/ε2) rows to reduce

{A(1), A(2), . . . , A(d), b} to {A′(1), A′(2), . . . , A′(d), b′},

which are in Rk.

After projection, we solve the reduced least squares problem:

min
x′∈Rd

∥A′x′ − b′∥2.

Intuitively, (A′, b′) are lower-dimensional representations of (A, b) that still capture the essential informa-
tions required for accurate regression.

Lemma 1.1. (Subspace Embedding Guarantee) With probability at least 1− δ, the embedding Π preserves the
regression cost up to a (1± ε) factor:

(1− ε) min
x∈Rd

∥Ax− b∥2 ≤ min
x′∈Rd

∥A′x′ − b′∥2 ≤ (1 + ε) min
x∈Rd

∥Ax− b∥2.

Proof of Lemma 1.1. With probability at least (1− δ), the subspace embedding guarantee ensures that for
all vectors z ∈ E,

(1− ε)∥z∥2 ≤ ∥Πz∥2 ≤ (1 + ε)∥z∥2.

Let x∗ and y∗ denote the optimal solutions to

x∗ = arg min
x∈Rd

∥Ax− b∥2, y∗ = arg min
x′∈Rd

∥A′x′ − b′∥2.

Let z = Ax∗ − b. Since z ∈ E, it follows that

∥A′x∗ − b′∥2 = ∥Πz∥2 ≤ (1 + ε)∥z∥2 = (1 + ε)∥Ax∗ − b∥2. (1)

By optimality of y∗,
∥A′y∗ − b′∥2 ≤ ∥A′x∗ − b′∥2. (2)

3



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

Combining (1) and (2) yields,

min
x′∈Rd

∥A′x′ − b′∥2 = ∥A′y∗ − b′∥2 ≤ (1 + ε)∥Ax∗ − b∥2 = (1 + ε) min
x∈Rd

∥Ax− b∥2.

Similarly, for any y ∈ Rd,

∥Ay − b∥2 ≤ (1 + ε)∥A′y − b′∥2 ≤ (1 + ε)∥A′y∗ − b′∥2 ≤ (1 + 3ε)∥Ax∗ − b∥2.

Combining the two inequalities yields the desired approximation guarantee:

(1− ε)∥Ax∗ − b∥2 ≤ ∥A′y∗ − b′∥2 ≤ (1 + ε)∥Ax∗ − b∥2.

This completes the proof.

Running Time: The above approach achieves the following results:

• The problem over d vectors in Rn is reduced to d vectors in Rk, where k = O(d/ε2).

• Computing ΠA and Πb can be done in time proportional to nnz(A) using sparse or fast JL transforms.

• The reduced problem can be solved in O(d3/ε2) time.

• This method is particularly effective when n≫ d/ε2.

2 Approximate Matrix Multiplication

Now we present a fundamental subroutine in countless computational tasks, including scientific computing,
numerical linear algebra, optimization, and machine learning.

2.1 Matrix Multiplication

Given matrices A ∈ Rn×d and B ∈ Rn×p, we need to compute A⊤B. The standard naïve algorithm
approach requires O(ndp), which is expensive for large n.

For square matrices of size n× n, decades of research have produced significantly faster algorithms.
The running time of such algorithms can be expressed as O(nω), where ω > 2 is known as the exponent

of matrix multiplication.

Optional Reading

Historically, the exponent has been progressively reduced through a series of breakthroughs such as
ω ≤ log2 7 [Strassen, 1969], ω ≤ 2.376 [Coppersmith and Winograd, 1987], and ω ≤ 2.371339 [Al-
man et al., 2023]. Although these bounds represent remarkable theoretical progress, the resulting
algorithms are not yet practical for large-scale numerical computations. In practice, approximate
or randomized methods (e.g., sketching) are often preferred since they can compute approximate
matrix products much more efficiently while maintaining small, quantifiable error bounds.
For reference, we include a table showing how researchers have gradually improved the matrix
multiplication exponent ω over the five decades (from Wikipedia).

4



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

Year Best known ω Authors / Contribution

1969 2.8074 Strassen
1978 2.796 Pan
1979 2.780 Bini, Capovani, Romani
1981 2.522 Schönhage
1981 2.517 Romani
1981 2.496 Coppersmith, Winograd
1986 2.479 Strassen (laser method)
1990 2.3755 Coppersmith, Winograd
2010 2.3737 Stothers
2012 2.3729 Vassilevska Williams
2014 2.3728639 Le Gall
2020 2.3728596 Alman, Vassilevska Williams (SODA’21)
2022 2.371866 Duan, Wu, Zhou (FOCS’23)
2024 2.371552 Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA’24)
2024 2.371339 Alman, Duan, Vassilevska Williams, Y. Xu, Z. Xu, Zhou (SODA’25)

2.2 Approximate Matrix Multiplication

Although exact matrix multiplication algorithms have made remarkable theoretical progress, they are often
complex and impractical for large-scale data computations. In many modern applications such as machine
learning, data analysis, and large-scale optimization, high-quality approximation is often sufficient because
we don’t always need the perfect answer. This motivates the concept of Approximate Matrix Multiplication.

Overall, the key idea is to trade a small, controlled loss in precision for a substantial gain in computational
efficiency. Rather than computing the exact product, we seek an approximation that is close enough for
practical use.

Main Goal: Given matrices A ∈ Rn×d and B ∈ Rn×p, we aim to find a matrix C ∈ Rd×p such that

∥A⊤B − C∥F ≤ ε,

with probability at least 1− δ.

2.2.1 JL-Based Approach for Fast Matrix Multiplication

We now describe how the Johnson-Lindenstrauss (JL) theorem can be used to design efficient randomized
algorithms for approximate matrix multiplication.

Theorem 2.1. [JL-based Approximation Guarantee] Let D be a distribution over random matrices Π ∈ Rk×n

satisfying the Distributional JL Property with k = O(ε−2 log(1/δ)). Then for any A,B ∈ Rn×d,

Pr
Π∼D

[
∥A⊤B − (ΠA)⊤(ΠB)∥F ≥ ε ∥A∥F ∥B∥F

]
≤ δ.

Proof sketch of 2.1. We first define the error matrix as follows,

M = A⊤B − (ΠA)⊤(ΠB).

Our goal is to show that ∥M∥F is small with high probability.

5



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

Then we analyze a single entry of the error matrix, For column vectors ai of A and bj of B, we have

Mij = ⟨ai, bj⟩ − ⟨Πai,Πbj⟩.

The contribution of this entry to ∥M∥2F is M2
ij = (⟨ai, bj⟩ − ⟨Πai,Πbj⟩)2.

From the Distributional JL Property, for any unit vectors x, y ∈ Rn, and Π with k-rows,

EΠ

[
(⟨Πx,Πy⟩ − ⟨x, y⟩)2

]
≤ 1

k
.

Now, for any vectors ai, bj ∈ Rn, the following property can be written as follows,

E
[(
⟨Πai,Πbj⟩ − ⟨ai, bj⟩

)2] ≤ 1

k
∥ai∥22 ∥bj∥22.

We apply the Distributional JL property to bound the expected error to get,

E[∥M∥2F ] = E[
∑
i,j

M2
ij ] =

∑
i,j

E[(⟨ai, bj⟩ − ⟨Πai,Πbj⟩)2]

≤
∑
i,j

1

k
∥ai∥22 ∥bj∥22

=
1

k
∥A∥2F ∥B∥2F . (Summing over i, j)

Hence, for any ε > 0, we apply Markov’s inequality,

Pr
[
∥M∥2F ≥ ε2 ∥A∥2F ∥B∥2F

]
≤

E
[
∥M∥2F

]
ε2∥A∥2F ∥B∥2F

≤ 1

kε2

Finally, setting k = O(1/(ε2δ)); completes the proof.

Runtime Analysis: The proposed Approximate Matrix Multiplication achieves substantial speedup com-
pared to the standard matrix multiplication A⊤B, while preserving strong accuracy guarantees. Therefore,

• It calculates the projections ΠA and ΠB, where Π ∈ Rk×n is the JL matrix. This step requires
O(knd+ knp) time.

• Then, it multiplies the reduced matrices ΠA ∈ Rk×d and ΠB ∈ Rk×p, which takes O(kdp) time.

• Overall, the total runtime is O(k(nd+ np+ dp). Since k = O(1/(ε2δ)), this is much smaller than
the naive O(ndp) runtime whenever n≫ d/ε2.

The Johnson–Lindenstrauss (JL) random projection approximately preserves the dot products between
vectors. This property serves as the basis for the Distributional JL guarantee used in Approximate Matrix
Multiplication. Now, we establish this observation through the following lemma.

Lemma 2.2. Let Π ∈ Rk×d be a random projection matrix whose entries Πr,c are independent random
variables satisfying

E[Πr,c] = 0, E[Π2
r,c] =

1

k
.

Then, for any a, b ∈ Rd,

E[⟨Πa,Πb⟩] = ⟨a, b⟩, E
[
(⟨Πa,Πb⟩ − ⟨a, b⟩)2

]
≤ 1

k
∥a∥22∥b∥22.

6



CS 6104/5914: Algorithms for Big Data Lecture 12 10-02-2025

Proof of Lemma 2.2. Define

Z = ⟨Πa,Πb⟩ =
k∑

r=1

⟨Πr, a⟩⟨Πr, b⟩.

By taking expectation on both sides, we have

E[Z] =
k∑

r=1

E[⟨Πr, a⟩⟨Πr, b⟩]

= k · E[⟨Π1, a⟩⟨Π1, b⟩]

= k · E

[( d∑
s=1

asπ1,s

)( d∑
s=1

bsπ1,s

)]

= k ·
∑
s

asbsE[π2
1,s] = k · 1

k

∑
s

asbs = ⟨a, b⟩.

Thus, Π preserves the dot product in expectation.
Similarly, using independence and the bounded variance of entries,

Var(Z) = Var(⟨Πa,Πb⟩) ≤ 1

k
∥a∥22∥b∥22.

So,

E
[
(⟨Πa,Πb⟩ − ⟨a, b⟩)2

]
= E

[
(⟨Πa,Πb⟩ − E[(⟨Πa,Πb⟩])2

]
≤ 1

k
∥a∥22∥b∥22.

Therefore, the random projection approximately preserves dot products in expectation, with variance
decaying as 1/k.

7




