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ABSTRACT 

We have developed and implemented a system which can acquire, process, and display the solution of the inverse 
scattering problem for optical coherence tomography (OCT) in real-time at frame rates of 2.25 fps for 512 X 1024 
images.  Frames which previously required 60 s to process, now take under 0.5 s, an improvement in processing speed 
by a factor of over 120 times.  An efficient routine was designed which requires two interpolations of the columns, one 
one-dimensional real-to-complex fast Fourier transform (FFT) of the columns, and two two-dimensional FFTs. The 
limits to speed now rely on the parallelizability of the processing hardware. Our system provides quantitatively 
meaningful structural information from previously indistinguishable scattering intensities and provides proof of 
feasibility for future real-time systems.   
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1. INTRODUCTION
For a long time, advances in optical microscopy have relied on the design of physical optical elements to produce 

images of samples directly.  However, recently, with the advent of scanning modalities such as optical coherence 
tomography1,2 (OCT), image quality is determined as much by algorithm development as the quality of optical elements.  
The use of computed imaging and synthetic aperture techniques3-7 has extended the capabilities of OCT and optical 
coherence microscopy8-10 (OCM).  Such computed imaging techniques are derived from physics-based OCT scattering 
models.  One of the recently demonstrated advantages is the ability to resolve features in the sample that are outside of 
the confocal region.  Ultimately, a more quantitatively accurate and faithful representation of the sample structure is 
computed.  

We demonstrate the real-time solution to the inverse scattering problem for optical coherence tomography (OCT), 
which allows us to reconstruct cellular features in tissues for light scattered outside of the focal plane orders of 
magnitude faster than previously reported5.  These results demonstrate that all planes can be reconstructed with the same 
resolution as typically only found at the focus in OCT.  Currently, OCT systems are implemented for real-time 
visualization which is useful for immediate feedback in time critical situations or for monitoring transient dynamics.  
The design of a real-time system to provide spatially-invariant resolution has the potential to be a tremendous benefit to 
the microscopy community. 

2. MATHEMATICAL FORMULATION 
We assume a linear relationship between the sample susceptibility , and the measured signal S.  Our method to 

solve the inverse problem is first to define the forward problem based on the physics of scattering,  
S K ,      (1) 
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where K is the operator for the OCT system connecting sample structure and signal.  Next, unfiltered reconstruction 
obtained by application of operator adjoint is defined,  

A K S .      (2) 
Following this, we diagonalize and apply the normal operator, K K .  The combination of these leads to a relatively 
simple minimum norm solution,  

1ˆ ( )K K K S .     (3) 
Should we need to compensate for noise in the signal, then we can implement a Tikhonov regularized solution, i.e. 

1ˆ ( ) ( )K K L L K K w ,    (4) 
where w is the additive noise in the collected signal and K w  is a representation of the OCT signal, S. Such a linear 
model is implicitly the result of taking the first Born approximation for the scattering.  OCT is especially amenable to the 
first Born approximation since contributions from higher order scattering will tend to be delayed by a longer time and 
thus fall outside the coherence time of the reference.

The generic description above takes more specific from through analysis of our particular apparatus.  The field is 
assumed to be described in the frequency domain by an ensemble of fields at frequencies  

kc
n

,  (5) 

where n is the index of refraction.  Each member of the ensemble is taken to be a Gaussian beam with beam waist given 
by 

( )oW k
k

.       (6) 

where  is  divided by the NA of the output lens of the system.  The beam profile in the waist plane is given by the 
expression 

2

22 ( )
0 ( , ) oW kg k e

r

r       (7) 
The incident field at any point in the sample may be written in terms of the plane wave decomposition 

( )2
2
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where  
( )

0( , , ) ( , )zik zg z k e g kqq q ,       (9) 
2 2( )zk k qq ,       (10)  
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The backscattered field in the Born approximation is given by 

3( , , ) ( ) ( , , ) ( , ) ( )
V

U k A k d r G k g ko or r r r r r r ,    (12) 

where or  is the transverse position of the beam, ( , , )G kr r is the Green’s function, ( , )g kor r  is the translated incident 
field, and A2(k) is the power spectral density. 

The fiber is assumed to be single mode.  The coupling efficiency of a field ( , , )U kor r , into the fiber through the 
optical system is equal to the projection of the field (in the usual 2 2( )L R  sense) onto the output mode of the system.  
Thus, the signal ( , )S kor  coupled back into the fiber over the surface of the aperture output/input plane Surf is given by 

2( , ) ( , , ) ( , )
Surf

S k d rU k g ko o or r r r r .    (13) 

Substituting Eq. (12) for ( , , )U kor r , we obtain 
2 3( , ) ( ) ( , , ) ( , ) ( ) ( , )

Surf V
S k A k d r d r G k g k g ko o or r r r r r r r .   (14) 
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The photodetector measures the interferometric cross-correlation between the reference and sample signals, Eq. (14), as 
the relative time delay between the two is varied.  The reference field is well characterized and so S may be determined 
from the measurements and we will assume that S is our observable.  The forward problem may be cast such that K takes 
a diagonal form.  The Green’s function ( , , )G kr r  can be Fourier decomposed to be space invariant such that 

2 ( )
2

1( , , ) ( , , )
2

iG k d qe G z z kq r rr r q ,    (15) 

For our case, the boundary of the surface area will be at 0z = 0, and thus the signal becomes 

( ) ( )2 3 2 2 2 ( )
6

( )( , )
2

i ii

Surf V

A kS k d r d r d q d q d q e e eo oq r r q r rq r r
or ( , , ) ( , , ) ( , , ) ( )G z z k g z k g z kq q q r     (16) 

Now, integration can be done with respect to r .
Note:

2
2

1 ( )
2

ie d rq r q .      (17) 

( ) ( )2 2 2 3 ( )
4
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i ii
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A kS k d q d q d q d r e e eo oq r r q rq r
or q q ( , , ) ( , , ) ( , , ) ( )G z z k g z k g z kq q q r       (18) 

Now, we can integrate with respect to r  for the transverse coordinates leaving z  integration unchanged.  
( ) ( )2 2 2

2

( )( , ) ( )
2

i iA kS k d q d q d q dz e eo oq r q r
or q q ( , , ) ( , , ) ( , , ) ( ; )G z z k g z k g z k zq q q q q     

(19) 
Using the sifting property of the delta function, we integrate over q ,

( )2 2
2

( )( , )
2

iA kS k d q d q dz e oq q r
or ( , , ) ( , , ) ( , , ) ( ; )G z z k g z k g z k zq q q q q   (20) 

where ( ; )zq  is the Fourier transform of ( ; )zr .  Taking the Fourier transform with respect to the last spatial 
coordinate, or , where 

2( , ) ( , ) i
oS k S k e d roQ r

oQ r ,       (21) 
yields, 

2 2( , ) ( ) ( )S k A k d q d q dzQ q q Q ( , , ) ( , , ) ( , , ) ( ; )G z z k g z k g z k zq q q q q   (22) 

Integrate over spatial frequency component, q , and apply sifting theorem to get 
2( , ) ( )S k A k d q dzQ ( , , ) ( , , ) ( , , ) ( ; )G z z k g z k g z k zq q Q q Q    (23) 

Now, find the Fourier decomposition of the full volume 
2

2

1( , ) ( , , )
2

ig k d qe g z kq rr q ,     (24) 

and
( )2 2

2 0

1( , ) ( , )
2

zik zi i

z
g k d qe e d r g k eqq r q rr r    (25) 

Thus,
( ) 2

0
( , , ) ( , )zik z i

z
g z k e d r g k eq q rq r .    (26) 

Without loss of generality, we can assume the measurement plane is at z = 0.  Thus, 
( )2( , ) ( ) zik zS k A k d q dz e q QQ ( , , ) ( , ) ( , ) ( ; )G z k g k g k zq q Q q Q .   (27) 

Although not done here, notice that any position z0 can be incorporated into Eq. (27) as shown in reference 3.   
For each transverse wave vector you get a phase component, shown by 
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Thus, the angular spectrum amplitude of the free space Green’s function is given by the expression, 
( )( )2( , , )

( )
zik z z

z

iG z z k e
k

qq
q

.     (30) 

The signal coupled back into the fiber now becomes: 
( ) ( )2 2( , ) ( )

( )
z zik z ik z

z

iS k A k d q dz e e
k

q q QQ
q

( ) ( ) ( ; )g g zq Q q Q    (31) 

Remember that for the longitudinal wave vector 
2 2( )zk k qq .     (32) 

Notice that ( )zk q  is an even symmetric function so that  
( ) ( )z zk kq q .      (33) 

By separating terms and transforming q q , a convolution sum can be formed, 

( ) ( )2 2( , ) ( ) ( , ) ( , ) ( ; )
( )

z zik z ik z

z

iS k A k d q dz e g k e g k z
k

q Q qQ q Q q Q
q

.  (34) 

The convolution of two functions of the form, 
( )( , ) ( , )zik zf k e g kqq q ,     (35) 

and
1( , ) ( , ) ( , )zh k k k f kq q q ,     (36) 

can be described by 
( , ) ,H k f h kq q ,     (37) 

which finally gives us 
( , ) 2 ( ) ( , , ) ( ; )S k i A k dz H z k zQ Q Q .     (38) 

where  
( ) ( )2 1( , , ) ( , ) ( , )

( )
z zik z ik z

z

H z k d q e g k e g k
k

q Q qQ q Q q
q

.    (39) 

From this point, there are several methods to approximate a solution which diagonalizes the operators K and K*.  In 
OCT, making the paraxial approximation3 provides adequate results, thus the calculations will be carried out with the 
paraxial approximation first and then related to the solutions using the non-paraxial equivalent solution4.  In the paraxial 
approximation, the factor ( )zk kq  in Eq. (36) so that the following simplification is made: 

1( , ) ,H k k f f kq q        (40) 

where  
( )( , ) ( , )zik zf k e g kqq q .      (41) 

Using Parseval’s theorem, Eq. (38) reduces to a relatively simple spatial relationship. 
1 3 2

0 0( , ) 2 ( ) ( , ) ( )S k i k A k d r f kr r r r     (42) 
where, 

2 2( , ) 2 ( , )if k d qe f kq rr q .     (43) 
Incorporating the Gaussian beam’s frequency-dependent waist size, Eq. (11), yields the following: 

2
2

2 2 22( , )
qiz k q kf k e eq       (44) 
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where nk
c

.  Note that in the Fresnel Zone the follow approximation can be used: 

2
2 2 1

2
qk q k
k

     (45) 

Thus,
2

2
22( , )

zq i
kkizkf k e eq .     (46) 

Now take the Fourier transform to simplify the convolution.  The Fourier transform pair for a Gaussian is 
22 2

22 22
rq b
be b eF.T. ,     (47) 

which implies that  
12 2 2 2

2 2
12

2 2
2( , ) ( )

q z r zi i
k kk kizk izkzf k e e f i e e

kk
q rF.T. . (48) 

and square since convolution in the spatial frequency domain is equivalent to multiplication in the spatial domain, 
12 2

22 222 2( , )
r zi

kkizkf k e er .    (49) 
Now, by taking the inverse Fourier transform, the kernel H takes the form 

2 2

2
12

2 221 21( , ) ( , )
4

q zi
kkizkH k k f f k iz e e

k
q q .   (50) 

It is convenient to introduce the following notation 
121( )

4
I k iz

k
.      (51)

Represented in terms of transverse spatial frequency coordinates, we can formulate the forward problem over an 
orthogonal transverse spatial frequency space.  We reformulate Eq. (38) as a type one Fredholm integral equation, so that 
the kernel of the operator K is apparent, 

2( , ) ( ; ) 2 ( )S k K z i A k dz d QQ Q (2) ( ) ( , , ) ( ; )H z k zQ Q Q Q .  (52) 
In this representation the kernel is diagonal.  Next, we incorporate the spatial frequency dependence, k, and the 
expression for ( , , )H z kQ , a part of which is the Gaussian beam constraint, 

2( , ) ( ; ) 2 ( )S k K z i A k dz d QQ Q
2 2

24(2) 2( ) ( ) ( ; )
Q zi

kkiz kI k e e zQ Q Q .  (53) 

By taking the Fourier transform with respect to z’, substituting 1( ; ) ( , )
2

i zz d eQ Q , we obtain, 

2 (2)( , ) ( ) ' ( ) ( )S k iA k d d Q I kQ Q Q
2 2

22 4
2

4
( , )

Q
Q kk

k
e Q ,  (54) 

where  
121( )

4
I k iz

k
.       (55) 

The adjoint solution then is defined by applying the adjoint of the linear operation found in (54), 

      2( , ) 2 ( ) ( ) ( )A i dkd Q I k A kQ Q Q
2 2

2
2

42 ( , )
4

Q
kQk e S k

k
Q .   (56) 

Which may be seen to be equivalent to 
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The normal operator can be written 

2 2( , , , ) (2 ( )) ( ) ( ) ( )K K k A k k I kQ Q Q Q
2 2

2

2 2

22 2
4

2
1
2 2 2 2

2
4

Q
k

Qk

Q e
k

.  (58) 

Thus, the pseudo inverse is written 

( , )Q

2

0

2 2

2 2
1 4

1
2

2 2 2 2
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4

Q
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Q Q . (59)

 The corresponding non-paraxial solution4 for the forward model is given by  
2 20

24

2 ( 2)2
2

2( ) 2 ( ) 2 ( 2)
( 2)

Qz
k

ik z

z
z

k eS k i A k e k
k

Q

Q Q Q
Q

    (60) 

where  is the three-dimensional Fourier transform of .  It may be noted that solution is distinct from the paraxial 
approximated solution (essentially a small q  expansion of ( )zk q ) which fails as 1NA .  The kernel of the forward 
operator of the non-paraxial solution is given by 

2 20
24

2 ( 2)2
2

2( ) 2 ( ) [ 2 ( 2)]
( 2)

Qz
k

ik z

z
z

k eH k i A k e k
k

Q

Q Q
Q

,   (61) 

where ( ) ( ) ( )S k d H kQ Q Q .  The kernel of the normal operator is given by the expression  

2 2 2

2 2
( ) ( 1/ 2 ) ( )

2
H H f Q

Q
Q Q ,   (62) 

where  
2 20

24

2 ( 2)2
2

2( ) 2 ( )
( 2)

Qz
k

ik z

z

k ef k i A k e
k

Q

Q
Q
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The kernel of the Tikhonov regularized psuedo-inverse with a regularization constant N  is given by the expression  
2 2

2

( ) 1/ 2
( )

( ) 2 ( 2)z

f k k Q
H k

f k Nk k

Q
Q

Q Q
. (64) 

The object structure is then given by the pseudo inverse solution 

2 2
2 1

2

( ) ( )( )
( ) 2 ( 2)z k Q

f k S k
f k Nk k

Q QQ
Q Q

 (65) 

The object structure in the coordinate domain is obtained by applying the three-dimensional inverse Fourier transform. 
Figure 1 displays the relationship between the resampling variables, Fig. 1 (a), and the resampling grid, Fig. 1 (b). 
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Fig. 1.  (a) A relation between the spatial frequencies of the signal space and the spatial frequencies in the object space.  (b) 
Sampling lattice for selected ( , |Q|) values on a uniform (k, |Q|) grid. 

3. EXPERIMENTAL METHODOLOGY 
Coherence imaging measurements are made using a spectral-domain OCT system, Figure 2.  A femtosecond laser 

(Kapteyn-Murnane Laboratories, Boulder, CO), Figure 2a provides the broadband illumination.  The bandwidth of the 
source is 100 nm, with a center wavelength of 800 nm.  The first-order field quantities fluctuate too rapidly to be 
detected directly, thus the optical signal must be launched into an optical fiber-based Michelson interferometer, Figure 
2b.  The illuminating source is divided by a 50:50 fiber-optic coupler (splitter) for interference measurements and a 
90:10 coupler for reference spectrum measurements.  The reference arm contains a delay mirror and the sample arm 
contains a lens (objective) to focus the Gaussian beam into the sample, Figure 2c and 2d, respectively.  In the sample 
arm, the objective has a focal length of 12 mm, a spot size of 5.6 m, a confocal parameter (depth-of-focus) of 239 m, 
and a NA of 0.05.  The spectral detector collects light from the sample and reference arms, Figure 2e.  In the 
spectrometer, the light is collimated with a 100 mm focal length achromatic lens and dispersed from a blazed gold 
diffraction grating (53004BK02-460R, Spectra-Physics)., with 830.3 grooves per millimeter and a blaze angle of 19.70 
degrees for a blaze wavelength of 828 nm   The dispersed optical spectrum is focused using a pair of achromatic lenses 
each having a focal length of 300 mm.   The focused light is incident upon a line-scan camera (P2-2x-02K40, Dalsa.) 
which contains a 2048-element charge-coupled device (CCD) linear array with 10 x 10 m detection elements.  The 
camera operates at a readout rate of over 29 kHz, thus one axial scan can be captured during an exposure interval of 
about 34 s. The tissue phantom was placed on a stage and the 2-D image data was acquired by scanning the incident 
beam in the transverse plane using a pair of computer-controlled galvanometer-scanning mirrors.  The frame rate 
depends on the number of axial scans acquired per image or volume.  In our experiment, a series of spectra images (500 
X 2048 pixels) was each acquired in 17 ms.  In Figure 2f, a frame capture card (PCI-1428, National Instruments, Inc.), 
collects camera data and writes it to the RAM.  The frame capture card receives an external trigger from a galvanometer 
controller card (PCI-6711, National Instruments, Inc.) which activates the frame acquisition.  The system CPUs are dual 
Intel Xeon processors operating at 3.0 GHz each. 
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Fig. 2.  (a) Ti:Sa laser.  (b) Isolator and fiber optic launch. (c) Sample arm. (d) Reference arm. (e) Spectral detector. (f) Dual
processor server. 

A real-time system has been developed and implemented which can acquire, process, and display the inverse 
scattering solution for OCT in real-time at frame rates of 2.25 fps for 512 x 1024 images.  Frames which previously 
required 60 s, now take under 500 ms, an improvement in processing speed by a factor of over 120 times.  The 
improvements are due to a number of factors initially added for cautious prototyping including, but not limited to, the 
following:  

(a) (b)

(c) (d)

(f)(e)
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1. Time-expensive commands in Matlab were used for interpolation. 

2. Interpolation routines were in Matlab scripts with ‘for’ loops rather than vectorized or compiled. 

3. Images were oversampled between 2 and 3 times as much as necessary. 

4. All calculations were using double precision instead of float. 

5. All scans were phase stabilized whether they required this or not.  

6. Coefficients of resampling were computed during each execution, when they could be precomputed. 

The new design is an efficient routine which requires two interpolations of the columns, one one-dimensional (1D) 
real-to-complex (R2C) fast Fourier transform (FFT) of the columns, and two 2D FFTs.  Figure 3 shows the data flow 
chart starting with data acquired from the spectral-domain OCT system.  The processing is designed similar to the tables 
in reference 3 except that the non-paraxial solution from reference 4 is used.  Interpolation with cubic B-splines was used 
for both dispersion compensation and the inverse scattering solution.  The FFT routine from the Intel Math Kernel 
Library (MKL) was used for all 1D and 2D transforms.  The 1D FFT used 2048 x 512 real values, while the 2D FFTs 
used 1024 x 512 complex values.  S(r,t) is shifted by half such that the focus will be placed at the edge of the image.  
S(r,t) is zeroed for values near DC to remove the noise caused by the average intensity on the detector.  Memory was 
preallocated, and interpolation coefficients were precomputed.   

S(r, ) S(r,k)

S(r,t) S(r,t) S(q,k) (q, ) (r,z)S(r,t) | (r,z)|

A

A

B

A’

B’

|A’|

|B’|B

grid FFT shift
zero
DC

2D 
FFT-1 grid

2D 
FFT

mag
shift

Fig. 3.  Computational flow chart for memory allocation for each step of the inverse scattering algorithm. 

We have imaged a tissue phantom and are able to determine previously indistinguishable scatterers from the 
reconstruction.  The reconstruction better represents the tissue phantom and thus, provides better visualization and a 
potential for more accurate tissue classification and disease diagnosis.  Our system provides quantitatively meaningful 
structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future 
real-time systems.  Figure 4 shows a screen shot of the data captured from the real-time OCT and 2D inverse scattering 
system.  The future limits to speed are now reliant on the parallelizability of the processing hardware.  The system 
provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and 
provides proof of feasibility for future real-time systems. 
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Fig. 4. Tissue phantom imaged with real-time inverse scattering OCT system.  The original OCT image (left) and the 
inverse scattering solution (right) are computed in real-time. 

4. CONCLUSIONS 
Through modifications of reconstruction algorithm and hardware upgrades, we have demonstrated the feasibility for 

real-time imaging of the inverse scattering solution.  The system described achieves spatially invariant resolution for all 
depths in a cross-sectional scan.  Such a system has a potential to provide important cellular scattering information when 
used to image biological tissues.  Furthermore, existent OCT systems may be modified to produce similar results with 
only minor modifications to the processing algorithm. 
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