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7 Full-field optical coherence tomography (OCT) is able to image an entire en face plane of scatterers simulta-

8 neously, but typically the focus is scanned through the volume to acquire three-dimensional structure. By solv-

9 ing the inverse scattering problem for full-field OCT, we show it is possible to computationally reconstruct a
10 three-dimensional volume while the focus is fixed at one plane inside the sample. While a low-numerical-
1 aperture (NA) OCT system can tolerate defocus because the depth of field is large, for high NA it is critical to
12 correct for defocus. By deriving a solution to the inverse scattering problem for full-field OCT, we propose and
13 simulate an algorithm that recovers object structure both inside and outside the depth of field, so that even for
14 high NA the focus can be fixed at a particular plane within the sample without compromising resolution away
15 from the focal plane. © 2007 Optical Society of America
16 OCIS codes: 100.3010, 110.4500.

17 1. INTRODUCTION

18 The capabilities of optical coherence tomographyl’2 (OCT)
19 and optical coherence microscopy>® (OCM) have been
20 greatly extended by computed imaging and synthetic ap-
21 erture techniques.® Among the recently demonstrated ad-
22 vantages is the ability to resolve features in the sample
23 that are outside the confocal region. Ultimately, a more
24 quantitatively accurate and faithful representation of the
25 sample structure is provided. In this work, the inverse
26 scattering problem in full-field OCT-OCM™?® is investi-
27 gated. A variant where the focus remains fixed at the sur-
28 face of the sample and computed imaging techniques are
29 used to infer the structure is proposed. This modality ob-
30 viates the requirement that the focus be scanned through
31 the sample. A forward model is derived that relates the
32 measured data to the object structure. From this model, a
33 solution of the inverse scattering problem is obtained,
34 thus providing a means to infer the object structure from
35 the data. The achievable resolution and system bandpass
36 are also derived. Finally, a simulation is presented that
37 demonstrates the application of the method.

38 Full-field OCT is capable of imaging an entire plane of
39 scatterers simultaneously, providing a very rapid way to
40 acquire the sample structure. A typical full-field OCT sys-
41 tem is built around a Michelson interferometer with a
42 broadband illumination source (see Fig. 1). Reference and
43 sample beams are derived from the source using a beam
44 splitter. An extended area of the sample is illuminated by
45 a broadband collimated beam through a microscope objec-
46 tive. The objective is focused at the depth of features of
47 interest. A signal is scattered by the sample back through
48 the objective. A reference beam is delayed to return to the
49 beam splitter at the same time that the signal scattered
50 from the sample in the focal plane arrives. The reference
51 and signal are superimposed and focused on a focal-plane
52 array (such as a CCD sensor) where the amplitude of the
53 interference signal is measured. Only those scatterers
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within a coherence length of the focal plane produce scat-
tered fields that will interfere with the reference. By re-
cording the interference, an image of a slice of the sample
around the focal plane is obtained, and the out-of-focus
contributions are removed by coherence gating. By trans-
lating the sample through the focal plane, the scatterers
at many different depths may be imaged and a 3-D struc-
ture obtained.

While this method can be used to obtain high-
resolution images for the entire volumes of a sample
quickly, it has a number of disadvantages. First, the
sample and microscope objective must be translated rela-
tive to each other. This is relatively slow and requires fine
positioning. Second, this method uses time-domain detec-
tion that produces a lower signal-to-noise ratio than
Fourier-domain or frequency-swept OCT.16-20

When the reference arm is adjusted such that the ref-
erence field is synchronized with the scattered field re-
turned from a plane other than (and far removed from)
the focal plane, the interference image obtained at the
CCD appears to be an image of the scatterers in that
plane but out of focus. For a conventionally formed image,
this would likely irreversibly impair the resulting image
quality. However, wide-field OCT is an interferometric
technique, and so the phase as well as the amplitude is
measured. To bring an image into focus, it is simply nec-
essary to appropriately rephase the field. To accomplish
this, we will solve the linear inverse scattering problem.
This serves the additional purpose of providing a quanti-
tatively meaningful reconstruction of the entire object.

Instead of scanning the focus through the sample, we
propose to fix the focus at the surface of the sample so
that no relative translation is needed between the objec-
tive and the sample. A frequency-swept source can pro-
vide a new degree of freedom, replacing a degree of free-
dom lost by fixing the focus. Because the objective and
sample may be left fixed relative to each other, no trans-
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Fig. 1. Schematic diagram of full-field OCT using frequency
scanning and the focus of the objective fixed at the sample
surface.

" lation hardware is needed, which makes placing the ob-
92 jective on a fiber optic or a handheld probe easier. While
93 frequency-swept full-field OCT?! has been achieved, typi-
94 cally the numerical aperture (NA) is low so that the depth
o5 of field is very large and diffraction effects can be ne-
96 glected. However, when a high NA is used, the depth of
o7 field is very short, and accounting for the defocus is nec-
98 essary to preserve the resolution over the entire volume of
99 interest.

100 To understand how computational image formation
101 works in full-field OCT, in Section 2 a physical model for
102 the scattering process is developed, and from this a rela-
103 tionship between the data and the object structure is de-
104 rived. Based on this relationship, in Section 3, the inverse
105 scattering problem is solved in order to infer the sample
106 structure from the data. In Section 4, an analysis of the
107 bandpass and resolving power of the system is given. In
108 Section 5, the results are illustrated by a numerical simu-
109 lation.

1o 2. DERIVATION OF THE SCATTERING
11 OPERATOR FOR FULL-FIELD OPTICAL
12 COHERENCE TOMOGRAPHY

113 An illustration of the full-field OCT system being studied
114 is shown in Fig. 1. This system is based on a Michelson
115 interferometer, but other configurations such as a self-
116 referencing Fizeau design could be used. In this system,
117 the source is a tunable, narrowband laser. The laser is
118 tuned to wavelengths A that correspond to wavenumbers
119 k=2m/\. The laser ideally emits a plane wave (or is spa-
120 tially filtered to produce one).

121 The laser illumination is split into two. One component
122 travels to a reference mirror and is reflected back through
123 the beam splitter to the output port where the focal-plane
124 array is located. The other component is demagnified by a
125 factor 1/M, using a telescope of magnification M. The pur-
126 pose of the telescope is to concentrate the illumination
127 onto the sample and then relay a magnified scattered field
128 to the focal-plane array. This telescope consists of two con-
129 verging lenses, a relay lens and a microscope objective.
130 The illumination on the sample is a normally incident
131 plane wave. The sample scatters some radiation back-
132 ward through the telescope. The telescope is aligned to
133 afocally and telecentrically image22 the front surface of
134 the sample to the focal-plane array. The telescope is in ef-
135 fect two Fourier-transform lenses with possibly nonunity
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magniﬁca‘cion.23 Note that, unlike standard full-field OCT
microscopy, the focus of the objective remains fixed at the
surface of the sample. It is assumed that the telescope is
aberration free and vignetting inside the telescope is neg-
ligible. If the telescope is assumed to correct spherical ab-
erration, then there is a finite volume within the sample
space for which these assumptions hold. A pupil is placed
at the focus of the illumination beam inside the telescope
to spatially filter the backscattered signal to enforce a
well-defined spatial band limit. At the focal-plane array,
the reference and sample signals superimpose and inter-
fere, and the intensity of the interference is detected.

To derive the relationship between the object structure
and the data detected on the sensor, a mathematical
model of scattering of the illumination field by the object
and interferometric detection at the sensor is developed
below. A scalar field is substituted for the electromagnetic
field, neglecting polarization effects. The incident field on
the sample is given by the expression

E,(r;k)=A(k)exp(ikr - z), (1)

where r is a location in the sample volume, % is the illu-
mination wavenumber, A(k) is the power spectral density
of the illumination at frequency %, and z is the direction of
increasing depth into the sample. In this work, it is as-
sumed that the scattering is well modeled by the first
Born approximation. The susceptibility of the object is
given by 7(r) such that 7(r)=0 for z<0. The secondary
scattered field E (r';%) from the object at the plane z=0 is
given by the expression

exp(ik|r’ —r|)
Ey(r';k) =f A°rE;(r;k) nr) ————-. (2)
v [r' -

It is useful to define the 2-D Fourier transform Es(q;k)
=[d%'" E,(r';k)exp(iq-r') with q being a transverse spa-
tial frequency such that q-z=0. Using the plane-wave ex-
pansion of a spherical wave, Eq. (2) is recast to read

E(q;k) = 2miA(k) J d3ry(r)explilq - r]
A%

+iz[k + k(@) Vk.(a) 7!, (3)

where k,(q)=vk%>-g>%. The 3-D Fourier transform is de-
fined such that #Q)=/yd®r 7(r)exp(iQ-r). It is then
found that the right-hand integral can be expressed in
terms of 7(Q):

E(q;k) =2mARE(q) Ha + 2k +E (@]} (4)

The field EAr;k) is produced by the propagation of
E (r';k) through the telescope to the focal-plane array.
Because the telescope is assumed to be an aberration-free
telescope that afocally and telecentrically images the
plane at the sample z=0 to the focal-plane array in the
plane z=z, its function can be modeled as a simple con-
volution with a point-spread function accounting for the
finite bandwidth of the telescope and a magnification fac-
tor given by M. The field at the focal-plane array is given
by EAr;k), and the point-spread function of the telescope
is given by P(r;k). The relationship between E{r;k) and
E (r';k) is thus

136
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189 Ef(r;k)=M‘1fd2r’Es(r’;k)P(r/M—r’;k). (5)

190 We further define the Fourier transforms Ef(q;k)
191=[,_, fd2r E(r;k)exp(iq-r) and the coherent transfer func-
192 tion of the telescope ﬁ(q;k):fer P(r;k)exp(iq-r). Thus
193 the convolution in Eq. (5) is expressed as

190 Edq;k)=ME(Mq;k)P(Mq;k)
195 = 2mMA(R)P(Mq;k)k,(Mq) % Mq + 2[k
196 +k,(Mq)]}. (6)

197 Equation (6) specifies a relationship between Fourier
198 components of the field on the focal-plane array and those
199 of the object susceptibility.

200 The reference mirror is placed to effect a delay of 7 rela-
201 tive to the total delay required for the beam to travel from
202 the beam splitter to the plane z=0 in the sample arm and
203 back. The reference field E,(r;%,7) relayed to the focal-
204 plane array is then given by

205 E, (r;k,7)=A(k)explio(k)T], (7

206 where w(k) is a dispersion relation relating the temporal
207 frequency to the spatial frequency in the sample medium.
208 For example, if the sample medium is vacuum, then
209 w(k)=kc, where c is the speed of light in vacuum. The in-
210 tensity I(r;k,7)=|E,(r;k,7)+EAr;k)|? on the focal-plane
211 array is then given by the expression

212 I(r;k, D) =|AR))? + |E/¢(r;k)|2 +2A(k)Re{Er;k)exp|
213 —iw(k)7]}. (8)

214 The part of the signal that is due to interference between
215 the signal and the reference beams is defined as the data
216 function D(r;k)=A(k)EAr;k). The complex quantity
217 D(r;k) can be estimated from measurements of I(r;%, 7)
218 at multiple values of the delay 7. For example, three mea-
219 surements of I(r;k, 7) such that w7=0, #/2, and 7 may be
220 summed to yield

1-: 1+1: i
D(r;k) = Tl(r;k,O) - Tl(r;k,w/w) + El(r;k,w/Zw).

221 9)

222 This method of phase-shifting interferometry is well
223 known.?* Inserting the results of Eq. (6), we can express
224 the Fourier transform of the data function, which is

225 D(q;k)=Jd2r D(r;k)exp(iq-r), as

226 D(q;k) = K(q;k)7{Mq + 2[k + k.(Mq)]}, (10)
227 where for convenience the bandpass function K is defined
228 K(q,k) = 2miMA(k)*P(Mq;k)k; (Mq). (11)

229 Thus the data are expressed in terms of the 3-D Fourier
230 transform of the sample structure, and so the resolution
231 of the reconstruction of the sample structure is space in-
232 variant. However, vignetting and aberrations in the tele-
233 scope limit the volume over which this resolution can be
234 obtained. As long as the center of the volume of interest is
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along the axis of the objective and on the focal plane of the
objective, and the extent of the volume is much smaller
than the field size the objective is corrected for, the aber-
rations and vignetting of the telescope can be neglected,
and the resolution can be considered space invariant.
However, for a sufficiently large volume of interest the
resolution of the instrument becomes space variant and
sensitive to the specific vignetting and aberration proper-
ties of the objective used.

When obtaining an inverse scattering solution, it is de-
sirable to express Eq. (10) in the operator notation used
for formal statements of relationships between functions
because formal inverse scattering solutions are commonly
expressed in terms of such operators. We define an opera-

tor K such that D=K7%, which relates the sample suscep-
tibility Fourier representation 7 to the data Fourier rep-

resentation D with the relationship of Eq. (10). We define
the axial component of B=Q-Z and the transverse compo-

nent of Q as Q=Q-2zp. The operator K is then given by

D=K7

= f P°QK(a;k) Q)3 (Q - M) B~k ~ k.(Mq)],
(12)

where the delta functions enforce the conditions of the co-
ordinate transformation. This operator concisely contains
both the kernel and the coordinate transformations ex-
pressed in Eq. (10).

To obtain the measurements needed to reconstruct
7(r), one must vary both £ and 7. In practice, however, it
is often slow and inconvenient to adjust both. If one is
willing to tolerate some image artifacts, just one of these
parameters need be scanned. For simplicity, it is assumed
that the pupil function P(r’;k) is real and symmetric,
which is often the case (for example, with a circular pu-

pil), so that P(q;k) is likewise real and symmetric.

One may decide to hold the reference delay position
fixed such that 7=0 to avoid translating the mirror. In
this case phase shifting is not performed, and the imagi-
nary component of D(r;%) is not obtainable. If the imagi-
nary part of D(r;k) is assumed to be zero, then due to the
Hermitian symmetry of the Fourier transform of real

functions l~)(—q,k)=f)(q,k)*. The function 7(Q) then also
has Hermitian symmetry reflected over the axis |q|=0.
The effect is that a conjugate image of the susceptibility is
present, reflected across the plane z=0. Because the delay
7=0 corresponds to the plane z=0, as long as the entire
sample is contained in the half-space z >0, the conjugate
image and the real image do not overlap. In addition,
there is an artifact corresponding to the term |[E«r;%)|? in
Eq. (8). If the magnitude of the sample signal is small
relative to the reference signal, the magnitude of this ar-
tifact is also small compared with the real image and can
be neglected.

For completeness, we note that the method of inverse
scattering can be applied to time-domain full-field OCT as
well. If the delay 7 is scanned as occurs in time-domain
full-field OCT and the laser emits all wavenumbers % si-
multaneously (such as occurs in a mode-locked laser or a
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291 - . . .
spontaneous emission source typical of time-domain

292 OCT), the signal Ip(r;7) is the sum of the interference
293 patterns over all emitted frequencies:

Iytrsn = — mdkdw E)[ + |Efx;k)[*
o r(e;7) =5~ L 7 | (ARF + |Efr;R)F)

* do )
f_w dk 7y D(r;k)exp[—iw(k)7]

+—Re
o

295 (13)

296 The term in square brackets is a background intensity
297 that is independent of 7 and therefore is easily subtracted
298 to remove its contribution from the measured intensity.
299 Neglecting the background intensity and the slowly vary-
300 ing Jacobian (dw/dk), Eq. (13) relates the real part of the
301 inverse Fourier transform of D(r;k) with respect to & to
302 the total intensity I7(r;7). To be able to remove the Ref{ }
303 operation so that a unique solution for D(r;k) can be
304 found, one equates D(r;-k)=D(r;k)". Equation (10) then
305 likewise enforces Hermitian symmetry on 7(-Q)=7(Q)".
306 Therefore in this case the reconstructed susceptibility is
307 assumed to be real valued.

308 In this derivation, the focal plane of the objective and
309 the front surface of the sample are assumed to coincide.
310 This assumption has simplified the preceding analysis
311 and presentation, but it is not required. If the sample is
312 placed such that the focus is below the sample surface by
313 a distance z,, but the delay produced by the reference co-
314 incides with the delay of the sample surface, the data can
315 be modified to account for the displacement. In particular,

316 the modified data f)’(q;k) are related to the sampled data
317 ﬁ(q;k) by

318 D'(q;k) = D(q;k)explizo[k - k.(Mq)]}. (14)

319 This formula can be found by noting that the field relayed
320 by the telescope is now situated at the plane z=z, intro-
321 ducing a factor exp{-iz¢[k+k,(Mq)]} to the right-hand
322 side of Eq. (3). At the same time, the delay reference mir-
323 ror must be moved a distance z, further from the beam
324 splitter so that the new effective delay corresponds to the
325 front surface of the sample, including a factor of exp(
326 —2ikz) to the right-hand side of Eq. (7) to place the ref-
327 erence delay coincident with the front surface of the
328 sample. Effectively, the measured field is computationally
329 propagated at each frequency to the surface of the
330 sample.

331 3. INVERSE SCATTERING IN FULL-FIELD
322 OPTICAL COHERENCE TOMOGRAPHY

333 Using the developed mathematical model, a solution to
334 the inverse scattering problem may be derived. In gen-
335 eral, the problem is ill posed, and so regularization tech-
336 niques will need to be used to produce a stable solution.
337 Because the forward problem is linear, we derive a linear-
33g ized inverse based on least-squares error. To do so, we
339 first specify the complete forward operator K such that
340 D=K1#, which relates the data to the object structure
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D(r;k)=K11=fd3r'K(r’,r;k)77(r’), (15)

where the kernel K(r';r;k) of the operator K is given by
K(x',r;k) =MA(k)? exp(ikr’ - 2)

exp(ik|r” - r'|)
Xf d®r"——————P(x/M —-x";k).
r”-2=0

|r// _ r!|
(16)

Given this relationship between the data and the object,
the pseudoinverse solution 7%*(r) for object susceptibility
is

7*(r) = arg min|D - Ky[?

n
= arg min fd2r’fdk|D(r’;k)—K1;(r)|2. am
”

Expressed in operator notation, the solution to this least-
squares problem is given by the pseudoinverse #»*
=(K'K)"!K'D, where K is the Hermitian conjugate of K
and K'K is assumed to be invertible. It is much simpler to
formulate the least-squares problem in the Fourier do-
main, using the operator K of Eq. (12). In terms of the op-
erator K, the Tikhonov-regularized least-squares solution
7" =(K'K+I)"IK'D, with K being the adjoint operator
to K and the positive constant y being the regularization
parameter. The adjoint is explicitly given by the expres-
sion

=KD= J d?q f dkK (q;k)D(q;k)6?

X(Q-Mq)dB-k—-k,(Mq)]

_ QF+p8%\ _
=K“<M-1Q; ”2ﬁ )D
x(M‘lQ 'Q2+'32)M‘2 p
[I» 2B B+\’/—B2+Q%7
(18)

with K(q;k) taken from Eq. (11). Given the expressions
for K and K", the solution 7t is given by

2, o2 2, 2
5<M_1Q|;Q|;IB>I?<M_1Q;Qi)

7Q) 2 2
7'(Q) = .
_ Q+p%\|” BB +QF
K\ M'Q;——— || +yM>———
2B B
(19)

4. RESOLUTION AND BANDPASS

Equation (10) expresses a relationship between the 2-D
Fourier transform of the data and the 3-D Fourier trans-
form of the object. As mentioned previously, this relation-
ship implies that the resolution of the reconstructed ob-
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373 ject is space invariant. With suitable specifications of the

374 instrument, one can identify the region of the Fourier
375 space of the structure function that can be sampled. This
376 region is called the band volume and is an analogue to the
377 band limit of 1-D signals, except that the band volume
378 consists of the interior of a shape in 3-D Fourier space
379 rather than just a 1-D interval.

380 There are two specifications of the instrument that de-
381 termine the shape of the band volume. The first is the
382 bandwidth of the illumination, which is specified by the
383 interval of frequencies k,,;, <k <k,,,.. The other param-
384 eter is the numerical aperture (NA) of the imaging system
385 0 <NA<1. A particular NA implies a pupil bandpass:

386 P(q;k)=1 for |q| < (NA)Z,

387 P(q;k)=0  for|q| > (NA)E. (20)

388 These inequalities constrain the volume of the data func-
ase tion D(q ;%) that can be sampled. The band volume is the
390 intersection of the volumes defined by the two inequali-
391 ties expressed in terms of the object 3-D spatial frequency

392 Q:

393 kmin < Q2/(2Q . i) < kmam
204 (2Q-2)(@% - (@-2)%/@> < NA. (21)

395 Figure 2 shows an example of a band volume for an in-
396 strument with 0.5 NA and bandwidth from 0.8%,,,.<k
397 <k,,4.- There are two views so that both the top and the
398 bottom surfaces are visible. The top and bottom surfaces
399 are spherical (with different radii and centers), and the
400 side surface is a right circular cone with its vertex at the
401 origin.

402 In the limit of small bandwidth and low NA, the band
403 volume shape approaches that of a circular cylinder. In
404 this limit, the resolution in the axial direction is deter-
405 mined solely by the bandwidth, and the transverse reso-
406 lution is determined by the NA, as is normally assumed in
407 OCT. However, the band volume becomes less cylindrical
408 and more cone shaped as the NA and bandwidth increase,

Spatial
Frequency 18
Depth (k) 16

-05
-0.25

-0.5
-025

0 -0
0.25 0.25

Spatial Frequency
Transverse (k,,,,)

05 05
05 05

Spatial Frequency
Transverse (£,,,,)

0.25 025
0 | 0

-0.25
Spatial 2
Frequency 1.8
Depth (£,,0) | ¢

Fig. 2. (Color online) Calculated band volume shape for a full-
field OCT system. All units are in terms of the maximum spatial
frequency of the illumination.
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and axial and transverse resolutions are dependent on
both the bandwidth and the NA.

5. SIMULATION

To demonstrate the expected performance of inverse scat-
tering in full-field OCT, a simulation was performed. An
object consisting of randomly placed point scatterers was
imaged with a simulated full-field OCT system, and then
the structure of the object was reconstructed from the
data. The simulated object volume cross-sectional area
was 25 wavelengths in depth and 40 by 40 wavelengths in
the transverse direction. The illumination source had a
Gaussian spectrum with a 40% fractional full width at
half-maximum bandwidth (corresponding, for example, to
320 nm of bandwidth centered at 800 nm, which can be
achieved by a Ti-sapphire laser).22" The simulated NA of
the imaging objective was 0.5.

Data were synthesized by first calculating the scattered
field E (r';k) using Eq. (2), where the object 7(r) was
taken to be a collection of randomly chosen discrete
points. The synthetic interferograms were calculated as a
function of illumination spatial frequency that corre-
sponds to how the data would be acquired from a swept
source. Then the synthesized data function was calcu-
lated using the relation D(q;k)=A(k)E(q;k)P(q;k),
where E‘s(q ;k) was obtained from E(r’;%k) by a 2-D Fou-
rier transform. Finally, a 2-D inverse Fourier transform
yielded D(r’;%). By assembling the synthetic data by su-
perimposing the signals produced by discrete scatterers,
the accuracy of the resampling-based inverse method
could be better verified because the synthetic data were
computed without resampling.

The synthetic data are shown in Fig. 3. Figure 3(a)
shows D(r;k), which describes the data that would be re-
corded on the focal-plane array. Because this is difficult to
interpret, we have also included in Fig. 3(b) the time-
domain signal I7(r; 7) given by Eq. (13), which appears to
more directly represent the underlying object. It may be
seen in the plots of I'x(r; 7) that as the delay 7is increased
the planes more distant from the focus are acquired and
manifest increasing distortion. This corresponds to the
standard degradation one expects from defocus when in-
verse scattering is not used.

The following steps were followed to compute the image
estimate 7*(r) from the synthetic data D(r;k):

1. D(q;k) was computed from D(r;k) using the 2-D
Fourier transform.

2. The kernel K(q;%) was calculated using Eq. (11).

3. Equation (19) was used to compute %*(q;%k) from
K(q;k) and D(q;k).

4. The function %*(q;%), which is uniformly sampled in
the variables q and %, is resample to be uniformly
sampled in the variables q and B using the relation %
=(M?q?+8%)/28. The resampled version is 7*(Q), where
the transverse component of Q is Mq and the axial com-
ponent is .

5. The 3-D inverse Fourier transform of 7"(Q) is per-
formed to find 7(r).
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Fig. 3. (Color online) Simulation of inverse scattering in full-
field OCT. (a) The magnitude of the raw interference patterns re-
corded as a function of illumination spatial frequency. (b) A pro-
jection of the time-domain data for a collection of randomly
placed point scatterers imaged with full-field OCT. (c) A projec-
tion of the computed reconstruction of the scatterers. All length
units are in the center wavelength of the illumination, and spa-
tial frequencies are inverse wavelength units. Three planes are
denoted that are shown as en face images in Fig. 5.

66 The resampling step (step 4) is the key step in compen-

467 sating for out-of-focus diffraction effects and therefore
468 needs further discussion. Equation (10) specifies a rela-

469 tionship between D(q;k) and 7(Q). In the continuously
470 sampled case, there is a one-to-one correspondence be-

471 tween values of D and 7 so that this relation is straight-
a72 forward. However, in practice the data D(r;k) is dis-
473 cretely sampled and is typically uniform in r and k. The

474 Fourier data D(q;%) are therefore sampled uniformly in g
475 and k. However, the reconstructed Fourier data of the
476 susceptibility %*(Q) need to be uniform in q and g so that
477 the 3-D inverse Fourier transform can recover a uni-
478 formly sampled reconstruction of 7(r). The resampling
479 step interpolates points on the function 7"(q;%) that are
480 uniformly spaced in B. Figure 4 is a plot of the points on a
481 given function that are sampled in the forward and in-
482 verse problems. Each of the intersections of grid curves
483 indicates a point on the function that is interpolated to
484 form the resampled function. Figure 4(a) is the resam-
485 pling that maps from 3-D object space Qy,3 to the data
486 space q,k for the forward problem. Figure 4(b) is the re-
487 sampling from the data space q,k to the object space
488 Q, B. The resampling occurs only along lines of constant
489 , so that only 1-D interpolation is needed. In this simu-
490 lation, a 1-D cubic B-spline interpolator was used to in-
491 terpolate from the coordinates q+z[k+£k,(q)] to Q as
492 shown in Eq. (19).
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Finally, after the 3-D inverse Fourier transform of
7*(Q) is taken, the reconstruction #*(r) results, which is
shown in Fig. 3(c). As can be seen, the reconstruction cor-
rects for diffraction and produces pointlike images. Figure
5 shows three en face planes corresponding to the depths
A, B, and C marked in Fig. 3. The left column is the time-
domain data measured in each of the en face planes, and
the right column is the image of the scatterers computed
by inverse scattering. Planes that are further from the fo-
cus appear to exhibit poorer resolution when viewed in
the raw data because of the effect of defocus. One can also
see the interference fringes between the images of adja-
cent scatterers. Despite the interference between scatter-
ers, each point is clearly resolved with space-invariant
resolution in the reconstructed image. This shows the al-
gorithm correctly separates the interference patterns

B k
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Fig. 4. (a) Resampling grid to compute synthetic data 1~)(q;k)
from object 7(Q). (b) Resampling grid to compute reconstruction
of 7(Q) from ﬁ(q;k). Note that the transverse components of Q
are the same as Mq, and the axial component of Q is 3. To form
the full 3-D Fourier space, both grids are revolved around their
respective vertical axes.
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599 from scatterers to produce high-resolution images.

510 To show the overall improvement to the data, Fig. 6 is
511 volume isosurface plots of the raw data in Fig. 6(a) and
512 the reconstructed computed image in Fig. 6(b). Again, the
513 blurring of the data is increasingly apparent with increas-
514 ing distance from the focus plane at the top of the volume.
515 In addition, stripelike features can be seen for the isosur-
516 faces corresponding to interfering scatterers. This method
517 can correct for the diffraction effects and produce point-
518 like images in Fig. 6(b) for each of the scatterers. The
519 planes of the scatterers need not be so widely separated
520 for the algorithm to distinguish them, but this was delib-
521 erately done to make the diffraction effects easier to visu-
522 alize.

s23 6. CONCLUSION

524 We have derived and demonstrated a method of perform-
525 ing inverse scattering in full-field OCT to reconstruct im-
526 ages of out-of-focus planes, which obviates the need to
527 scan the focus through the volume. The solution of the in-
528 verse scattering problem implies that, neglecting vignett-
529 ing and aberrations, the achievable resolution is space in-
530 variant and is the same away from the focus plane as at
531 the focal plane. Vignetting limits the volume over which
532 the resolution is space invariant because the solid angle
533 over which the scattered light is collected decreases at
534 points further from the objective aperture. Other factors
535 limiting reconstruction quality are multiple scattering
536 within the sample and sample motions during data acqui-
537 sition causing phase error. This method may lead to faster
538 and more accurate full-field OCT imaging because data
539 acquisition can be very rapid, requiring only that the 2-D
540 interferogram be sampled while the frequency of the
541 source is scanned. As data acquisition speed and compu-
542 tational speed continue to increase, perhaps video-rate
543 scanning of 3-D volumes will become possible.

s44  Inverse scattering in full-field OCT also offers a signal-
545 to-noise advantage over scanned beam OCT. In conven-
546 tional scanned beam OCT, which utilizes a focused Gauss-
547 ian beam rather than plane-wave illumination, it was
s48 shown® that the magnitude of the signal captured from
549 scatterers away from the focus is inversely proportional to
550 the distance from the focus. In practice, this places a limit
551 on the axial range of the sample that can be imaged be-
552 fore the signal-to-noise ratio becomes unacceptable. There
553 is no such attenuation of the signal away from the focus
s54 in the full-field OCT case. However, this advantage may
555 be offset because full-field OCT may be less able to dis-
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criminate between single-scattering and multiply scat-
tered photons because of its multimode detection.
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