Lecture 11: Final Notes on JL and Subspace Embedding

09-30-2025 Lecturer: Ali Vakilian | Scribe: Manoj Saravanan | Editor: Ali Vakilian

Today, we will finalize our discussion on the Johnson-Lindenstrauss (JL) lemma and subspace embedding, focusing on the motivations and computational aspects of dimensionality reduction.

A main motivation. The primary goal is to reduce the dimensionality of the input with the hope of solving the problem faster. For a set of points $X \subset \mathbb{R}^d$, we seek a mapping f that sends x into \mathbb{R}^m for $m \ll d$. A crucial question then arises: how fast can we compute the map f? Let's explore several approaches to constructing this mapping and their computational complexities.

- 1. For the original construction of the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984], the time required is O(md).
- 2. Achlioptas [2001] introduced a sparser matrix $\Pi \in \mathbb{R}^{m \times d}$ that provides similar guarantees. The entries of this matrix are independently chosen at random and are equal to:

$$\begin{cases} \frac{1}{\sqrt{s}} & \text{with probability } \frac{1}{2s} \\ -\frac{1}{\sqrt{s}} & \text{with probability } \frac{1}{2s} \\ 0 & \text{with probability } 1 - \frac{1}{s} \end{cases}$$

Where s is a parameter that controls sparsity. In a common setting, s = m/3.

3. Fast JL Transform: The main idea here is to pick a sampling matrix $S \in \mathbb{R}^{m \times d}$. The matrix S has a single 1 in a random location in each row (zeros elsewhere), with rows chosen at random. Computing the transformation $z \to \Pi z$ is fast, taking only O(m) time. The expected squared norm is preserved:

$$\mathbb{E}\left[\left\|\frac{1}{\sqrt{m}}\Pi z\right\|_{2}^{2}\right] = \|z\|_{2}^{2},$$

though the variance can be high, especially when the mass of z is concentrated on a few coordinates. To mitigate this, apply a preconditioning operation R (for an orthogonal matrix R) so that $\frac{\|Rz\|_{\infty}}{\|Rz\|_{2}}$ is small with high probability; as a result, Rz becomes well-spread, with no single coordinate carrying too much mass. Consequently, the vector $\frac{1}{\sqrt{m}}SRz$ has roughly the same norm as z, and it can be computed in time $O(d\log d + m^3)$. A limitation of this approach is that, despite its speed, it does not exploit sparsity in z when present.

4. **Sparse JL Transform:** If the matrix Π has s non-zero entries per column, the product Πx can be computed in $O(s \cdot ||z||_0)$ time, where $||z||_0$ is the number of non-zero entries in z. To see this, note that the product Πz can be viewed as a linear combination of the columns of Π : $\Pi z = \sum_i z_i \Pi^i$, where Π^i is the i-th column of Π .

The objective is to make both m (the target dimension) and s (the sparsity) as small as possible. CountSketch provides a version of the Distributional JL transform with $m = O(1/(\epsilon^2 \delta))$ and s = 1. A result from Kane and Nelson [2014], similar to CountSketch with s > 1, improves the target dimension to $m = O(\log(1/\delta)/\epsilon^2)$ with sparsity $s = O(\epsilon m)$.

1 Sparse JL Transform Details

Define the Sparse JL transform matrix $\Pi \in \mathbb{R}^{m \times d}$ more formally by setting its entries to $\Pi_{r,i} = (\eta_{r,i}\sigma_{r,i})/\sqrt{s}$, where the $\sigma_{r,i}$ are independent Rademacher random variables taking values +1 or -1 with equal probability, and the $\eta_{r,i}$ are Bernoulli random variables with the following properties. For all $r,i,\mathbb{E}[\eta_{r,i}]=s/m$. For each fixed column i, the constraint $\sum_{r=1}^m \eta_{r,i}=s$ holds, so every column of Π has exactly s nonzero entries. Moreover, the variables $\eta_{r,i}$ are negatively correlated: for any finite $S \subset [m] \times [d]$,

$$\mathbb{E}\left[\prod_{(r,i)\in S} \eta_{r,i}\right] \le \prod_{(r,i)\in S} \mathbb{E}[\eta_{r,i}] \le \left(\frac{s}{m}\right)^{|S|}.$$

Theorem 1.1. If $m = O(\log(\frac{1}{\delta})/\varepsilon^2)$ and $s = \Theta(\varepsilon m)$, then for any unit norm vector z, $\Pr(|\|\Pi z\| - 1| > \varepsilon) \le \delta$

Note on Fast JL Transform. Ailon and Chazelle [2006] proposed a method where Πx can be computed in $O(d \log d)$ time. The transformation matrix is defined as $\Pi = \frac{1}{\sqrt{m}}SHD$ where,

- $S_{m \times d}$ is a sampling matrix.
- *H* is a Hadamard matrix.
- D is a diagonal matrix with independent Rademacher random variables on the diagonal.

Proof of Oblivious Subspace Embedding

Next, we revisit subspace embeddings and give a complete proof with no additional assumptions (unlike the simplified proof from Lecture 10).

Theorem 1.2. Suppose $E \subset \mathbb{R}^n$ is a linear subspace of dimension d. Let $\Pi \in \mathbb{R}^{k \times n}$ be a random projection matrix (e.g., with entries from $\mathcal{N}(0,1)$) with $k = O\left(\frac{d}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$ rows. Then with probability $(1-\delta)$, for every $x \in E$,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$$

In other words, the Johnson-Lindenstrauss Lemma extends smoothly from preserving the geometry of a single vector (a 1-dimensional subspace) to preserving the geometry of an arbitrary d-dimensional subspace.

Proof Challenges. How do we prove that Π works for all $x \in E$, which is an infinite set? A simple application of the union bound, as used for a finite set of points, will not work here. The key idea, as also discussed in Lecture 10, is *net argument*. The proof strategy then is as follows:

- Step 1: Choose a large but finite set of vectors $T \subset E$ carefully. This set is called an ε -net.
- Step 2: Prove that Π preserves the length of all vectors in the finite set T. This can be done using the standard JL Lemma and the union bound over the points in T.
- Step 3: Argue that any vector $x \in E$ is sufficiently close to some vector in T. By leveraging the properties of linear maps and the triangle inequality, we can show that if the lengths of vectors in T are preserved, then the length of x is also preserved.

To define formally, a subset T is an ε -net for a space S if for every point $p \in S$, there is a point $x \in T$ such that the distance between them is small. For example,

- In ℓ_2 -space, it requires $||x-p||_2 \le \varepsilon$,
- In ℓ_{∞} -space, it requires $||x-p||_{\infty} \leq \varepsilon$.

Proof of Theorem 1.2. A $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for the column space of an $n \times d$ matrix A is a matrix S such that for all $x \in \mathbb{R}^d$.

$$(1-\varepsilon)\|Ax\|_2^2 \le \|SAx\|_2^2 \le (1+\varepsilon)\|Ax\|_2^2$$
.

Let $U \in \mathbb{R}^{n \times d}$ have orthonormal columns spanning $\operatorname{col}(A)$. Then S is an ℓ_2 -subspace embedding for $\operatorname{col}(A)$ if and only if, for all $x \in \mathbb{R}^d$,

$$(1-\varepsilon)\|x\|_2^2 \le \|SUx\|_2^2 \le (1+\varepsilon)\|x\|_2^2$$

since $||Ux||_2^2 = ||x||_2^2$ by orthonormality. Equivalently, it suffices to prove

$$\sup_{x \in \mathcal{S}^{d-1}} \left| \|SUx\|_2^2 - 1 \right| \le \varepsilon,$$

because the condition is homogeneous and therefore determined by its restriction to the unit sphere \mathcal{S}^{d-1} . In particular, we will work with the unit vectors in the subspace $\operatorname{col}(U)$, namely the set $\{Ux: x \in \mathcal{S}^{d-1}\}$, and establish the displayed bound. To pass from this infinite family to a finite one, fix an ε -net $N \subset \mathcal{S}^{d-1}$, meaning that for every $x \in \mathcal{S}^{d-1}$ there exists $y \in N$ with $\|x-y\|_2 \le \varepsilon$. Such a net can be constructed greedily, and standard volume arguments give the bound

$$|N| \cdot \operatorname{vol}(B(\varepsilon/2)) \le \operatorname{vol}(B(1+\varepsilon/2)) \quad \Rightarrow \quad |N| \le (1+\frac{2}{\varepsilon})^d$$

where B(r) denotes the d-dimensional Euclidean ball of radius r. Project N into the subspace via U and set

$$M := \{Ux : x \in N\}.$$

Claim 1.3. For every unit vector $z \in \operatorname{col}(U)$ there exists $y \in M$ such that $||z - y||_2 \le \varepsilon$.

Proof. Write z=Ux with $x\in\mathcal{S}^{d-1}$. By the definition of N, choose $x'\in N$ with $\|x-x'\|_2\leq \varepsilon$ and set $y:=Ux'\in M$. Since U has orthonormal columns, it is an isometry on \mathbb{R}^d , hence

$$||z - y||_2 = ||Ux - Ux'||_2 = ||x - x'||_2 \le \varepsilon.$$

We now conclude the argument using the ε -net M. The goal is to approximate any unit vector $y \in \operatorname{col}(U)$ by a rapidly convergent series of vectors drawn from M.

Claim 1.4. For every $x \in \mathcal{S}^{d-1}$ there exists $y' \in M$ with $\|Ux - y'\|_2 \le \varepsilon$.

Fix a unit vector y=Ux with $x\in\mathcal{S}^{d-1}$. By the claim, choose $y_1\in M$ with $\|y-y_1\|_2\leq \varepsilon$. Define the normalized remainder $\hat{r}_1:=(y-y_1)/\|y-y_1\|_2$ and set $\alpha_1:=\|y-y_1\|_2\leq \varepsilon$. Apply the claim again to obtain $y_2'\in M$ with $\|\hat{r}_1-y_2'\|_2\leq \varepsilon$, and set $y_2:=\alpha_1y_2'$, so that

$$||y - y_1 - y_2||_2 \le \alpha_1 \varepsilon \le \varepsilon^2.$$

3

Iterating this construction yields a sequence $(y_i)_{i\geq 1}$ with $y_i\in \mathrm{span}(M)$ and, for every $k\geq 1$,

$$\left\|y - \sum_{i=1}^{k} y_i\right\|_2 \le \varepsilon^k$$
 and $\|y_i\|_2 \le \varepsilon^{i-1} + \varepsilon^i \le 2\varepsilon^{i-1}$.

Hence $y=\sum_{i\geq 1}y_i$ with $\sum_{i\geq 1}\|y_i\|_2\leq \sum_{i\geq 1}2\varepsilon^{i-1}=\frac{2}{1-\varepsilon}$. By a union bound over the finite set M (and standard JL tail bounds), with high probability the embedding S simultaneously satisfies for all $y',y''\in M$,

$$(1-\varepsilon)\|y'\|_2^2 \le \|Sy'\|_2^2 \le (1+\varepsilon)\|y'\|_2^2, \quad |\langle Sy', Sy'' \rangle - \langle y', y'' \rangle| \le c\varepsilon \|y'\|_2 \|y''\|_2,$$

for an absolute constant c > 0 (the inner-product bound follows from the distance bound via polarization). Write $y = \sum_i y_i$ and expand:

$$||Sy||_2^2 = ||S\sum_i y_i||_2^2 = \sum_i ||Sy_i||_2^2 + 2\sum_{i < j} \langle Sy_i, Sy_j \rangle.$$

Using the displayed estimates,

$$\begin{split} \left| \|Sy\|_{2}^{2} - \|y\|_{2}^{2} \right| &\leq \varepsilon \sum_{i} \|y_{i}\|_{2}^{2} + 2c\varepsilon \sum_{i < j} \|y_{i}\|_{2} \|y_{j}\|_{2} \\ &\leq c' \varepsilon \Big(\sum_{i} \|y_{i}\|_{2} \Big)^{2} \leq c' \varepsilon \Big(\frac{2}{1 - \varepsilon} \Big)^{2}, \end{split}$$

for an absolute constant c'. Since y is a unit vector, this gives

$$||Sy||_2^2 = 1 \pm C \, \varepsilon,$$

for an absolute constant C, which is the desired $(1 \pm O(\varepsilon))$ guarantee. By homogeneity, the bound extends to all $y \in \operatorname{col}(U)$, completing the proof.