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ABSTRACT

We present a technique for maintaining phase stability in a 

three-dimensional optical coherence tomography system.  

When determining the inverse scattering solution, phase 

stable measurements are required to ensure proper object 

reconstruction.  The proposed method uses a reference 

object placed above the specimen to facilitate the retrieval 

of accurate constant phase surfaces throughout the 

specimen.  Our algorithm locates the reference object, 

determines the phase and group delay, and corrects the 

phase disturbance accordingly. 

1. INTRODUCTION 

Optical microscopy has long relied on the design of 

physical optical elements to produce images of samples.  

However, with the advent of scanning modalities such as 

confocal microscopy, near-field scanning optical 

microscopy and optical coherence tomography (OCT), 

image quality is determined as much by algorithm 

development as the quality of optical elements.  Data 

synthesis and image formation algorithms have been crucial 

in other non-optical imaging modalities such as synthetic 

aperture radar (SAR) where improved algorithms have 

dramatically increased the performance of such systems.  

For example, the modeling of physical parameters has lead 

to enhanced modes of strip-map and spotlight SAR imaging 

[1].  

OCT is an optical ranging technique for mapping near-

infrared backscattered light as it is scanned over a biological 

specimen [2].  In principle, the concept of OCT is similar to 

that of ultrasound except that that light rather than sound is 

backscattered.  In OCT, optical hardware such as adaptive 

optics or axicon lenses has been utilized to increase the 

transverse resolution over a large range of depths in a 

specimen [3].  These optical techniques and hardware can 

help generate images with high transverse resolution over 

relatively large scanning depths.  Dynamic focusing or 

focus tracking is useful for en face imaging with optical 

coherence microscopy (OCM) [2], or for cross-sectional 

imaging, where the tight focus is scanned in depth into the 

specimen [4].  Dynamic focusing techniques in a system 

design may require specific hardware modifications that can 

be difficult to control in real time.  Some authors have 

designed algorithms that improve the axial resolution by 

compensating for the nonlinear dispersion between data in 

the temporal domain and the spatial domain [5].  Of these 

methods, some are used to correct for the limited bandwidth 

of the laser spectrum, while others correct for the dispersion 

induced by the optical system or the specimen.  However, 

modeling of the physical processes has been limited to a 

one-dimensional quasi-monochromatic model [6].  These 

models do not take into account the relationship between 

data acquired at different transverse positions of the beam 

nor the finite transverse extent properties of the medium.  

Some have tried to correct for artifacts produced by 

refraction, sample positioning, and the scanning procedure 

[7].  Feng and Wang have detailed a theoretical model of 

OCT including a lens and heterodyning model [8].  

 Our goal has been to digitally reduce the distortion 

outside of the confocal region by solving the inverse 

problem based on the physics of the scattering process [9].  

We have derived a mathematical model connecting the 

experimentally acquired OCT signal with the three-

dimensional object structure, taking into account the finite 

beam width and focusing.  Thus, we arrive at a solution to 

the inverse scattering problem (ISP), a transformation 

specifying the structure of an imaged object from the 

acquired data. 

 The increased resolution gained by the solution to the 

ISP relies upon phase stable measurements.  Fortunately, 

with the use of spectral detection for OCT [10], spectral-

domain OCT (SD-OCT) seen in Figure 1, we can be assured 

of phase stability within each axial data set.  Specifically, 

each axial acquisition is determined directly from Fourier 

transform of the ensemble of spectral intensity 

measurements over the duration of the exposure time on a 

CCD camera.  Thus, relative phases between adjacent 

reflections in the sample are fixed relative to each other and 

the reference for a single axial acquisition.  Furthermore, if 

adjacent axial scans may be captured fast enough to avoid 
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some minimum amount of phase drift then an accurate 

reconstruction is possible.  Phase drift can occur in a system 

for multiple reasons including thermal changes, 

galvanometer or stage positioning accuracy, and system or 

sample jitter.  The greater the time interval between scans, 

the more likely random phase errors occur.  Adjacent axial 

scans in a single cross-sectional scan are thus less likely to 

suffer from distortions due to random phase jitter than 

adjacent axial scans from multiple cross-sectional scans. 

 Object reconstruction requires the phase to be stable 

relative to all axial scans of a 3D acquisition.  This paper 

shows a method to achieve 3D phase stability in OCT for 

reconstruction of the inverse scattering solution by using a 

flat reference reflector such as a microscope coverslip.  

Such a method offers advantages over expensive 

environmental controllers and extremely fast acquisition 

hardware.

2. OCT MODEL 

2.1. Inverse scattering model 

In order to simplify the model for OCT data acquisition 

several assumptions are generally made about an OCT 

system.  These assumptions do not take into account the 

shape of wavefronts produced by lens optics, the spectrum 

of the source, or even unbalanced dispersion in the media.  

Thus, many OCT images exhibit poor transverse resolution 

outside of the confocal region, which manifest as curved 

and blurred features obtained in these areas.  The aspect of 

the inverse problem this work addresses is the resolution of 

scatterers outside of the confocal region in experimental 

OCT data. 

 An equation for the acquired OCT signal  
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is presented in terms of our model, see Fig. 2.  This equation 

represents the linear forward problem having the form of a 

type I Fredholm integral.  The adjoint and the normal 

operators can be diagonalized by a coordinate 

transformation in the Fourier space such that a simplified 

least squares solution is formed.  The pseudo inverse takes 

the following form, where Q is the Fourier transform 

coordinates of position r0.
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where ~ denotes the Fourier transforms of  and S, and 

F(Q,k) is a constant function of Q and k.

 By solving the inverse problem, we are able to produce 

images with more sharply defined features.  More 

importantly, we are able to distinguish closely adjacent 

scatterers, even those that produce interference in the raw 

OCT image.  This is a crucial advantage of inverse 

scattering over simple deconvolution of a real-valued point-

spread-function.

2.2. Phase model 

The acquired SD-OCT signal can be represented after 

dispersion correction as a function of transverse position 

and wave number, S(r0,k), where the wave numbers k are 

related to the frequencies  by the dispersion relation 

k( )= n/c, and n is the index of refraction. 

We propose an algorithm that analyzes each axial scan 

individually and applies a phase to compensate variations of 

the position of the sample relative to the illumination beam.  

We place a reflective surface such as a microscope coverslip 

on top of the sample to act as a reference surface, which is 

used to infer the delay to the top surface of the sample.  The 
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Fig. 2. The diagram of scattering from a Gaussian beam, where 

r0 is the transverse position of the beam, G(r’,r,k) is the radiated 

Green’s Function, g(r’-r0,k) is the translated incident field with a 

Gaussian beam profile, and (r’) is the susceptibility of the 

object.  The vector r’ describes a point in the object volume, and 

the vector r describes points on the boundary of the volume.
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Fig. 1. A system diagram for spectral domain optical coherence 

tomography.  The system is comprised of a broadband source, a 

fiber-based interferometer, and a spectral detector.  Notice that 

data is collected at the camera as the optical Fourier transform. 
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signal for an arbitrary axial line of data can be represented 

as S (k), a function of k.  We assume that there is a range of 

distances along the illumination beam zmin to zmax for which 

the signal reflected from the coverslip is known to reside in 

every axial scan. The inverse Fourier transform of S (k) is 

computed as S c ( z), and the signal corresponding to the 

reflection is contained in the samples S c ( z) for 

zmin < z < zmax.  The spatial spectrum of the reflection is 

computed as the Fourier transform of S c ( z) over the 

window zmin < z < zmax, which is called ( )cS k .

Because the signal contained in ( )cS k  corresponds to a 

single reflection, it is reasonable to model it as 
( )

( ) ( )
i k

cS k A k e , where the phase function 

(k) = 0 + kd, where 0  is an arbitrary phase and d is the 

true position of the surface where the reference reflection 

occurs.  Because of the motion of the sample, the actual 

phase arg ( ) '( )cS k k .  By multiplying the axial scan data 

S (k) by the correction factor 
( ) '( )i k k

e , the phase of the 

axial scan can be adjusted to place the reflection at its true 

known position d.

We model the phase '( )k , as a Taylor series around a 

center frequency 
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To utilize this model, we must estimate the value of 

0
'

k k
k  from the data function '( )k .  The function 

'( )k  is wrapped to the range –  to , so calculating the 

derivative directly from the wrapped data will incorrectly 

incorporate the 2  jumps into the estimate.  Instead, we 

form the unwrapped ( )w k  by removing 2  discontinuities 

from '( )k .  The estimate then becomes 

2 1

2 10

( ) ( )'
w w

k k

k k

k k k
   

where k1 < k0 < k2, with the frequencies k1 and k2 chosen to 

span the illumination spectrum, typically with k1 and k2

corresponding to the frequencies at which the power 

spectral density is half of that at the peak. 

 Once 
0

'( )k  and 
0

'
k k

k  are known, the empirical 

'( )k  can be computed, and the corrected axial scan 

spectrum 
[ ( ) ( ')]

'( ) ( )
i k k

S k S k e .  This corrected axial 

scan data will be modified such that the position of the 

reference reflection is always at the same location on the 

axial scan, removing the effective longitudinal relative 

motion between the sample and the scanned beam.  For this 

method to work properly, the reference object must be 

located for each axial scan, otherwise that axial scan could 

contribute to a poor reconstruction.  Furthermore, 

refinements to this method could utilize higher order terms 

of the series for '( )k , which would account for instrument 

dispersion as well as motion.   

3. SYSTEM PHASE STABILITY 

Tracking the phase in our system over a time of acquisition 

gives us an estimate of the amount of correction that will be 

needed.  Figure 3 is a plot along isophase fronts of a 

reflector for a 10 minutes acquisition period.  It can be seen 

that the phase drift is slowly varying, thus axial scans that 

occur close in time have more phase stability. 

 Our acquisition is done with a pair of galvanometers 

that scan in the x and y directions.  The y galvanometer is 

incremented after each x scan, thus making y the slow 

scanning direction.  Explicitly, each axial scan is acquired 

every 34 s in the x direction, although in the y direction the 

adjacent axial scans can be delayed by 200 ms (at 5 frames 

per second) or more. 

4. EXPERIMENT 

A collection of scatterers having an average diameter of 2 

m were suspended in silicone and imaged with a spectral-

domain OCT (SD-OCT) system.  A volume of 800 m X 

800 m (transverse) X 2000 m (axial) was imaged, where 

the bandwidth is 100 nm, the focal length of the lens is 12 

mm, the spot size is 9 m, the confocal parameter is 636 

m, and the NA is 0.05.  All images in the figures are 

planes at a constant value of the fast scan direction, where x

is 164 m from the edge (x = 0).  Figure 4(a) displays a 

cross-sectional SD-OCT plane of the slow scanning 

direction. Drifting of the slide position in the z direction can 

be seen in the SD-OCT image.  Figure 4(b) shows the plane 

Fig. 3 Plot of wavelength (nm) verses time (minutes) of the 

constant phase fronts from a reflector in the SD-OCT system.  

This is a visual of the phase and group delay in the system over 

extended periods of time.
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after a 3D reconstruction.  The resolution of point scatterers 

lying outside of the confocal region does not appear to be 

increased.  This poor reconstruction is a result of this phase 

instability in the y, slow-scanning direction.  Figure 5(a) 

displays the phase and group delay corrected SD-OCT 

plane.  Figure 5(b) shows the plane after a 3D 

reconstruction.  Notice that the scatterers are uniform size 

and appearance for all depths. 

5. CONCLUSION 

We have shown a method for maintaining phase stability in 

a three-dimensional OCT system, which is useful when 

determining the inverse scattering solution.  It was shown 

that unstable phases result in an improper object 

reconstruction and that our method facilitates the retrieval of 

accurate constant phase surfaces throughout a specimen.  By 

locating the reference object, determining the phase and 

group delay, and rephasing the data, the object can be 

reconstructed accurately. 
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        (a)    (b) 

Fig. 4.(a) Original cross-sectional SD-OCT image in the slow 

scanning direction after dispersion correction from a set of 3D data.  

(b) The same cross-sectional image after a 3D reconstruction, where 

the phase drift causes a poor reconstruction in the slow scanning 

direction.

         (a)    (b) 

Fig. 5.(a) A phase corrected cross-sectional SD-OCT image in the 

slow scanning direction after dispersion correction from a set of 3D 

data.  (b) The same cross-sectional image after a 3D reconstruction, 

where the phase correction allows for an accurate reconstruction in 

the slow scanning direction.
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