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Abstract: We report the first demonstration of OCT for the three-dimensional visualization of 
lymph node morphology and microarchitecture from human and carcinogen-induced rat mammary 
tumor specimens. 
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1. Introduction 
 
According to the American Cancer Society [1, 2], breast cancer is one of the most frequently diagnosed cancers in 
women with approximately 211,240 new cases (or 32% of all new cancer cases among women) of invasive breast 
cancer and 58,490 new cases of in situ breast cancer reported each year in the U.S. It is also the second leading 
source of cancer deaths in women with an estimated 40,870 deaths per year. Over the years, the decrease in the 
number of breast cancer deaths has largely been attributed to increased awareness, earlier detection, and improved 
treatment. 

The sentinel lymph node biopsy (SLNB) is a surgical procedure that maps the lymphatic system and evaluates 
the status of the sentinel lymph node to determine whether a primary tumor in the breast has metastasized. This 
technique has revolutionized the management of melanoma and solid tumors that metastasize through the lymphatic 
system. The sentinel lymph node is the first node encountered in the lymphatic drainage pattern leading away from 
the tumor site in the breast. This procedure drastically reduces the number of lymph nodes removed in the axillary 
area in order to make a diagnosis. In addition to providing an equally valid diagnosis, the SLNB is an effective 
method for the staging of breast cancer, especially in assessing whether the cancer has metastasized. 
 
2. Tracers for the SLN mapping 
 
The SLNB is performed once the lymphatic system has been mapped using a different number of techniques ranging 
from the use of radioactive tracers to dyes (methylene blue, fluorescent dyes, quantum dots). One common method 
uses a radioactive tracer, technetium-99, and a dye, methylene blue, to locate the sentinel nodes. A small dose of 
technetium-99 is injected along with the blue dye into the breast at the primary tumor site and allowed to circulate 
through the lymphatic system for a period of 30 minutes to 8 hours. The dye aids in the physical visualization of 
node location while the radioactivity level is used as a diagnostic marker to guide the entire removal of the lymph 
node. Other methods include standard X-ray and computed tomography (CT). More novel contrast agents are being 
developed such as NIR quantum dots and indocyanine green (ICG) dye which allow a more accurate localization of 
the sentinel lymph node. Magnetic resonance imaging (MRI) contrast agents such as G6 have also been 
demonstrated in mouse models to give 3-D lymphatic drainage maps. Similar to the methylene blue, these contrast 
agents take an extended period of time to circulate through the lymphatic system. Lymphazurin dye (1%) is 
currently our proposed dye of choice to complement OCT imaging as its absorption spectrum is in the visible range 
(500-700 nm) outside of the laser bandwidths typically used for OCT (700-900 nm, 1280-1370 nm). This dye is 
currently used clinically to map the lymphatic system in breast cancer, melanoma, and gastrointestinal tumors with a 
circulation time of 30-60 minutes. 
 
3. Optical Coherence Tomography 
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OCT may provide beneficial alternatives to current methods for lymph node assessment, and subsequently affect the 
staging procedure as a low-cost and minimally invasive technique that is capable of imaging morphological 
structures at cellular resolutions as well as visualizing the micro-structures of lymph nodes in tissue without the use 
of radioactive tracers. In comparison to other optical imaging techniques, OCT is capable of imaging 1-2 mm in 
depth in highly-scattering samples, allowing for the real-time in vivo evaluation of the tissue prior to its resection. 

The OCT system in this study used a Nd:YVO4 pumped titanium:sapphire laser with a center wavelength of 
800 nm and a 100 nm bandwidth yielding an axial resolution of ~ 2 µm in tissue. In the sample arm, a 20 mm 
achromatic lens was used to focus 10 mW of light down to a 15 µm spot size (transverse resolution). The 
interferometer employed a single-mode 50/50 fiber optic splitter (Gould Fiber Optics, Inc.) coupling the signals 
from the sample arm and a galvanometer-based reference delay (30 scan lines per second). Spatial scanning in the 
X-Y plane was accomplished via a pair of galvanometer-mounted mirrors (Cambridge Technology, Inc.). Time-
domain detection was achieved via a dual-balanced detection scheme using a 125 kHz auto-balanced photoreceiver 
(New Focus Inc., Model #2007) and data acquisition was performed by a dedicated computer cards (National 
Instruments, Model #PCI-6110, PCI-6711) with a 10 MHz sampling rate, a 12-bit quantizer, and a ±5V input range. 
Data acquisition in the spectral domain was achieved using a diffraction grating with 830 grooves / mm and blazed 
for 828 nm (Richardson Grating Laboratory, Rochester, NY) to disperse the light, and a lens to focus onto a line 
scan camera (Model #L104K, Basler Vision Technologies). The time domain and spectral domain systems have 
measured SNRs of 100dB and 90dB and acquisition rates of 10 lines/sec and 29,000 lines/sec, respectively. The rat 
lymph nodes were imaged under time-domain while the human samples were imaged under spectral-domain. 
 
4. Tissue Specimen 
 
The N-methyl-N-nitrosourea (NMU) carcinogen was injected intraperitoneally in virgin female rats to induce 
mammary tumors [3]. This is one of the most widely used animal models the study of the development of breast 
cancer. Mammary carcinogenesis in this animal model closely resembles that of the human breast carcinogenesis 
including hormone dependency and histopathological features. Invasion of the regional lymph node chain has been 
observed with this rat model, and distant metastases to the lung have also been reported. Similar patterns of invasion 
and metastasis are also observed in the human case. The induced tumors emulate the carcinogenesis of human ductal 
carcinoma, first as ductal carcinoma in situ, then as locally invasive disease, and finally as metastatic disease to the 
liver, lung, and spleen. To provide clinical relevance, late-stage human lymph nodes were imaged under OCT. The 
cervical lymph node specimen was resected from an 80-year-old female patient with Stage 4, T4N2b squamous cell 
carcinoma of the oral cavity. 
 
5. Results 
 
Mesenteric rat lymph nodes were imaged in vitro using OCT. A total of 256 2-D images of each specimen were 
acquired in 10 µm spatial increments to construct the 3-D images. Detailed structure can be seen in the left set of 
OCT images in Figure 1, including the lymphoid follicles located at the outer part of the node, the adipose tissue in 
which the lymph node is embedded, and the nuclei of adipocytes, which are displaced to the edge of the cells by the 
central lipid collection. In the right set of images, detailed internal structures are apparent including the capsule, a 
strong fibrous tissue enclosing the lymph node, the cortex, the outer part of the node containing dense masses of 
lymphocytes, and the medullary sinuses, the central section of the node composed of lymphoid elements with large 
sinusoids. 

The late-stage metastatic human lymph nodes are shown in Figure 2. The images on the left side contain a region 
infiltrated with tumor. The inhomogeneous scattering regions in the OCT images are a result of the destruction of 
the lymph node architecture, and contrast the optical scattering properties observed in the OCT images of normal 
nodes. The images on the right show regions of necrotic tumor tissue bordered by adipose tissue. Clear 
microstructural and cellular scattering differences are noted when compared with the normal lymph nodes. 

The observed internal lymph node architecture is clearly identifiable when imaged from the external surface, and 
strongly correlated with the histology, indicating that lymph nodes are a promising target as a clinical OCT 
application. Despite the depth penetration limits of OCT imaging, this study shows that relevant features are 
accessible from the surface and that in many cases the entire node can be visualized in 3-D [4]. Reactive nodes 
increase significantly in size but also have larger reactive follicles near the surface, which are amenable to OCT 
imaging. Appropriate minimally invasive OCT forward-imaging devices, such as those previously reported, suggest 
in vivo imaging is a feasible means by which to assess nodal structure allowing for the selective removal of 
metastatic lymph nodes. Recent development in high speed image acquisition such as spectral-domain OCT and 
optical frequency domain imaging (OFDI) makes 3-D imaging more practical for the clinical setting. 
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Fig. 1: The lymph node was translated in 10μm increments in the X-Z plane to acquire each 2-D image comprising the 3-D data set. Pixel 
dimensions in the 3-D set are 1,10,3 μm in the x, y, and z directions. Scale bars = 100µm. Left: Images of an in vitro rat lymph node showing the 
boundary between mammary adipose tissue and lymph node with visible structures, including adipose tissue and a lymphoid follicle. Right: 
Images of in vitro rat lymph node showing internal structures with visible structures, including the capsule, cortex, and medullary sinuses. Top: 
Sequence of 2-D OCT slices. Bottom: (a) 3-D OCT Reconstruction. (b, c) Corresponding H&E. 

  

  
Fig. 2: Left: Images of metastatic human lymph node bearing infiltrating squamous cell carcinoma showing the structure of blood vessels and 
squamous cell growth. Top: Sequence of 2-D OCT images. The lymph node was translated in 7μm increments in the X-Z plane to acquire each 2-
D image comprising the 3-D data set. Pixel dimensions in the 3-D set are 2, 7, 3 μm in the x, y, and z directions. Right: Images of human 
metastatic lymph node bearing infiltrating squamous cell carcinoma with evident regions of advanced necrosis. The lymph node was translated in 
8μm increments in the X-Z plane to acquire each 2-D image comprising the 3-D data set. Pixel dimensions in the 3-D set are 2, 8, 3 μm in the x, 
y, and z directions. Top: Sequence of 2-D OCT slices. Bottom: (a) 3-D OCT Reconstruction. (b) Corresponding H&E. Scale bars = 100µm 
 
6. Conclusions 
 
We have demonstrated the potential of OCT for 3-D imaging of lymph node morphology with high resolution. This 
method may be well-suited for identifying suspect or sentinel lymph nodes intraoperatively, such as during breast 
tumor resection and staging. Using computationally-constructed 3-D OCT data sets, many detailed internal 
structures were easily identified including the lymphoid follicles, the cortex, the capsule, and the medullary sinuses. 
When a lymph node becomes a reactive node or contains metastatic tumor cells, the physical size, tissue 
composition, and optical scattering properties change, which should all be evident under OCT. Given further study, 
OCT in combination with current lymph node mapping procedures may be able to provide physicians with real-time 
intraoperative evaluation and staging of metastatic breast cancer. Current ongoing studies include using OCT to 
detect the presence of micro-metastasis, the optical characterization of the various stages of infiltration, and more 
importantly, determining the optical differences between normal non-reactive nodes, benign reactive nodes, and 
malignant reactive nodes. 
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