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ABSTRACT
We present a novel scheme for blind suppression of noise from

a sequence of optical coherence tomography (OCT) images, such
as those collected on a real-time OCT imaging system. In con-
trast to virtually all existing approaches to OCT denoising, our
technique is specifically aimed at collections of images and is
able to exploit the correlations among those images. The pro-
posed method approximates the optimal linear denoising operator
for log-transformed data using a 2-D discrete wavelet transform
(DWT) to decorrelate in space and the discrete Fourier transform
(DFT), or an estimated transform, to decorrelate in time. Decor-
related coefficients are then denoised and converted back to the
image domain to produce denoised OCT images. Real-time OCT
data processed with this technique shows significant reduction in
noise.

1. INTRODUCTION

Optical coherence tomography is a near-infrared imaging and mi-
croscopy technique capable of micrometer-scale resolutions in bi-
ological specimens [1]. The imaging principles behind OCT are
similar to those of ultrasound imaging, except OCT relies on
backscattered light instead of backscattered sound. OCT is capa-
ble of real-time in vivo imaging with multiple frames per second
with little image degradation due to motion of the specimen [2,3].

Despite the high-resolution OCT provides, human interpreta-
tion of fine details is often complicated by the presence of noise.
Noise in OCT images is primarily speckle, which has prompted
the development of various hardware-based techniques, such as
polarization diversity, spatial compounding, and frequency com-
pounding. Although such techniques do reduce speckle, each in-
volves hardware modifications that can be expensive and incon-
venient to implement. This has led to various post-processing al-
gorithms, such as median filtering, homomorphic Wiener filtering,
and multi-resolution wavelet analysis, to suppress noise in OCT
data. Wiener filtering utilizes the second-order signal and noise
statistics and is useful in removing additive white Gaussian noise,
but is not effective at suppressing multiplicative speckle noise. Ar-
senault addressed this problem by applying the Wiener filter to the
logarithm of an image and computing the exponent of the resulting
data to obtain the final image [4].

In this paper, we describe a multi-dimensional denoising pro-
cedure for post-processing a sequence of OCT images collected
from a real-time or three-dimensional OCT imaging system. Un-
like existing approaches to suppression of noise in OCT data, our
technique is specifically aimed at the multiple images case and is
therefore able to leverage the additional information these multiple
images provide.

Section 2 discusses multi-dimensional denoising of a sequence
of OCT images. Before motivating and describing the proposed
denoising method, optimal denoising of an OCT image sequence,
and its associated issues, is explored. In Section 3, the proposed
technique is applied to a sequence of 50 in vivo OCT images to
demonstrate its ability to reduce image noise.

2. MULTI-DIMENSIONAL DENOISING OF AN OCT
IMAGE SEQUENCE

Real-time OCT imaging produces a time-series of images, each of
which must be estimated to suppress noise. The most basic ap-
proach to this problem would be to process each image separately,
treating it as independent of the others. A major shortcoming of
this type of scheme is that it fails to capitalize on any correlations
between the images. A more sophisticated technique would at-
tempt to compute the denoised estimate by accounting not only
for the information contained in the individual images, but also for
the correlation among them.

Let Yn (mx, my) denote position (mx, my) of the nth ob-
served image from a sequence of N OCT images with spatial di-
mensions Mx × My . The observed OCT signal may be modeled
as

Yn (mx, my) = Sn (mx, my)Vn (mx, my) + Wn (mx, my)

where Sn (mx, my) is the desired OCT signal that has been cor-
rupted by the multiplicative noise Vn (mx, my) and the additive
white Gaussian noise Wn (mx, my). The multiplicative noise
term models speckle noise present in OCT data and the additive
noise captures the sensor noise.

2.1. Logarithmically Transformed OCT Data

The combination of additive and multiplicative noise in OCT data
makes direct processing of the OCT images a challenging task. A
common approach to this address this problem is to log-transform
the observed data prior to processing. To understand the effects
this transformation has on OCT data let

X = Sn (mx, my) Vn (mx, my) Z = Wn (mx, my)

for some n, mx, and my, which separates the multiplicative and
additive components into X and Z, respectively.

It is well known that the observed OCT signal generated from a
polarized light source and free of additive noise obeys a Rayleigh
distribution and has a probability density of:

p(X) =
X
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Fig. 1. Numerically computed probability density of the differ-
ence between the logarithm of the complete observation and the
logarithm of the speckle only observation. Larger values of E [X]
correspond to the speckle being more dominate. This translates to
the difference distribution being approximated more closely by a
zero-mean Gaussian distribution.

where k is a constant factor, Ar is the signal amplitude from the
reference arm, and σ is the standard deviation [5]. It can be shown
[6] that the probability density of the natural logarithm of this value
is

p(XL) =
e2XL
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where xL = loge (X). Though not exact, the distribution of
xL can be reasonably approximated with a Gaussian distribution.
Thus, log-transforming an OCT signal (corrupted only by speckle)
approximately converts the multiplicative speckle noise into addi-
tive Gaussian noise.

If applying a logarithm to an OCT signal converts the mul-
tiplicative speckle into approximately Gaussian noise, a natural
question to ask is what is the effect of this transformation on the
original additive noise. Let R denote the difference between the
logarithm of the complete observation and the logarithm of the
speckle only observation

R = loge (X + Z) − loge (X)

The distribution of this difference signal was found numerically for
the case where Z is a standard normal and X is a Rayleigh with
various mean values. As can be seen from Figure 1, this difference
value is also well approximated by a Gaussian distribution. This,
combined with the results for a speckle only observation, implies
that loge (X + Z) is reasonably well approximated by a signal
plus additive Gaussian noise. And, when speckle is the dominate
noise, as is often the case, the additive log-domain noise is zero
mean. Therefore, we will model the logarithm of the observed
data as

yn (mx, my) = sn (mx, my) + wn (mx, my)

where yn (mx, my) = loge (Yn (mx, my)), sn (mx, my) is the
log of the desired signal, and wn (mx, my) is zero-mean Gaus-
sian noise that is independent of the signal and captures the total
additive noise in the log-domain.

2.2. Optimal Denoising of an OCT Image Sequence

The basic task of denoising is to provide an estimate of the noise-
free signal. In the context of the problem at hand, we aim to esti-
mate log-domain signal sn (mx, my) given the log-domain obser-
vation yn (mx, my).

Collapsing our notation into vector form, let y, s, and w denote
the length-NMxMy vectors containing the elements (ordered by

space and then time) of the observed signal, desired signal, and
additive noise, respectively, in the log-domain. A linear estimate
of the signal from the observation is of the general form

ŝ = Gy

where G is an NMxMy × NMxMy matrix implementing the
estimator.

Recalling that our log-domain noise is modeled as zero-mean
and independent of the signal, the minimum mean-square error
estimator is the Wiener filter, which has the well known form

Go = Rss (Rss + Rww)−1

Here Rss = E
ˆ
ssT

˜
and Rww = E

ˆ
wwT

˜
are the NMxMy ×

NMxMy signal and noise correlation matrices, respectively. The
eigenexpansion of Go is

Go = UssΛGU
H
ss (1)

UH
ss will optimally decorrelate the signal s in both time and space

and is therefore termed the temporal-spatial KL transform.

2.3. Blind Denoising of an OCT Image Sequence

Despite its mathematical optimality, the Wiener filter is generally
useful only in theory as its computation requires knowledge of the
second-order signal and noise statistics and the inversion of a large
matrix (NMxMy × NMxMy). These facts motivate us to create
an alternate denoising technique for a series of OCT images.

From (1), it can be seen that the Wiener filter creates an estimate
of the true (log-domain) signal by

1. decorrelating the signal in both space and time
2. weighting the decorrelated coefficients
3. recorrelating the signal in both space and time

Our approach to creating an alternate denoising scheme for a se-
quence of OCT images to mimic the Wiener filter’s behavior of
decorrelate, weight, recorrelate, in a manner that does not suffer
from the issues associated with the optimal estimator. This type
of “approximate Wiener filter” approach has been successfully ap-
plied to other multi-dimensional estimation problems [7].

In general, the correlation between any two samples in the se-
quence of images will depend on both the spatial locations of the
samples and the indexes of the images those samples are part of.
That is, E [sn1

(mx1
, my1

) sn1
(mx1

, my1
)] is dependent on all

six indexes, which makes accurate modeling of this correlation
difficult. To simply this problem, we will assume that Rss may
be separated as

Rss = Rstst
⊗ Rssss

(2)

where Rstst
is the N × N matrix capturing the temporal corre-

lation of the data and Rssss
is the M × M matrix capturing the

spatial correlation (in both dimensions). Although the validity of
this assumption will depend on the imaged data, it should be rea-
sonable in most cases since Rstst

and Rssss
can always be set to

the average correlation matrix in the corresponding dimension. In
addition, this assumption of separability has been successfully as-
sumed in several applications requiring multi-dimensional decor-
relation [7, 8]

Eigenexpansion of Rstst
and Rssss

gives

Rstst
= Ust

Λst
U

H
st

Rssss
= Uss

Λss
U

H
ss
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UH
st

and UH
ss

are termed the temporal KL transform and the spa-
tial KL transform as they optimally decorrelate the data in time
and space, respectively. Applying a basic property of Kronecker
products [9], we can show that

U
H
ss = U

H
st

⊗ U
H
ss

(3)

The significance of (3) is that the spatial-temporal KL transform,
which optimally decorrelates the signal in both space and time,
can be decomposed into the spatial KL transform and the tempo-
ral KL transform. This allows us to independently address, and
approximate, the spatial and temporal decorrelation.

2.3.1. Approximating the Temporal KL Transform

The role of the temporal KL transform is to temporally decorrelate
the signal. The ideal approximation to UH

st
should therefore pro-

vide excellent decorrelation of the underlying signal in the time
dimension without requiring knowledge, statistical or otherwise,
of the that signal.

In many situations, the object being imaged may fit into a classi-
fication that makes temporal decorrelation more straight forward.
For example, if the real-time imaging is performed on an object
that has periodic (e.g. cardiac or respiratory function) or slowly
varying motion, then the frequency domain representation of a sin-
gle pixel (over all images) will often contain a small number of
significant coefficients. In such cases, the DFT will provide rea-
sonable temporal decorrelation and may be used to approximate
the temporal KL transform.

When the source object cannot be classified in any helpful man-
ner (e.g., non-periodic movement or 3-D imaging), it is unlikely
that the DFT will provide adequate temporal decorrelation. In
these cases, the temporal KL transform may be estimated from
the observed data by computing the average (empirical) temporal
correlation matrix and computing its eigendecomposition to yield
the appropriate transformation. A description of this procedure is
described (for multi-spectral images) in [8].

2.3.2. Approximating the Spatial KL Transform

Just as the temporal KL transform decorrelates the signal in time,
the spatial KL transform decorrelates the signal in space. Again,
we seek to approximate this transform in a manner that does not
rely on signal or noise information of any kind.

It is well known that a wavelet basis forms an approximate KL
basis for a wide class of signals, including images with natural
features (e.g., edges, uniform regions, etc.). This means that the
DWT performs blind signal decorrelation effectively for a large
number of signals. For this reason, wavelet bases are often used in
applications that rely on signal decorrelation such as compression
and estimation. With this in mind, we will approximate the spatial
KL transform with a 2-D DWT.

2.3.3. Approximating the Weighting Values

The final approximation we must make in order to have a com-
plete estimation scheme is to the weighting values. The role of
these values in both the Wiener filter our proposed approximation
is to weight each decorrelated coefficient based on its relative con-
tent of signal and noise. To limit noise contributions, a coefficient
that contains primarily noise should be assigned a weight close

to zero. Conversely, to maximize signal contributions, a coeffi-
cient that contains primarily signal should be assigned a weight
close to one. This is not unlike the thresholding and shrinkage
operators that are ubiquitous in wavelet-based denoising applica-
tions [10,11]. Therefore, we will approximate the weighting coef-
ficients with a threshold or shrinkage operation.

Since we have chosen to employ a 2-D DWT to approximately
decorrelate in the signal space, the coefficients we need to weight
will exist in a wavelet domain. This enables us to employ any
one of the many thresholding and shrinkage techniques developed
for wavelet domain coefficients, including both simple coefficient
shrinkage [11] and sophisticated adaptive techniques [10].

2.3.4. Overall Denoising Scheme

Having approximated the temporal and spatial KL transforms and
the weighting values of the optimal denoising operator, we now
have a complete scheme that overcomes the limitations of the
Wiener filter and is capable of blind denoising of a sequence of
OCT images. The complete technique consists of eight steps:

1. Compute logarithm of image data
2. [Optional] Estimate the temporal KL transform
3. Decorrelate in time using the DFT or estimated temporal KL

transform
4. Decorrelate in space using the 2-D DWT
5. Apply thresholding or shrinkage to decorrelated values
6. Recorrelate in space using 2-D inverse DWT
7. Recorrelate in time using the inverse DFT or estimated tem-

poral KL transform
8. Compute exponential to convert back into image data

3. EXAMPLE

Spectral domain OCT [12] data was acquired using system config-
ured as shown in Figure 2 from an in vivo Xenopus laevis (African
frog) tadpole, a common developmental biology animal model and
one used routinely for demonstrating OCT imaging performance.
Imaging was performed along the ventral surface of the tadpole.
Real-time motion of the heart was acquired using a 20-mm focal
length lens over a 2 mm by 2 mm scan with an image size of 1000
pixels by 1024 pixels at a processed rate of 6 frames per second.
A total of 50 frames were captured.

The 50 OCT images were processed with the proposed de-
noising scheme using a Daubechies length-8 wavelet and the
BayesShrink adaptive thresholding rule described in [10]. Since
this dataset consists of periodic motion, the DFT was used for tem-
poral decorrelation. For comparison, the denoising was repeated
using an estimated temporal KL transform rather than the DFT, no
visual difference between the two denoising results could be seen.
Representative acquired and denoised images are shown in Fig-
ure 3 and a magnified subsection is presented in Figure 4. As can
be seen from these images, the proposed scheme effectively sup-
presses noise in the images without significant signal distortion.
Region 2, outlined in white on the acquired image in Figure 3, pri-
marily contains background noise. The standard deviation in this
region was reduced from 104.37 in the acquired image, to 24.28 in
the denoised image. Note that the significant noise present above
the heart is due to strong back-reflections from the heart. Since this
does not fit the multiplicative or additive model we do not expect
this noise to be effectively removed.
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Fig. 2. Spectral domain optical coherence tomography system
setup. The system is comprised of a fiber-based interferometer and
a free-space spectral detector. A titanium sapphire source with a
center wavelength of 800 nm and a bandwidth of 100 nm was used
to illuminate the sample. The additional 90/10 splitter allows for
reference of the source spectrum.

Fig. 3. Representative frame for acquired (left) and denoised
(right) data. The white outline region marked 1 in acquired im-
age is the location of the magnified images shown in Figure 4.

4. CONCLUSIONS

Optimal denoising of a sequence of log-transformed OCT images
is achieved by the Wiener filter, which requires second-order sta-
tistical knowledge of both the true signal and the corrupting noise.
Key to the Wiener filter’s performance is its ability to optimally
decorrelate the true signal in both time and space and to weight
these decorrelate values according to their relative signal and noise
content.

Blind spatial decorrelation can be achieved using a 2-D DWT
in place of the optimal spatial decorrelator. A suitable transform
to decorrelate the data temporally can be estimated from the log-
domain images. When the sequence of images contains periodic
of slowly varying motion the DFT can be used to decorrelate in
time, enabling the transform estimation step to be skipped.

Weighting decorrelated coefficients to suppress noise and pre-
serve signal may be accomplished using any of the various wavelet
thresholding and shrinkage rules that exist; we found that the
BayesShrink adaptive threshold performs well. This rule, com-
bined with the 2-D DWT and estimated temporal decorrelating
transform (or DFT when appropriate), yields a complete denois-
ing scheme for a sequence of OCT images.

Although the technique itself is not capable of operating in
real-time, applying it to a sequence of 50 images acquired from
a real-time OCT imaging system removed an appreciable amount
of noise from the images and decreased the standard deviation of
the background noise by a factor greater than four.

Fig. 4. Magnified view of region 1 of acquired (left) and denoised
(right) data.
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