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Today, we will finalize our discussion on the Johnson-Lindenstrauss (JL) lemma and subspace embedding,
focusing on the motivations and computational aspects of dimensionality reduction.

A main motivation. The primary goal is to reduce the dimensionality of the input with the hope of
solving the problem faster. For a set of points X ⊂ Rd, we seek a mapping f that sends x into Rm

for m ≪ d. A crucial question then arises: how fast can we compute the map f? Let’s explore several
approaches to constructing this mapping and their computational complexities.

1. For the original construction of the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984],
the time required is O(md).

2. Achlioptas [2001] introduced a sparser matrix Π ∈ Rm×d that provides similar guarantees. The
entries of this matrix are independently chosen at random and are equal to:

1√
s

with probability 1
2s

− 1√
s

with probability 1
2s

0 with probability 1− 1
s

Where s is a parameter that controls sparsity. In a common setting, s = m/3.

3. Fast JL Transform: The main idea here is to pick a sampling matrix S ∈ Rm×d. The matrix
S has a single 1 in a random location in each row (zeros elsewhere), with rows chosen at random.
Computing the transformation z → Πz is fast, taking only O(m) time. The expected squared norm
is preserved:

E

[∥∥∥∥ 1√
m
Πz

∥∥∥∥2
2

]
= ∥z∥22,

though the variance can be high, especially when the mass of z is concentrated on a few coordinates.
To mitigate this, apply a preconditioning operation R (for an orthogonal matrix R) so that ∥Rz∥∞

∥Rz∥2 is
small with high probability; as a result, Rz becomes well-spread, with no single coordinate carrying
too much mass. Consequently, the vector 1√

m
SRz has roughly the same norm as z, and it can be

computed in time O(d log d+m3). A limitation of this approach is that, despite its speed, it does not
exploit sparsity in z when present.

4. Sparse JL Transform: If the matrix Π has s non-zero entries per column, the product Πx can be
computed in O(s · ∥z∥0) time, where ∥z∥0 is the number of non-zero entries in z. To see this, note
that the product Πz can be viewed as a linear combination of the columns of Π: Πz =

∑
i ziΠ

i,
where Πi is the i-th column of Π.

The objective is to make both m (the target dimension) and s (the sparsity) as small as possible.
CountSketch provides a version of the Distributional JL transform with m = O(1/(ϵ2δ)) and s = 1.
A result from Kane and Nelson [2014], similar to CountSketch with s > 1, improves the target
dimension to m = O(log(1/δ)/ϵ2) with sparsity s = O(ϵm).
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1 Sparse JL Transform Details

Define the Sparse JL transform matrixΠ ∈ Rm×d more formally by setting its entries toΠr,i = (ηr,iσr,i)/
√
s,

where the σr,i are independent Rademacher random variables taking values +1 or−1 with equal probability,
and the ηr,i are Bernoulli random variables with the following properties. For all r, i, E[ηr,i] = s/m. For
each fixed column i, the constraint

∑m
r=1 ηr,i = s holds, so every column of Π has exactly s nonzero entries.

Moreover, the variables ηr,i are negatively correlated: for any finite S ⊂ [m]× [d],

E

[ ∏
(r,i)∈S

ηr,i

]
≤

∏
(r,i)∈S

E[ηr,i] ≤
( s

m

)|S|
.

Theorem 1.1. If m = O(log(1δ )/ε
2) and s = Θ(εm), then for any unit norm vector z, Pr(|∥Πz∥ − 1| >

ε) ≤ δ

Note on Fast JL Transform. Ailon and Chazelle [2006] proposed a method where Πx can be computed
in O(d log d) time. The transformation matrix is defined as Π = 1√

m
SHD where,

• Sm×d is a sampling matrix.

• H is a Hadamard matrix.

• D is a diagonal matrix with independent Rademacher random variables on the diagonal.

Proof of Oblivious Subspace Embedding

Next, we revisit subspace embeddings and give a complete proof with no additional assumptions (unlike
the simplified proof from Lecture 10).

Theorem 1.2. Suppose E ⊂ Rn is a linear subspace of dimension d. Let Π ∈ Rk×n be a random projection
matrix (e.g., with entries from N (0, 1)) with k = O

(
d
ε2

log
(
1
δ

))
rows. Then with probability (1 − δ), for

every x ∈ E, ∥∥∥∥ 1√
k
Πx

∥∥∥∥
2

= (1± ε)∥x∥2

In other words, the Johnson-Lindenstrauss Lemma extends smoothly from preserving the geometry
of a single vector (a 1-dimensional subspace) to preserving the geometry of an arbitrary d-dimensional
subspace.

Proof Challenges. How do we prove that Π works for all x ∈ E, which is an infinite set? A simple
application of the union bound, as used for a finite set of points, will not work here. The key idea, as also
discussed in Lecture 10, is net argument. The proof strategy then is as follows:

• Step 1: Choose a large but finite set of vectors T ⊂ E carefully. This set is called an ε-net.

• Step 2: Prove that Π preserves the length of all vectors in the finite set T . This can be done using the
standard JL Lemma and the union bound over the points in T .

• Step 3: Argue that any vector x ∈ E is sufficiently close to some vector in T . By leveraging the
properties of linear maps and the triangle inequality, we can show that if the lengths of vectors in T
are preserved, then the length of x is also preserved.
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To define formally, a subset T is an ε-net for a space S if for every point p ∈ S, there is a point x ∈ T
such that the distance between them is small. For example,

• In ℓ2-space, it requires ∥x− p∥2 ≤ ε,

• In ℓ∞-space, it requires ∥x− p∥∞ ≤ ε.

Proof of Theorem 1.2. A (1 ± ε) ℓ2-subspace embedding for the column space of an n × d matrix A is a
matrix S such that for all x ∈ Rd,

(1− ε)∥Ax∥22 ≤ ∥SAx∥22 ≤ (1 + ε)∥Ax∥22.

Let U ∈ Rn×d have orthonormal columns spanning col(A). Then S is an ℓ2-subspace embedding for
col(A) if and only if, for all x ∈ Rd,

(1− ε)∥x∥22 ≤ ∥SUx∥22 ≤ (1 + ε)∥x∥22,

since ∥Ux∥22 = ∥x∥22 by orthonormality. Equivalently, it suffices to prove

sup
x∈Sd−1

∣∣∥SUx∥22 − 1
∣∣ ≤ ε,

because the condition is homogeneous and therefore determined by its restriction to the unit sphere Sd−1.
In particular, we will work with the unit vectors in the subspace col(U), namely the set {Ux : x ∈ Sd−1},
and establish the displayed bound. To pass from this infinite family to a finite one, fix an ε-net N ⊂ Sd−1,
meaning that for every x ∈ Sd−1 there exists y ∈ N with ∥x − y∥2 ≤ ε. Such a net can be constructed
greedily, and standard volume arguments give the bound

|N | · vol
(
B(ε/2)

)
≤ vol

(
B(1 + ε/2)

)
⇒ |N | ≤

(
1 + 2

ε

)d
,

where B(r) denotes the d-dimensional Euclidean ball of radius r. Project N into the subspace via U and set

M := {Ux : x ∈ N}.

Claim 1.3. For every unit vector z ∈ col(U) there exists y ∈M such that ∥z − y∥2 ≤ ε.

Proof. Write z = Ux with x ∈ Sd−1. By the definition of N , choose x′ ∈ N with ∥x− x′∥2 ≤ ε and set
y := Ux′ ∈M . Since U has orthonormal columns, it is an isometry on Rd, hence

∥z − y∥2 = ∥Ux− Ux′∥2 = ∥x− x′∥2 ≤ ε.

We now conclude the argument using the ε-netM . The goal is to approximate any unit vector y ∈ col(U)
by a rapidly convergent series of vectors drawn from M .

Claim 1.4. For every x ∈ Sd−1 there exists y′ ∈M with ∥Ux− y′∥2 ≤ ε.

Fix a unit vector y = Ux with x ∈ Sd−1. By the claim, choose y1 ∈M with ∥y − y1∥2 ≤ ε. Define the
normalized remainder r̂1 := (y − y1)/∥y − y1∥2 and set α1 := ∥y − y1∥2 ≤ ε. Apply the claim again to
obtain y′2 ∈M with ∥r̂1 − y′2∥2 ≤ ε, and set y2 := α1y

′
2, so that

∥y − y1 − y2∥2 ≤ α1ε ≤ ε2.
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Iterating this construction yields a sequence (yi)i≥1 with yi ∈ span(M) and, for every k ≥ 1,

∥∥∥y − k∑
i=1

yi

∥∥∥
2
≤ εk and ∥yi∥2 ≤ εi−1 + εi ≤ 2εi−1.

Hence y =
∑

i≥1 yi with
∑

i≥1 ∥yi∥2 ≤
∑

i≥1 2ε
i−1 = 2

1−ε . By a union bound over the finite set M (and
standard JL tail bounds), with high probability the embedding S simultaneously satisfies for all y′, y′′ ∈M ,

(1− ε)∥y′∥22 ≤ ∥Sy′∥22 ≤ (1 + ε)∥y′∥22,
∣∣ ⟨Sy′, Sy′′⟩ − ⟨y′, y′′⟩ ∣∣ ≤ c ε ∥y′∥2∥y′′∥2,

for an absolute constant c > 0 (the inner-product bound follows from the distance bound via polarization).
Write y =

∑
i yi and expand:

∥Sy∥22 =
∥∥∥S∑

i

yi

∥∥∥2
2
=
∑
i

∥Syi∥22 + 2
∑
i<j

⟨Syi, Syj⟩.

Using the displayed estimates,∣∣∥Sy∥22 − ∥y∥22∣∣ ≤ ε
∑
i

∥yi∥22 + 2cε
∑
i<j

∥yi∥2∥yj∥2

≤ c′ ε
(∑

i

∥yi∥2
)2
≤ c′ ε

( 2

1− ε

)2
,

for an absolute constant c′. Since y is a unit vector, this gives

∥Sy∥22 = 1± C ε,

for an absolute constant C , which is the desired (1±O(ε)) guarantee. By homogeneity, the bound extends
to all y ∈ col(U), completing the proof.
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