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Abstract—Imaging resolution in optical coherence tomography
(OCT) is a key determinant for acquiring clinically useful optical
biopsies of tissues. In contrast to light or confocal microscopy,
the axial and transverse resolutions in OCT are independent
and each can be analyzed individually. A method for mitigating
transverse blurring and the apparent loss of transverse resolution
in OCT by means of Gaussian beam deconvolution is presented.
Such a method provides better representation of a specimen by
using known physical parameters of a lens. To implement this
method, deconvolution algorithms based on a focal-dependent
kernel are investigated. First, the direct inverse problem is in-
vestigated using two types of regularization, truncated singular
value decomposition, and Tikhonov. Second, an iterative expec-
tation maximization algorithm, the Richardson–Lucy algorithm,
with a beam-width-dependent iteration scheme is developed. A
dynamically iterative Richardson–Lucy algorithm can reduce
transverse blurring by providing an improvement in the trans-
verse point-spread-function for sparse scattering samples in
regions up to two times larger than the confocal region of the lens.
These deblurring improvements inside and outside of the confocal
region, which are validated experimentally, are possible without
introducing new optical imaging hardware or acquiring multiple
images of the same specimen. Implementation of this method in
sparse scattering specimens, such as engineered tissues, has the
potential to improve cellular detection and categorization.

Index Terms—Deconvolution, focusing, Gaussian beam,
Richardson–Lucy, transverse resolution.

I. INTRODUCTION

THE ABILITY to visualize cellular features in tissue is both
clinically important for disease diagnosis and scientifically

important for understanding fundamental biological processes.
A central component to the pathological examination of cel-
lular features is the visualization of the nucleus, including its
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shape, contours, inclusions, optical staining and light-scattering
properties, and its size, especially in relation to the cytoplasm
within the cell [1]. Various stages of dysplasia and neoplasia are
based primarily on the nuclear-to-cytoplasmic (N/C) ratio, and
determining this ratio for regions in tissue can have a significant
life-determining impact on the diagnosis, the prognosis, and the
treatment regimen. The gold-standard for the microscopic in-
vestigation of pathology is the use of stained histological sec-
tions from resected tissues, observed most commonly with light
microscopy. The use of selective stains on micron-thin tissue
sections enables pathologists to highlight and visualize nuclear
features with ease.

In many medical and surgical scenarios, it may be more
advantageous to visualize cellular features in vivo, without the
need to invasively sample, process, section, and stain tissue
specimens to make a diagnosis. In addition, the increasing
interest in tissue engineering has prompted the need to more
fully visualize and understand the complex process of tissue de-
velopment under controlled conditions and in three dimensions,
including the need to understand how cells function, proliferate,
and organize into biocompatible tissues [2]. Advanced optical
imaging techniques have been developed to improve our ability
to visualize cellular features, including confocal, multiphoton
microscopy, and optical coherence tomography (OCT).

OCT is an emerging, real-time, near-infrared imaging and mi-
croscopy technique capable of micrometer-scale resolutions in
biological specimens [3]–[5]. OCT is based on the detection of
backscattered light from tissue and is analogous to ultrasound
imaging except near-infrared light is detected rather than sound.
OCT can perform in vivo imaging deep within highly scattering
tissues due to its ability to coherently reject multiply-scattered
photons, and can image tissue without the addition of exogenous
contrast agents. While OCT can generate cellular-level resolu-
tion images, the technique does not currently have the advan-
tage of using selective stains or contrast agents to label and im-
prove visualization of cell nuclei as in histopathology. Visual-
ization of cell nuclei using OCT is based on the optical scat-
tering properties of the cell and its local environment [6]. There-
fore, techniques that can be developed to improve the visualiza-
tion of cells and nuclei will not only advance the use of OCT
for medical and surgical diagnostic applications [7], but also en-
able OCT to visualize complex cellular processes deep within
three-dimensional (3-D) engineered tissue constructs [8].

The ability to visualize cells and cellular features with OCT
depends primarily on achieving high imaging resolution and
preserving narrow point-spread-functions in the axial and trans-
verse directions. Axial resolution is dependent on the optical
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Fig. 1. (a) Michelson interferometer setup for use in OCT. P is the reference
path, P is the sample path, BS is the beam splitter, and h is the distance traveled
by the reference mirror. (b) Interferogram of an impulse response for an OCT
system with a low coherence source having a Gaussian spectrum and coherence
length L .

coherence in an OCT system and inversely proportional to the
spectral bandwidth of the optical source. Conceptually, optical
coherence is related to the wave field interactions. At optical
frequencies, first-order field quantities fluctuate too rapidly to
be detected directly. A direct detection method can only result
in collecting data for mean power quantities over time periods
far greater than the length of the period for a field. Therefore,
by assuming ergodicity in the mean, mean square, or correla-
tion function of the fields, the corresponding time-averages con-
verge to the named ensemble averages. To facilitate these mea-
surements, typically a Michelson interferometer is employed
in an OCT system [Fig. 1(a)]. As the mirror in the reference
arm moves, the light coming into the detector varies between
states of constructive interference and destructive interference.
A plot of the intensity versus difference in reference and sample
path lengths is called an interferogram; it is the cross-correlation
signal. Fig. 1(b) is a portion of an interferogram displaying the
point-spread function (PSF) for a single perfect reflector, such as
a mirror. The interferogram is a real signal; thus, it has positive
and negative frequencies. The interferogram can be used to gen-
erate a complex analytic signal that contains only positive fre-
quencies. This is useful in OCT for generating phase and magni-
tude information which are used to generate Doppler OCT and
structural OCT images, respectively [9]–[11]. The complex ana-
lytic signal is most relevant when deciding the feasibility of each
algorithm presented in the following sections. Namely, some
algorithms have positivity constraints [12], [13], which do not
apply to OCT refractive index reconstruction, but still may be
useful when imaging point-like scatterers.

The coherence length is a measure of the full-width at
half-maximum (FWHM) of the interferogram envelope, which
is inversely proportional to the spectral bandwidth of the optical
source. Thus, the coherence length directly determines the axial
resolution in OCT images and for a Gaussian spectrum, the free-
space axial resolution is given by

(1)

where is the central wavelength and is the FWHM of
the power spectrum. The equation implies that either a shorter
wavelength or a wider bandwidth of the power spectrum is
needed to achieve a higher axial resolution.

Fig. 2. Geometry of a Gaussian beam for low and high NA lenses. These
geometries are contrasted with the assumption of a collimated axial OCT scan.
b is the confocal parameter, w is the beam radius at the focus, and L is the
coherence length of the source.

OCT images are typically formed by assembling adjacent
axial scans to generate a two-dimensional, cross-sectional
image [4], [5]. Ideally, the beam is perfectly collimated at every
point in the sample. However, in the Gaussian optics model,
the geometry of the beam profile after passing through a lens
exhibits an hourglass shape as illustrated in Fig. 2. This profile
assumes a Gaussian beam with a direction of propagation
incident normal to the lens. The limitation of the Gaussian
beam model compared to the physical reality is that usually
when light enters the sample, the index of refraction varies, thus
distorting the profile. Therefore, the transverse resolution is not
constant, but has a dependence on the depth and the focal region
of the lens. Lenses with a higher numerical aperture (NA) are
able to focus a beam to a smaller spot size but produce a more
pronounced hourglass shape. Hence, high NA lenses are typi-
cally used for optical sectioning in planes parallel (en face) to
the surface of the specimen such as in confocal or multiphoton
microscopy [14]. Lenses with a lower NA are typically used
for OCT, where a relatively uniform transverse resolution over
the entire axial (depth) scan is preferred. Typically in OCT, the
confocal parameter (distance about the focus where the beam
width is relatively uniform) is chosen to closely match the
depth of imaging penetration in a particular tissue type.

The transverse resolution is characterized by the beam
profile incident on the sample and the confocal parameter . The
transverse resolution is determined by the diameter of the spot
size or the width of the incident beam on the sample where
the edges are determined by a decrease in intensity by a factor
of and is approximated by

(2)

where is the focal length of the lens, is the beam diameter
incident on the objective lens, and is the central wavelength.
The confocal parameter can be defined as

(3)

Equation (3) indicates that the size of the confocal region
decreases as the square of the transverse resolution increases.
Transverse resolution is significantly reduced and features are
blurred outside of the confocal region. In OCT, the focusing
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Gaussian beam profile remains fixed, while varying the refer-
ence arm pathlength scans the depth at which backscattered
signal is detected. In OCT images, if a high NA objective is
used and the depth scan length exceeds the dimension of the
confocal region, then the widening of the transverse PSF will
be evident in the image and features located outside of the
confocal region will appear blurred. Our motivation for this
research is to digitally reduce the transverse blurring outside
of the confocal region by using deconvolution techniques. The
solution will be to first determine how OCT measurements
depend on the object when blurred with a Gaussian beam, and
then find a suitable estimate of the original object.

A diversity of deconvolution algorithms has been devel-
oped for estimating a genuine signal based on idealizations of
physical properties. For instance, the astronomy community
has developed several algorithms, which have proven to be im-
portant for extracting relevant information [15]. Furthermore,
optical microscopy has benefited from use of these restoration
techniques, which solve problems such as out-of-focus flare in
fluorescence imaging [16]. Several deconvolution algorithms
have been implemented in OCT to correct for axial blurring
[17]–[19]. The deconvolution employed in these papers is
based on the blurring induced by the incident electric field
convolved with the impulse response of an object. The primary
deconvolution techniques that have been used are the con-
strained iterative restoration algorithm and the minimum-norm
least-squares-error linear solution. These algorithms are de-
signed for a single axial scan only and do not incorporate
information as defined by the Gaussian optics model. Exper-
imental setups have utilized additional optical hardware such
as adaptive optics or axicon lenses to increase the transverse
resolution over large depths in the specimen [20], [21]. Dy-
namic focusing techniques have been implemented for OCT
and optical coherence microscopy to generate images with
high transverse resolutions over relatively large depths, which
can be useful for en face imaging [4], [22]. Although these
methods are feasible, each requires specific hardware modi-
fications that can be expensive or difficult to control in the
OCT system setup. One algorithm for generating OCT images
with high transverse resolution over large apparent depth scans
involves composite (C-mode) imaging [23], and is analogous
to one used in ultrasound imaging. This algorithm involves
the acquisition of multiple OCT images, with the beam focus
placed at incrementally increasing depths within the specimen.
From each image, data located within the short confocal region
is segmented out and subsequently assembled to produce a
single composite image. A significant advantage of the trans-
verse deconvolution algorithm presented here is the reduction
of the transverse blurring and the apparent improvement in
transverse resolution inside and outside of the confocal region
without the addition of new optical hardware or the need to
acquire multiple images of the same specimen.

The main objective of this paper is to investigate a set of al-
gorithms for reducing the transverse blurring within an OCT
image by deconvolving the Gaussian beam blurring caused by a
lens. The next section demonstrates a general approach to mod-
eling the physical parameters that characterize the lens. Then, a
number of solutions to remove the effect of the Gaussian beam

blur are discussed. Furthermore, simulations for each of these
solutions are used to assess algorithm performance. Finally, the
algorithms are applied to experimentally acquired OCT images
to further characterize the Gaussian beam problem.

A more uniform PSF throughout an image can impact the way
an object is categorized. For example, a biological specimen
with pre-cancerous cellular changes may go unnoticed if it lies
in an imaging region where the blurring occurs [24], [25], and
a varying PSF could result in a misdiagnosis [26]. Finally, there
is the potential for reducing data acquisition time since a higher
percentage of the OCT image may be more clinically useful.

II. PHYSICAL MODEL

To analyze the transverse PSF in OCT, it is necessary to
create an accurate mathematical model of the transverse beam
dynamics in the OCT system. Specifically, the Gaussian beam
profile of the lens characterizes the depth-dependent transverse
resolution. A Gaussian beam with a 3-D vector position
can be represented by the following equation:

(4)

where the Guoy phase shift is

(5)

the radius of curvature of the wavefront is given by

(6)

the depth dependent beam waist size is given by

(7)

the radius in Cartesian coordinates is given by

(8)

and the optical source wavenumber (neglecting dispersion) is
given by

(9)

where is the group velocity (envelope speed), is a con-
stant amplitude, is the center wavenumber, is the center
frequency, is the frequency of the light, is the waist ra-
dius, and are the transverse coordinates, and is the axial
coordinate where at the boundary of the confocal re-
gion [27]. The phase-front emitted from a scattering object in
the Gaussian beam has a curvature dependent on the phase term

. The phase-fronts are approximately planar at
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the beam waist, but become increasingly parabolic at distances
away from the waist (outside of the confocal region). At dis-
tances even farther from the beam waist, the Gaussian phase-
front has approximately spherical constant-time surfaces. In this
work, all of the phase-fronts are approximated as planar since
the areas near the confocal region are of primary interest. Fig. 3
shows the curved phase-fronts in gray and the planar phase-
fronts as dashed lines. Rewriting the Gaussian beam equation
for planar phase-fronts gives

(10)

The first Born approximation is usually sufficient to accu-
rately reconstruct an OCT image. Fig. 3 also diagrams the first
Born approximation as applied to the Gaussian beam decon-
volution problem. The Green’s function is given by and
represents the reflection due to a change in index in the object
being imaged, . The Gaussian beam profile is given by

, where is the distance from the center of the lens.
Thus, a first Born (single scattering) approximation of the elec-
tric field scattered by the object is given by

(11)

where denotes 3-D spatial convolution and

(12)

A single axial scan of OCT data can be written as the projec-
tion of reflected light returning into the lens from the Gaussian
beam. is the amplitude of the collected electric field
scaled relative to the incident field that has been scattered by
the object

(13)

Notice that and are also functions of . When the
spherical waves from the Gaussian beam are scattered off of the
object, they are matched to the mode re-entering the fiber. Thus,

is approximated by a delta function on the sphere. The
field collected by the fiber is approximated in the paraxial zone
by

(14)

Note that the square operation in (14) is on the complex
Gaussian beam profile, and not its squared magnitude. Next, by
integrating over the frequencies present in the bandwidth of the
laser, where is the power spectral density, we can generate
a formula for the axial scan data as a function of time and space

(15)

Fig. 3. Gaussian beam wavefronts (solid gray) from nonlinear exponential
quantities and an approximation (dashed) with the quantities removed, ~r is the
vector from the center of the lens to a scatterer, G(~r) is the Gaussian envelope,
�(~r) is the Green’s function, and��(~r) is the index of refraction change in the
imaged medium. Vertical arrows represent the incident and reflected light path
for the first Born approximation (single backscatter).

Equation (15) can be rewritten using (14) and (10) to get

(16)

where produces coherence gating, the quantity
in square brackets represents a separable Gaussian convolution
kernel having a depth-dependent standard deviation , and
the remaining terms represent a depth-dependent magnitude and
phase. The coherence gating, the magnitude, and the phase in
(16) are only depth dependent and, thus, not dependent on the
transverse coordinates. Therefore, the convolution integral of
electric fields can be treated as a convolution integral of inten-
sities, which can be considered separately [17]. The separable
Gaussian kernel allows us to estimate a -blurred version of the
object for an axial scan, . Namely, the bracketed quan-
tity in (16), which contains the convolution integral of the trans-
verse coordinates, can be rewritten as

(17)

where the new bracketed term is a -blurred version of the object
and can be denoted by . Thus, by applying a deconvo-
lution algorithm to each of the approximated Gaussian kernels
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in the direction, the object can be reconstructed with blurring
in only the direction.

Equation (17) applies to any index of refraction distribution,
. To this point, the forward problem has been de-

scribed where the fringe data retrieved is complex analytic. In
some cases, for use with a positivity-constrained algorithm or
with an intermediary demodulation circuit, signal analysis of
the magnitude data is desired. Also, for objects consisting of
sparse point-like scatterers, such as would be the case for cells
distributed in a 3-D engineered tissue matrix, the points will be
sufficiently angularly or axially separated so that the point re-
sponses will not overlap in the interferogram. Thus, the magni-
tude of the interferogram can then be approximated by summing
the magnitudes of the interferograms of the constituent points
separately, rather than the full complex signals. In this case, we
approximate (17) as a convolution of magnitudes

(18)

Similarly, deconvolving each of the magnitude Gaussian kernels
in the direction, the object can be reconstructed with blur-
ring in only the direction. The -blurred image represents the
cross-sectional OCT image, which is scanned along the and
directions. Since the Gaussian kernel is separable, the deconvo-
lution could also be computed for the -blurred image, along the

and directions. This physical model of the Gaussian beam
can now be used in context with our proposed algorithms.

III. METHODOLOGY

The physical model is a linear system that takes the general
form , where is a depth-de-
pendent linear operator. For simplicity, the forward problem will
be defined for each depth as , where is a row of
the OCT signal , is the row-wise refractive index of
the object , is the depth , dependent Gaussian
beam blurring operator, and is noise generated by electronic or
shot noise contributions. Note, is the convolution matrix asso-
ciated with each depth-dependent -tap Gaussian filter, where

from (17), and the singular value de-
composition (SVD) is given by

. . .
...

...
. . .

...
...

. . .
...

. . .
. . .

...

(19)

where and are a set of orthonormal vectors and and
column vectors, respectively, for the diagonal matrix of

singular values .
For the underdetermined case, an optimal criterion consid-

ered is the minimum norm solution, which will minimize the
variance

(20)

This solution is precisely the pseudoinverse [28].
Since this design models noise, there will be a need for a regu-

larized solution; otherwise, the solution will be overly sensitive
to changes in the OCT signal due to noise. Next, the truncated
SVD (TSVD) is used to provide a regularized solution

(21)

where is determined by a regularization parameter, , which
is a corresponding threshold such that all are retained
[29]. This method is chosen because it reduces the emphasis on
smaller singular values in the minimum norm solution, which
are more correlated to the noise. Tikhonov regularization is also
employed

(22)

where is a regularization parameter, which can be estimated to
be half the noise variance for a reasonable solution when is the
identity matrix [30]. There exist methods for a robust data de-
pendent , but prior numerical experiments justify our choice of

as being the identity matrix [31]. Tikhonov regularization of-
fers a method for compromising between the size of the residual
norm and the side constraint . Thus

(23)

An iterative deconvolution scheme, known as
Richardson–Lucy, converges to the maximum likeli-
hood solution for Poisson statistical data, which is appropriate
in some cases for modeling optical data that has shot noise, a
result of counting statistics [32]. Each pixel in the reconstructed
image is updated on every iteration. The algorithm is
implemented in the following manner:

(24)

where is the PSF, in this case, the Gaussian blurring kernel
[12], [13]. This method forces the restored image to be positive
for each iteration. Thus, the use of complex analytic data as re-
trieved from OCT may not be fully utilized. However, since a
magnitude image is a subsampled version of the subresolution
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complex analytic signal, the complex information may be ne-
glected in the case of transverse blurring for the reconstructed
image as shown in (18).

The Richardson–Lucy algorithm has been shown to monoton-
ically reduce the Csiszár’s I-divergence for successive iterations
between the measured blurred image and a blurred version of
the estimated image [33]. Unfortunately, once the I-divergence
between iterations is minimized, the effect of additional itera-
tions only serves to introduce error. For this reason, we would
like to have an algorithm that adapts to the amount of defocus in
the image. Thus, an iteration number having a dependence di-
rectly related to the standard deviation of the Gaussian blurring
kernel is appropriate. The dynamic iteration method was devel-
oped empirically in simulations and applied accordingly for the
real data.

Performing convolution as a zero-padded cyclic convolution
in the Fourier domain decreases the computational expense
of these algorithms. The Richardson–Lucy algorithm often
requires multiple iterations, thus increasing the computational
expense compared to the regularization algorithms.

IV. SIMULATIONS

The simulations of the OCT system follow a method devel-
oped by Marks, et al. [18]. In this OCT model, filtering the inter-
ferogram with an appropriate laser spectrum simulates the axial
resolution.

To create simulation fringes similar to OCT for a set of
point (delta) scatterers, (reflections from subresolution-sized
particles), four parameters must be taken into account.

1) The point scatterers have random phase (to model
random positions of particles situated within a coherence
volume).

2) The system has bandwidth support limited by the laser
spectrum (bandwidth of 100 nm, centered at 820 nm).

3) The lens creates a Gaussian beam depth-dependent trans-
verse blur (focal length of mm, spot size of

m, confocal parameter of m, and diameter of
beam on the lens of mm).

4) The system has Gaussian white noise (SNR dB).
After creating point scatterers, the first parameter above is

easily simulated by multiplying each of the scatterers by a
random phase value. Next, the band-limited support on the
signal defines the axial resolution of the system. Therefore, the
column data is band limited by taking the fast Fourier transform
(FFT), multiplying by an appropriate filter ( nm)
with cut offs at and , and then taking the inverse
FFT (IFFT). The effects of these two parameters can be seen
in Fig. 4(a) and represent our deblurred and denoised image
where delta scatterers are oversampled in the axial direction.

Next, to simulate the Gaussian beam blurring, which would
be caused by a lens as described in (16), a matrix is created
where each row is a depth-dependent PSF. Thus, each row of
the image is convolved with the corresponding Gaussian kernel
whose standard deviation is given in (7). Finally, to generate a
noisy version of the simulation image

(25)

Fig. 4. Simulated OCT image of oversampled point scatterers. (a) Before (left)
a Gaussian beam blur and (right, bottom) zoom on scatterers, when parameters
1 and 2 are satisfied. (b) After (left) a Gaussian beam blur and (right, bottom)
zoom on scatterers, with SNR = 35 dB, and when parameters 3 and 4 are
satisfied.

where is a vector of independent identically distributed noise
samples. The signal-to-noise ratio (SNR) is determined by the
variance of the image, , over the variance of the noise

SNR dB (26)

The standard deviation of the noise, , was determined for a
SNR value of 35 dB, which is less than the typical dynamic
range for data contained within an OCT image. The method-
ology for this testing is to characterize the resilience of the al-
gorithm. Testing algorithms with a low SNR serves to evaluate
the algorithm performance and determine useful regularization
parameters. The resulting image after addition of Gaussian blur-
ring and white noise is seen in Fig. 4(b). All simulated fig-
ures have the same scatterers at the same positions for direct
comparison.

The pseudoinverse with TSVD regularization was used to
generate the minimum norm solution using both the magnitude
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Fig. 5. TSVD, � = 0:01, SNR = 35 dB, using (a) magnitude signal (ringing
artifacts) and (b) complex analytic signal (minimal ringing).

and complex analytic fringe data. Several values for the regular-
ization parameter were explored, but optimally bal-
anced the noise with the reconstruction (verified with the Picard
condition) [34]. Fig. 5(a) shows the reconstruction based on only
the magnitude data. Reconstruction artifacts such as ringing are
quite apparent in this image, whereas the reconstruction with the
complex analytic signal has minimal ringing artifacts, as seen
in Fig. 5(b). The artifacts are an effect of low-pass filtering in
the transverse direction. The high-frequency data is lost when
calculating the magnitude of the complex data, thus producing
sidelobes of the individual scatterers in the spatial domain. The
resulting sidelobes appear as ringing artifacts around each point
scatterer.

TheminimumnormsolutionwithTikhonovregularizationwas
acquired using both the magnitude and complex analytic fringe
data. The -curve, the plot of the seminorm versus the
residual norm , isa meansofdisplaying the influenceof
aregularizationandaidsinchoosinganappropriateregularization
parameter, [34]. Several values for the regularization parameter
were explored, but optimally balanced the seminorm
with the residual norm when . Fig. 6(a) shows the

Fig. 6. Tikhonov regularization, � = 0:02, SNR = 35 dB, using
(a) magnitude signal (some ringing artifacts) and (b) complex analytic signal
(minimal ringing).

reconstruction based on only the magnitude data. Reconstruction
artifacts such as ringing are somewhat apparent in this image,
whereas the reconstruction with the complex analytic signal
has minimal ringing artifacts, as seen in Fig. 6(b).

The Richardson–Lucy algorithm was implemented, and
comparisons demonstrate the improvement of blurry regions
of the image with increasing number of iterations. The
Richardson–Lucy algorithm makes use of only the magnitude
fringe data since it has a positivity constraint for each iteration.
Fig. 7(a) shows the magnitude data reconstruction for one
iteration of the Richardson–Lucy algorithm. Comparatively,
since Gaussian beam blurring is a physical parameter, a
number of iterations can be associated with each focal depth
in the lens. Fig. 7(b) shows the magnitude for a dynamically
iterative reconstruction where the number of iterations is depth
dependent. Specifically, the iterations increase proportional to
the size of the Gaussian blurring kernel from 1 to 21. This
method was chosen by monitoring the convergence of the
absolute difference images at each iteration .
Other authors have addressed the optimality criterion for
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Fig. 7. Richardson–Lucy reconstruction using magnitude data, SNR = 35 dB,
for (a) one iteration and for (b) depth-dynamic iterations (1 to 21 linearly spaced
from focus to image edge).

selecting parameters for algorithms like the Richardson–Lucy,
which lead to image convergence [35]. Since Richardson–Lucy
sharpens more for each iteration, the parameters are chosen
according to a minimum acceptable PSF width, specified by
the resolution.

For each of these algorithms, Table I lists and compares the
mean-square error

(27)

where and are the image dimensions. The dynamic
Richardson–Lucy algorithm reconstructs the image with the
minimum mean-square error of all the tested algorithms. These
results provide quantitative justification for employing the
dynamically iterative algorithm on real data.

V. EXPERIMENTAL DATA

A tissue phantom was designed to test the PSF of our
experimental setup. To design an appropriate tissue phantom,

TABLE I
MEAN-SQUARE ERROR OF RECONSTRUCTION

USING EACH DECONVOLUTION METHOD

Fig. 8. Application of the dynamic Richardson–Lucy algorithm on a tissue
phantom. (a) Original and (b) Richardson–Lucy corrected image.

it is desirable to include individual scatterers on the size
order of cellular structures and near our resolution limit.
A solution of 4.0 g of polydimethylsiloxane (PDMS) was
mixed with 7 mg of Magnetite Fe O , each having an
average diameter of 1.9 m. These microparticles act as point
scatterers in OCT, thus providing a physical embodiment of our
simulated experiment. Furthermore, these microparticles are
used to simulate individual cells/nuclei in engineered tissues
[8]. Images were taken at an axial scan rate of 25 Hz, with
a lens having a 20-mm focal length and a 6-mm diameter, a
system bandwidth of 100-nm FWHM, a center wavelength
of 800 nm, and 15.6 mW of power incident on the sample.
The width of the unfocused beam incident on the lens is
1.3 mm, which dictates a NA of 0.065 in free space. The
calculated axial resolution is 3 m, the transverse resolution
was 15 m, and the confocal region was 430 m. Since the
Richardson–Lucy algorithm provides the best results in the
simulations, Fig. 8 shows the original and Richardson–Lucy
corrected images. The final deblurred region can be estimated
by measuring the distance of the resolved points outside of
the confocal region. The criteria for determining a resolved
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Fig. 9. Application of the dynamic Richardson–Lucy algorithm to in
vivo cellular data. OCT images of the mesenchymal cells of the Xenopus
laevis, represented (a) without deconvolution and (b) with the dynamic
Richardson–Lucy algorithm. Comparison of cellular feature within the dashed
box outside the confocal region shows more distinct cell boundaries and
features in (b).

point is that the energy compaction of particles outside of the
confocal region in the new image is equivalent to the energy
compaction of particles on the edge of the confocal region in
the original image. Based on this image data, the deblurred
region extended over 500 m above and below the confocal
region, or a total distance of approximately 1.43 mm.

A second experiment was conducted by acquiring OCT image
data from an in vivo Xenopus laevis (African frog) tadpole, a
common developmental biology animal model and one used
routinely for demonstrating OCT imaging performance [6].
Imaging along the dorsal surface of the tadpole, details of
mesenchymal cells were imaged with a 20-mm focal length
lens at an axial scan rate of 40 Hz. The image has the
same corresponding axial and transverse resolutions, and,
therefore,the same confocal parameter, as the previous image
(Fig. 8). Fig. 9 illustrates the original and corrected images.

The original image exhibits a widening transverse PSF out
of the confocal region due to the effect of the Gaussian beam,
which spreads the energy of a cellular boundary or feature
across several pixels, thus blurring and misrepresenting the
cellular structure. By comparing cellular regions outside of
the confocal region in the two images [boxed regions in
Fig. 9(a) and (b)], the boundaries of the cell membranes and

the nuclei appear more distinct in the deconvolved image
[Fig. 9(b)].

VI. CONCLUSION

In this paper, we have demonstrated several deconvolu-
tion methods for mitigating the transverse blurring in OCT.
From the simulations, both the regularized solutions and the
Richardson–Lucy algorithm solution produce comparable
results, although there is a drawback to the regularized solution
when using the acquired data, which seems to be a result of
phase instability among acquired adjacent axial scans. The
Richardson–Lucy algorithm appears to be more robust to these
errors since the unstable phase fronts among axial scans do
not greatly modify the magnitude image. Ideally, phase stable
measurements are important for continued work with the
regularized solution. Furthermore, a complete solution to the
inverse scattering problem is likely the next step for improving
performance of the regularized solution. This is because a
complete regularized solution would assume a strict model,
whereas the dynamic Richardson–Lucy algorithm assumes an
approximated model.

Some of the limitations of the Richardson–Lucy algorithm are
a result of our inability to incorporate speckle noise, dispersion,
multiply-scattered light, and limited bandwidths into the algo-
rithm. Yet, it offers the lowest mean-squared-error compared
to the other deconvolution methods evaluated. This is because
the algorithm tends to concentrate energies near boundaries,
which provides a good approximation to cellular boundaries
and subcellular features, and tends to be more robust against
errors from the defocused blur. The Richardson–Lucy algorithm
deblurs the intensity of an image, therefore concentrating the
power near the strong scatterers. These strong scatterers often
correspond to the cell nuclei and membranes. Therefore, the
implementation of a dynamically iterative Richardson–Lucy
algorithm performs well for distinguishing physical features of
the specimen at the cellular level. In particular, the transverse
deblurring effect of this algorithm can extend the apparent
confocal region of the image, providing less transverse blurring
in the OCT image over extended distances, without the need
for implementing new optical hardware or the acquisition,
segmentation, and assembly of multiple OCT images from the
same specimen. The improvements afforded by a dynamically
applied Richardson–Lucy algorithm are most pronounced when
imaging specimens at the cellular level and at the resolution
limits afforded by current OCT systems.
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