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Today, we will finalize our discussion on the Johnson-Lindenstrauss (JL) lemma and subspace embedding,
focusing on the motivations and computational aspects of dimensionality reduction.

A main motivation. The primary goal is to reduce the dimensionality of the input with the hope of
solving the problem faster. For a set of points X C R? we seek a mapping f that sends x into R™
for m < d. A crucial question then arises: how fast can we compute the map f? Let’s explore several
approaches to constructing this mapping and their computational complexities.

1. For the original construction of the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984],
the time required is O(md).

2. Achlioptas [2001] introduced a sparser matrix IT € R"*? that provides similar guarantees. The

entries of this matrix are independently chosen at random and are equal to:

with probability %

S

1

with probability %
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S

Where s is a parameter that controls sparsity. In a common setting, s = m/3.

3. Fast JL Transform: The main idea here is to pick a sampling matrix S € R™*?. The matrix
S has a single 1 in a random location in each row (zeros elsewhere), with rows chosen at random.
Computing the transformation z — Ilz is fast, taking only O(m) time. The expected squared norm
is preserved:

1
E|||—=IIz

though the variance can be high, especially when the mass of z is concentrated on a few coordinates.

To mitigate this, apply a preconditioning operation R (for an orthogonal matrix R) so that ”@ZJH"; is

2
= |I=l3,
2

small with high probability; as a result, Rz becomes well-spread, with no single coordinate carrying
too much mass. Consequently, the vector \/—%S Rz has roughly the same norm as z, and it can be

computed in time O(d log d + m3). A limitation of this approach is that, despite its speed, it does not
exploit sparsity in z when present.

4. Sparse JL Transform: If the matrix Il has s non-zero entries per column, the product Iz can be
computed in O(s - ||z||o) time, where ||z||o is the number of non-zero entries in z. To see this, note
that the product IIz can be viewed as a linear combination of the columns of I: Iz = Y, 21T,
where II is the i-th column of 1.

The objective is to make both m (the target dimension) and s (the sparsity) as small as possible.
CountSketch provides a version of the Distributional JL transform with m = O(1/(€2§)) and s = 1.
A result from Kane and Nelson [2014], similar to CountSketch with s > 1, improves the target
dimension to m = O(log(1/6)/e?) with sparsity s = O(em).
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1 Sparse JL Transform Details

Define the Sparse JL transform matrix IT € R*? more formally by setting its entries to IL,; = (17.;0.;)/ /5,
where the o, ; are independent Rademacher random variables taking values +1 or —1 with equal probability,
and the 1), ; are Bernoulli random variables with the following properties. For all 7, 4, E[n, ;] = s/m. For
each fixed column 7, the constraint Z:,n:l Nr; = s holds, so every column of IT has exactly s nonzero entries.
Moreover, the variables 7, ; are negatively correlated: for any finite S C [m] x [d],

E[ 11 m] < ] Bl < (;)'S.
(

ri)eSs (ri)es

Theorem 1.1. Ifm = O(log(3)/c?) and s = ©(em), then for any unit norm vector z, Pr(|||I1z| — 1| >
g)<d

Note on Fast JL Transform. Ailon and Chazelle [2006] proposed a method where I1x can be computed

in O(dlog d) time. The transformation matrix is defined as I = ﬁS H D where,

« Sixd 1s a sampling matrix.
« H is a Hadamard matrix.

+ D is a diagonal matrix with independent Rademacher random variables on the diagonal.

Proof of Oblivious Subspace Embedding

Next, we revisit subspace embeddings and give a complete proof with no additional assumptions (unlike
the simplified proof from Lecture 10).

Theorem 1.2. Suppose E C R" is a linear subspace of dimension d. Let IT € R**™ be a random projection
matrix (e.g., with entries from N'(0,1)) withk = O (E% log (%)) rows. Then with probability (1 — &), for
everyr € I,

= (L e)l=]l2

1
—Ilz
Hx/E 2

In other words, the Johnson-Lindenstrauss Lemma extends smoothly from preserving the geometry
of a single vector (a 1-dimensional subspace) to preserving the geometry of an arbitrary d-dimensional
subspace.

Proof Challenges. How do we prove that II works for all x € E, which is an infinite set? A simple
application of the union bound, as used for a finite set of points, will not work here. The key idea, as also
discussed in Lecture 10, is net argument. The proof strategy then is as follows:

+ Step 1: Choose a large but finite set of vectors T" C E carefully. This set is called an e-net.

« Step 2: Prove that II preserves the length of all vectors in the finite set 7. This can be done using the
standard JL Lemma and the union bound over the points in 7'.

« Step 3: Argue that any vector x € F is sufficiently close to some vector in 7T'. By leveraging the
properties of linear maps and the triangle inequality, we can show that if the lengths of vectors in T’
are preserved, then the length of z is also preserved.
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To define formally, a subset 7" is an e-net for a space S if for every point p € S, there is a point z € T’
such that the distance between them is small. For example,

« In {3-space, it requires ||z — p||2 < ¢,
« In {-space, it requires ||z — p||o < €.

Proof of Theorem 1.2. A (1 + €) {3-subspace embedding for the column space of an n x d matrix A is a
matrix S such that for all z € R?,

(1= o)l Az3 < |SAz[3 < (1 +¢)|| Az]3.

Let U € R™ 4 have orthonormal columns spanning col(A). Then S is an f5-subspace embedding for
col(A) if and only if, for all z € R?,

(1= o)llzlI3 < [1SUz|3 < (1 +¢)|z]3,
since |[Uz||3 = ||x||3 by orthonormality. Equivalently, it suffices to prove

sup |H5’Ux\|% —1| <e,
zeSd-1

because the condition is homogeneous and therefore determined by its restriction to the unit sphere S¢~ 1,
In particular, we will work with the unit vectors in the subspace col(U), namely the set {Uz : z € S},
and establish the displayed bound. To pass from this infinite family to a finite one, fix an e-net N ¢ S¢1,
meaning that for every € S9! there exists y € N with ||z — y||2 < €. Such a net can be constructed
greedily, and standard volume arguments give the bound

IN| - vol(B(/2)) < vol(B(1+¢/2)) = |N| < (1+2)7,
where B(r) denotes the d-dimensional Euclidean ball of radius r. Project N into the subspace via U and set
M :={Uzx:2 € N}.
Claim 1.3. For every unit vector z € col(U) there exists y € M such that ||z — y||2 < e.

Proof. Write z = Ux with z € S?~1. By the definition of N, choose #’ € N with ||z — 2|2 < ¢ and set
y:= Uz’ € M. Since U has orthonormal columns, it is an isometry on R4, hence

Iz = ylla = [|Uz = Ua|l2 = [lz — 2/||2 <e.
O

We now conclude the argument using the e-net M. The goal is to approximate any unit vector y € col(U)
by a rapidly convergent series of vectors drawn from M.

Claim 1.4. For every x € S?~! there exists ¢/ € M with [|[Uz — ¢/||2 < e.

Fix a unit vector y = Uz with x € S9!, By the claim, choose y; € M with ||y — y1||2 < ¢. Define the
normalized remainder 71 := (y — y1)/|ly — y1||2 and set a1 := ||y — y1]|2 < e. Apply the claim again to
obtain v, € M with [|71 — y}||2 < &, and set y2 := a1}, so that

ly — 11 — y2ll2 < ane < g2,
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Iterating this construction yields a sequence (y;);>1 with y; € span(M) and, for every k > 1,

k
Hy— Zyi ) <
i=1

Hence y = 3 ;5q yi with 3 .oy [[yilla <3255, 26 =2 <. By a union bound over the finite set M (and
standard JL tail bounds), with high probability the embedding S simultaneously satisfies for all 3/, 4" € M,

e*  and llyill2 < gl 4 gt < 2L

A=llyI3 < 15y'lI3 < A +e)lly'l3,  [{SY,Sy") = (v, 9"} | < celly/lllly" |12,

for an absolute constant ¢ > 0 (the inner-product bound follows from the distance bound via polarization).
Write y = ), y; and expand:

ISyl = s > |,
Using the displayed estimates,

1Syl13 — llyll3] < 82 lyill3 + 2c2 Y llyilllly; 2

1<J
2 2
)
1—¢

< e(Znym ) <de(;

for an absolute constant ¢’. Since ¥ is a unit vector, this gives

Z 1Syill3 + 2 Z Syi, Syj)-

ISyllz =1+Ce,

for an absolute constant C, which is the desired (1 + O(¢)) guarantee. By homogeneity, the bound extends
to all y € col(U), completing the proof. O



