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Abstract: Recent advances in OCT and multiphoton microscopy have enabled nondestructive 
monitoring of cell dynamics and distributions in 3-D engineered tissues.  Dynamic cell processes 
including migration, proliferation, and mechanical restructuring are observed during engineered 
tissue development. 
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1. Introduction 
The field of tissue engineering has emerged over the past decade, driven by a diverse range of clinical needs for 
replacement of discarded or damaged tissue [1]. Aimed at regenerating the native structural and functional 
properties of living tissues in vitro as well as in vivo, engineered tissues are subject to controlled microenvironments 
for tissue development.  Recently, tissue engineering trends have been toward developing 3-D constructs that may 
be subjected to dynamic external stimuli to modify and control tissue organization and growth.  Currently, 
destructive imaging methods such as histology and SEM are predominantly used in evaluating the development 
process of engineered tissues and their response to environmental stimuli. These destructive methods, however, 
intrinsically have many disadvantages: (a) inability to perform real-time, in situ or dynamic imaging; (b) lack of true 
3-D information; (c) long and harsh processing steps; and (d) difficulty correlating structure-function data. Thus, 
despite increasing research in tissue engineering, few have investigated the dynamics of cell behaviors and 
biological interactions in engineered tissues. Therefore, we have developed integrated non-invasive imaging tools, 
namely optical coherence tomography (OCT), confocal, and multiphoton microscopy (MPM) methods to explore 
dynamic 3-D tissue microstructure and cell functions in engineered tissues.  

OCT is a promising imaging technology that has found wide-spread applications in the fields of biology and 
medicine [2-4]. With imaging resolutions on the order of 3-5 µm, imaging depths of 1-2 mm in highly-scattering 
tissues, real-time acquisition rates for volumetric microscopy, and the ability to detect endogenous or exogenous 
contrast based on index changes in tissue, OCT is ideally suited for nondestructive imaging of 3-D engineered 
tissues throughout development and even following grafting to a host.  To date, there have been few investigations 
using OCT to monitor in vitro tissue cultures [5-8]. Confocal and MPM have been effective techniques for imaging 
3-D biological tissues [9]. The fluorescence-based microscopies can detect fluorophore-tagged molecules, such as 
Green Fluorescent Protein (GFP), and thus provide information on functionality [10]. Coupled with fluorescence-
based functional imaging, the structural properties imaged by OCT will help contribute to understanding 
fundamental biological mechanisms in engineered tissues during development and under various external stimuli.   
 
2. Material and Methods 
Representative engineered tissues were constructed, composed of cells and 3-D scaffolds. In our study, NIH-3T3 
cells (ATCC) were seeded in varying types of scaffolds including a 3-D porous chitosan scaffold, 3-D matrices of 
Matrigel™ or collagen, or onto substrates with a 3-D topographic grooved surface. Cells were transfected with GFP-
vinculin plasmid (courtesy of Dr Geiger, Weizman Institute, Israel), forming a stable cell line that express GFP-
vinculin (a cell adhesion protein).  For transfection, 7x105 cells were seeded in a 6-well plate. For each well of cells, 
4μg of DNA and 2μl of Lipofectamine 2000 reagent were diluted separately with 50μl of FreeStyle 293 expression 
medium, then mixed, and cultured for 20min to form DNA-LF2000 complexes. The concentration of cells and DNA 
was determined in pilot experiments to be optimal for transfection efficiency.  

One setup used in this work (Fig. 1) was an integrated OCM-MPM microscope [11].  The light source consisted 
of a frequency-doubled Nd:YVO4-pumped Ti:sapphire laser with a center wavelength of 800 nm, a bandwidth of 
60 nm, and an average power on the sample of 1 to 5 mW at an 80 MHz repetition rate.  To compensate for the pulse 
lengthening due to the high dispersion of the objective (Olympus, water-immersion, 20x, 0.9 NA), pulses were first 
pre-compensated using a double-fold prism path.  The beam was then guided to a scan head that consisted of two 

       WE1.pdf
    



galvo-controlled mirrors for high speed acquisition, and then matched to the back-aperture of the objective where 
the beam was focused in the sample.  The source functions both as an excitation source for two-photon absorption 
and as a low-coherence source for OCM.  The MPM detection scheme is standard and consists of a PMT 
(Hamamatsu, H7421-40) working in photon counting mode.  The OCM detection scheme is different with respect to 
the one previously proposed by Beaurepaire, et al. [12].  We have implemented a spectral-domain (SD) OCM 
system, instead of time-domain OCM, with many different advantages.  While standard OCM requires two scans to 
be performed (axial and lateral scanning), the spectral-domain technique can be implemented using only lateral 
scanning.  Moreover, SD-OCM inherently provides direct access to the spectral information for spectroscopic OCM 
signal analysis. In addition, it has been recently shown [13] that the spectral-domain configuration provides 
significant advantages in terms of acquisition speed, sensitivity, and simplicity in the acquisition module; benefits 
that are incorporated into our integrated microscope. We also emphasize that the absence of any moving reference 
arm in the setup provides an inherent phase stability and makes this modality ideally-suited for the evaluation of the 
spectral components in the interference pattern.  In fact, because different tissue structures and molecules have 
different spectral absorption and scattering properties, the spectral analysis, combined with the coherence gating, 
increases the OCM image contrast, with the potential for generating spatial maps of molecules within the sample.  
 

In our setup, light is collimated and dispersed 
off of a blazed diffraction grating having 830.3 
grooves per millimeter.  The optical spectrum is 
focused using a pair of achromatic lenses which 
have a combined focal length of 150 mm.  The 
focused light is incident on a line-scan camera 
(L104k–2k, Basler) which contains a 2048-element 
CCD array of detection elements.  This camera has 
a maximum readout rate of 29 kHz, thus one axial 
scan can be captured during an exposure interval of 
34 μs.  Digital processing of the detected signal 
included a Spline interpolation to make the signal 
more uniform and a discrete Fourier transform on 
each set of 2048, 10-bit, values captured by the 
CCD to transform the signal from the frequency 
(spectral) domain into the spatial (depth) domain.  
The scattering amplitudes corresponding to the 
focus in each adjacent axial scan were subsequently 

assembled into 2D en face images for visualization on a personal computer.  Acquisition and visualization of OCM 
and MPM images was performed simultaneously. 

Fig. 1. Schematic of integrated OCM-MPM microscope used for advanced 
optical imaging of 3-D engineered tissues. 

We performed OCT imaging on engineered tissues at varying time-points during culture, and up to 10 days. For 
real-time in situ imaging, cell cultures were maintained in a microincubator (LU-CPC, Harvard Apparatus). For 
histology, samples were fixed in 3.7% formaldehyde, embedded in paraffin, sectioned into 5μm-ultrathin films with 
a microtome, and stained with hematoxylin and eosin. 
 
3. Results and Discussion 
OCT, confocal, and MPM were used for examining the engineered tissues, and conventional histology was 
performed on the same specimens. Our OCM-MPM system integrates multiple modalities.  Here we show 
representative images from several ongoing studies.  In Fig. 2, single-cell images of cultured fibroblasts are shown.  
The cells are expressing GFP-vinculin (a cell adhesion protein) and the nuclei are stained with a second dye for 
specific localization of nuclei relative to the cell and surrounding structures.  Spectroscopic analysis of the OCM 
data is consistent with the MPM information, identifying the locations of the nuclei.  

Mechanical forces play a significant role in tissue organization, both in natural developing tissues and in 
engineered tissues.  We have investigated the morphological changes that occur in engineered tissues in response to 
varying external mechanical forces.  Using a 3-D topographically-grooved culture substrate fabricated from a 
flexible biocompatible polymer (PDMS), cultured fibroblasts were imaged before and after mechanical stretching of 
the substrates using a commercial Flexcell™ apparatus. Prior to stretch, fibroblast projections between the 
microgrooves were noted.  Following stretch, the fibroblasts became more rounded in appearance and withdrew 
projections from the grooves.  OCT has the potential to monitor many of the depth-resolved mechano-structural 
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changes that occur deep in engineered tissues, beyond the limits of more conventional light, fluorescence, confocal, 
and multi-photon microscopy. 

Additional technological developments and investigations in tissue engineering have been conducted in our 
laboratory, including the use of Doppler OCT for characterizing fluid flow in microfluidic vascular models, and the 
detection of optical scattering changes in electrically-active cultured neurons.  To characterize the evolving 
biomechanical properties of both natural and engineered tissues, we have utilized optical coherence elastography 
methods and have shown that optical coherence elastography can detect increased stiffness in heterogeneous 
engineered tissues over time as cells proliferate and increase cell-cell and cell-matrix adhesions [8]. 
 

                
Fig. 2.  Integrated OCM-MPM of GFP-transfected fibroblasts.  Left: OCM; Middle: MPM of GFP-vinculin (green) and DNA dye (red); Right: 
fused OCM-MPM (red channel) showing correspondence of nuclei within cells.  Image size is 60 x 60 microns. 
 
4.  Conclusions 
Compared to conventional visualization techniques, there are many advantages of OCT and MPM for imaging 3-D 
engineered tissues: (a) non-invasive diagnostics; (b) real-time, dynamic, in situ imaging; (c) deep penetration depth; 
(d) functional imaging correlated with structural properties; (e) real 3-D information for evaluating micro-
environmental factors; and (f) fast image acquisition without disruption of normal cell processes. The assembly of 
cells into tissues is a highly orchestrated set of events that require time scales ranging from seconds to weeks and 
dimensions from 1µm to 10cm. With large penetration depths and increased spatial and temporal resolution in 3-D 
space, OCT and related advanced optical imaging techniques will be useful modalities for gaining new insights into 
cell dynamics in situ and in real-time, elucidating the complex biological interactions, and directing our designs 
toward functional, biomimetic, and mature engineered tissues.  

Toward this goal, we have developed and applied an integrated microscope that is capable of simultaneous image 
acquisition from multiple optical imaging modalities.  We have highlighted the use of SD-OCM and MPM for the 
detection of structure and function, respectively.  The use of SD-OCM allows for the visualization of background 
morphology and spectroscopic analysis of tissue composition, while the use of MPM permits the visualization of 
biological function (in this case, GFP-labelled vinculin).  This instrument provides a new investigational tool for the 
visualization of structure and function in fields such as tissue engineering and tumor biology. 
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