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Probabilistic Power Flow Computation via
Low-Rank and Sparse Tensor Recovery

Zheng Zhang, Hung Dinh Nguyen, Konstantin Turitsyn and LucaDaniel

Abstract—This paper presents a tensor-recovery method to
solve probabilistic power flow problems. Our approach generates
a high-dimensional and sparse generalized polynomial-chaos
expansion that provides useful statistical information. The result
can also speed up other essential routines in power systems (e.g.,
stochastic planning, operations and controls).

Instead of simulating a power flow equation at all quadrature
points, our approach only simulates an extremely small subset
of samples. We suggest a model to exploit the underlying low-
rank and sparse structure of high-dimensional simulation data
arrays, making our technique applicable to power systems with
many random parameters. We also present a numerical method
to solve the resulting nonlinear optimization problem.

Our algorithm is implemented in MATLAB and is verified by
several benchmarks in MATPOWER 5.1. Accurate results are
obtained for power systems with up to50 independent random
parameters, with a speedup factor up to9× 1020.

Index Terms—Power flow, power system, stochastic collocation,
tensors, polynomial chaos, uncertainty, optimization.

I. I NTRODUCTION

REALISTIC power systems are affected by various uncer-
tainties, such as the randomness of generations and loads,

insufficient knowledge about network parameters, and noisy
measurement [1]–[14]. Uncertainties may increase in future
power systems, since many renewables highly depend on the
uncertain weather conditions [6], [9]. These uncertainties must
be considered in simulation, such that subsequent tasks canbe
completed in an efficient and robust way.

This work investigates the probabilistic power flow prob-
lem [2], which quantifies the uncertainties of bus voltages
and line flows under uncertain loads, generations or network
parameters. Currently, this problem is routinely solved in
a number of decision-making procedures. Examples include
transmission expansion and planning under long-term un-
certainties in renewables penetration and regulation policies
[15], [16]. In operations, the operators assess the security of
the system and calculate Available Transfer Capability using
random scenario sampling [17] where the ability to average the
steady state solution over a large number of random scenarios
is essential for secure power operations.

Probabilistic power flow problems have been solved by
Monte Carlo and many analytical methods (including multi-
linearization [10], the comulant method [11], fuzzy load flow
analysis [12], and so forth). Recently, point estimation has
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become a popular technique for probabilistic power flow
analysis [4]–[8]. This method assumes the solution being a
summation of some univariate functions, then it computes the
moments using a set of one-dimensional quadrature points.

Stochastic spectral methods [18] have emerged as a promis-
ing technique for the uncertainty analysis of many engineering
problems including power systems [13], [14], [19], [20].
They approximate the stochastic solution by a generalized
polynomial-chaos expansion [21]. This representation can
provide various statistical information (e.g., moments and
probability density function); it can also accelerate many
stochastic problems in power systems (e.g., stochastic unit
commitment [9] and parameter inference [22]), whereas previ-
ous approaches generally cannot. However, stochastic spectral
methods may require lots of basis functions and simulation
samples for problems with many uncertainties. In the uncer-
tainty quantification community, some techniques based on
compressed sensing [23], [24], proper generalized decomposi-
tion [25], [26] and tensor-train decomposition [20], [27],[28]
have been developed for high-dimensional problems.

This paper develops an alternative stochastic spectral
method to solve probabilistic power flow problems with possi-
bly high-dimensional random parameters. Our main contribu-
tions are summarized as the following: i) We use tensors [29]
(i.e., high-dimensional data arrays) to represent the hugeset of
data samples required in stochastic simulation. With a tensor
format, we propose a low-rank and sparse tensor recovery
scheme to generate a high-dimensional and sparse approxi-
mation while using an extremely small subset of quadrature
samples. ii) We present the detailed numerical implementa-
tion of the tensor recovery method. Our algorithm relies on
alternating minimization and the alternating direction method
of multipliers (ADMM) [30]. Although only locally optimal
solutions are guaranteed, the developed solver performs well
for many practical cases. We demonstrate the performance
of the proposed technique with numerical simulations on3
benchmarks in MATPOWER5.1 [31].

II. PROBLEM FORMULATION

A. Probabilistic Power Flow Problem

A steady-state power system with uncertainties can be
described with parameterized power flow equations:

Pi(ξ) =
n
∑

k=1

Vi(ξ)Vk(ξ) (Gik cos θik(ξ) +Bik sin θik(ξ))

Qi(ξ) =
n
∑

k=1

Vi(ξ)Vk(ξ) (Gik sin θik(ξ)−Bik cos θik(ξ))

(1)

http://arxiv.org/abs/1508.02489v1


wherePi, Qi, Vi, θi are the active and reactive power, voltage
magnitude and angle at load busi, respectively;Gik andBik

are conductances and susceptances;θik = θi−θk is the voltage
angle difference between busesi andk.

We employ random parametersξ=[ξ1, · · · , ξd] ∈ R
d to

describe the uncertainties of load power consumptions that
further influence bus voltages and angles. After computing
Vi’s andθi’s, an out of interesty (e.g., the line flows) can be
easily extracted. Obviouslyy also depends onξ and thus can
be written asy = g(ξ). We assume that a deterministic solver
is available to solve (1) given a sample ofξ. For simplicity, we
assume that all elements ofξ are mutually independent, then

their joint probability density function isρ(ξ) =
d
∏

k=1

ρk(ξk),

whereρk(ξk) is the marginal probability density function of
ξk. Moreover, the slack bus is assigned to compensate for the
variations of loads and losses.

B. Stochastic Collocation Method
If the power flow problem is solvable, andy=g(ξ) smoothly

depends onξ, then we can approximatey by a truncated
generalized polynomial-chaos expansion [21]

y = g (ξ) ≈
∑

|α|≤p

cαΨα(ξ), with Ψα(ξ) =

d
∏

k=1

φk,αk
(ξk). (2)

The multivariate polynomial basisΨα(ξ) is indexed by
α=[α1, · · · , αd]∈Nd, with the total polynomial degree

|α|=
d
∑

k=1

|αk| ≤ p. The total number of basis functions is

K =
(p+ d)!

p!d!
. (3)

As shown in Appendix A, the degree-αk univariate polyno-
mials {φk,αk

(ξk)}pαk=0 are orthonormal to each other. There-
fore, the multivariate basis functions are also orthonormal, and
cα can be computed with projection

cα =

∫

Rd

Ψα(ξ)g(ξ)ρ(ξ)dξ. (4)

This integral can be evaluated by a proper quadrature rule
which requires computingg(ξ) at a set of samples.

C. Integration Rules and Curse of Dimensionality

Among different quadrature rules [32]–[34], this work
considers computingcα by a tensor-rule Gauss quadrature
method. First, use Gauss quadrature [35] (in Appendix B) to
decidem quadrature samples and weights

{

ξikk , wik
k

}m

ik=1
for

ξk. Next, we computecα by a tensor rule

cα ≈
m
∑

i1=1

· · ·
m
∑

id=1

g(ξi11 , · · · , ξidd )

d
∏

k=1

φk,αk
(ξikk )wik

k . (5)

This method requires simulating the power flow equa-
tion md times, and obviously it only works well for low-
dimensional problems (e.g., whend is below5 or 6). Sparse
grid has been applied to simulate power systems [13], which
can compute (4) with about2pK samples for high-dimensional
cases [19]. In this paper, we aim to use only< K samples
from a tensor rule to compute (4).

Fig. 1. Demonstration of vectors (left), matrices (middle)and tensors (right).

III. A T ENSOR-RECOVERY APPROACH

This section presents our tensor-recovery method to solve
high-dimensional probabilistic power flow problems.

A. Tensor Representations of(5)

As a generalization of vectors and matrices, a tensorA ∈
R

m1×···×md represents a high-dimensional data array [29].
The number of dimensions,d, is called the mode of a
tensor;mk is the size of thek-th dimension. Given index
i = (i1, · · · , id) (with integer ik ∈ [1,mk]), we can specify
one elementA(i). Fig. 1 shows a1-mode tensor (i.e., vector),
a 2-mode tensor (i.e., matrix) and a3-mode tensor.

First, we define ad-mode tensorG ∈ R
m×···×m

G(i) = g(ξi11 , · · · , ξidd ). (6)

Next, for everyξk and its degree-αk polynomialφk,αk
(ξk),

we define a vectorw(k)
αk

∈ R
m with its ik-th element being

w(k)
αk

(ik) = φk,αk
(ξikk )wik

k . (7)

For every index vectorα, we further construct ad-moderank-
1 tensorWα ∈ R

m×···×m:

Wα = w(1)
α1

◦ · · · ◦w(d)
αd

⇔ Wα(i) =

d
∏

k=1

w(k)
αk

(ik). (8)

Here ◦ denotes an outer product. As a result, the right-hand
side of (5) is theinner product of G andWα:

cα ≈ 〈G,Wα〉 =
m
∑

i1=1

· · ·
m
∑

id=1

G(i)Wα(i). (9)

In summary, in order to obtain the generalized polynomial-
chaos approximation (2) we need to compute: 1) tensorG ; 2)
tensorWα for eachα satisfying|α| ≤ p. Since eachWα is
the outer product ofd vectors and many of them can be reused,
computingWα’s is trivial. However, directly computingG
is almost impossible, since the power flow equation must be
simulatedmd times.

B. Low-Rank and Sparse Tensor-Recovery

Instead of computingG directly, we approximateG by
tensor recovery. The key idea is described below.



1) Sub-Sampling:We randomly compute a small portion of
elements inG, then seek for a tensor̂G to approximateG. Let
I = {i|1 ≤ ik ≤ m} include the indices for all elements inG.
The size ofI, |I|, is md. We choose a subsetΩ ⊂ I (with
|Ω| ≪ |I|) that includes a small number of indices randomly
selected fromI, and computeG(i) = g(ξi11 , · · · , ξidd ) for any
i ∈ Ω. Then, we look for a tensor̂G such that it matchesG
at all elements specified byΩ, i.e.,

‖PΩ

(

Ĝ − G

)

‖2F = 0. (10)

HerePΩ is a linear operator for tensors:

B = PΩ (A) ⇔ B(i) =

{

A(i), if i ∈ Ω
0, otherwise.

(11)

The Frobenius-norm of a general tensor is defined as

‖A‖F =
√

〈A,A〉. (12)

An infinite number of tensors exist that satisfies the require-
ment (10) but significantly differs fromG. Therefore, some
constraints can be added to regularize this problem.

2) Constraint1– Sparsity: Let vectorc = [· · · , cα, · · · ] ∈
R

K includes all coefficients in the generalized polynomial-
chaos approximation. In high-dimensional cases,c is generally
very sparse – most of its elements are close to zero. Usingl1 -
norm as a measure of sparsity [36], we have

|c| =
∑

α≤p

|cα| ≈
∑

α≤p

∣

∣

∣

〈

Ĝ,Wα

〉
∣

∣

∣
is small (13)

3) Constraint2–Low Tensor Rank:In many cases,G has
a low tensor rank and can be well approximated by the
summation of a few rank-1 tensors. Therefore, we assume that
the solutionĜ has arank-r decomposition:

Ĝ = T

(

U(1), · · · ,U(d)
)

:=
r

∑

j=1

u
(1)
j ◦ · · · ◦ u(d)

j (14)

whereu(k)
j ∈Rm×1 is thej-th column of matrixU(k) ∈ R

m×r.
Therefore, we may used matrices to represent the whole tensor
instead of computing and storing all elements ofĜ.

4) Final Tensor-Recovery Model:We describe the low-rank
and sparse tensor-recovery model as follows:

GivenG(i) for everyi ∈ Ω, solve

min
{U(k)∈Rm×r}d

k=1

f
(

U(1), · · · ,U(d)
)

= 1
2

∥

∥PΩ

(

T(U(1), · · · ,U(d))− G
)∥

∥

2

F

+λ
∑

|α|≤p

∣

∣〈T(U(1), · · · ,U(d)),Wα〉
∣

∣.

(15)

Here λ > 0 is a regularization parameter.

C. Summary of Main Steps

We summarize the main steps of our approach as below.
1) Simulation Step:Randomly generate a small subset

Ω ⊂ I such that |Ω| < K ≪ md. For every index
i = [i1, · · · , id] ∈ Ω, simulate the power flow equation (1)
once to obtain a deterministic valueG(i) = g(ξi11 , · · · , ξidd ).

Algorithm 1 Alternating Minimization for Solving (15).

1: Initialize: U(k),0 ∈ R
m×r for k = 1, · · · d;

2: for l = 0, 1, · · ·
3: for k = 1, · · · , d do
4: solve (17) by Alg. 2 to obtainU(k),l+1 ;
5: end for
6: break if converged;
7: end for
8: return U(k) = U(k),l+1 for k = 1, · · · , d.

2) Optimization Step: Solve (15) to obtain matrices
U(1), · · · ,U(d) that represent tensor̂G in (14).

3) Model Generation:ReplaceG by Ĝ, and calculatecα’s
according to (9). With low-rank tensor factors, the computation
can be simplified to

cα ≈
〈

Ĝ,Wα

〉

=

r
∑

j=1

[

d
∏

k=1

(

(

u
(k)
j

)T

w(k)
αk

)

]

, (16)

which involves only cheap vector inner products.
Since we can approximateG by using only a small number

of simulation samples, our method can be applied to many
high-dimensional problems.

IV. OPTIMIZATION SOLVER

This section describes how to solve (15).

A. Outer Loop: Alternating Minimization
1) Algorithm Flow: Starting from an initial guess

{U(k),0}dk=1, we perform the following iterations: at iteration
l+1 we use{U(k),l}dk=1 as an initial guess and obtain updated
tensor factors{U(k),l+1}dk=1 by alternating minimization.
Each iteration consists ofd steps, and at thek-th step,U(k),l+1

is obtained by solving

U
(k),l+1 = argmin

X

f
(

· · · ,U(k−1),l+1
,X,U

(k+1),l
, · · ·

)

.

(17)
Since all factors expectU(k) are fixed, (17) becomes a
convex optimization problem, and its global minimum can
be computed by the solver in Section IV-B. The alternating
minimization method ensures that the cost function decreases
monotonically to a local minimal. The pseudo codes are
summarized in Alg. 1, which terminates when the convergence
criteria in Appendix C is satisfied.

2) Prediction Error: An interesting question is: how ac-
curate isĜ compared with the exact tensorG? Our tensor
recovery formulation enforces consistency betweenĜ andG

at the indices specified byΩ. We hope that̂G also has a good
predictive behavior –Ĝ(i) is also close toG(i) for i /∈ Ω.
In order to measure the predictive property of our results, we
define a heuristic prediction error

ǫpr =

√

√

√

√

√

√

√

∑

i∈Ω′

(

Ĝ(i)− G(i)
)2

wi

∑

i∈Ω′

(G(i))2 wi

, with wi =
d
∏

k=1

wik
k . (18)



Algorithm 2 ADMM for Solving (17).
1: Initialize: form A,F and b according to Appendix D,

specify initial guessx0, u0 andz0;
2: for j = 0, 1, · · · do
3: computexj+1, zj+1 anduj+1 according to (20);
4: break if ‖Fxj+1−zj+1‖ < ǫ1 & ‖FT (zj+1−zj)‖ < ǫ2;

5: end for
6: return U(k),l+1 = reshape(xj+1, [m, r]) .

HereΩ′ ∈ I is a small-size index set such thatΩ′ ∩ Ω = ∅.
Obviously, Ĝ has good predictive behavior ifǫpr is small.
Estimatingǫpr requires simulating the power flow equation at
some extra quadrature samples. However, a small-sizeΩ′ can
provide a good heuristic estimation.

B. Inner Loop: Numerical Solver for (17)

Following the procedures in Appendix D, we rewrite Prob-
lem (17) as the generalized LASSO problem:

vec
(

U(k),l+1
)

= argmin
x

1

2
‖Ax− b‖22 + λ|Fx| (19)

whereA ∈ R
|Ω|×mr, F ∈ R

K×mr and b ∈ R
|Ω|×1, and

x = vec(X) ∈ R
mr×1 is the vectorization ofX (i.e.,x(jm−

m+ i) = X(i, j) for any integer1 ≤ i ≤ m and1 ≤ j ≤ r).
Note that|Ω| is the number of simulations samples in tensor
recovery, andK is the total number of basis functions.

We solve (19) by the alternating direction method of mul-
tipliers (ADMM) [30]. Problem (19) can be rewritten as

min
x,z

1

2
‖Ax− b‖22 + λ|z| s.t. Fx− z = 0.

By introducing an auxiliary variableu and starting with initial
guessesx0, u0 = z0 = Fx0, the following iterations are
performed to updatex andz:

xk+1 =
(

ATA+ sFTF
)−1

(ATb+ sFT (zk − uk))

zk+1 = shrinkλ/s(Fx
k+1 + zk + uk) (20)

uk+1 = uk + Fxk+1 − zk+1.

Here s > 0 is an augmented lagrangian parameter, and the
soft thresholding operator is defined as

shrinkλ/s(a) =







a− λ/s, if a > λ/s
0, if |a| < λ/s
a+ λ/s, if a < −λ/s.

The pseudo codes for solving (17) are given in Alg. 2.

C. Limitations

Firstly, the cost function of (15) is non-convex, and it is
non-trivial to compute its global minimum with theoretical
guarantees. Although researchers and engineers are very often
satisfied with a local minimal, the obtained result may not
be good enough for some cases. Secondly, in this work the
parametersλ [the regularization parameter in (15)] andr
[the tensor rank in (14)] are set based on some heuristic
experiences. This treatment is definitely not optimal and does
not guarantee high accuracy for all cases.

Fig. 2. The6-bus system.
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Fig. 3. Left: all quadrature samples; right: samples used intensor recovery.

V. SIMULATIONS

This section reports the simulation results for several test
cases from MATPOWER5.1 [31]. All codes are implemented
in MATLAB. We find that a 2nd- or 3rd-order generalized
polynomial-chaos expansion can provide good accuracy for
many cases, therefore we setp = 2 (or 3) in (2) andm = 3
(or 4) in Equation (9) .

A. 6-Bus Case (with3 Random Parameters)

The case6wwexample in MATPOWER 5.1 (c.f. Fig. 2) is
used as a demonstrative example. We use3 random parameters
to describe the uncertain active powers at the load buses4
to 6. We aim to obtain a 3rd-order generalized polynomial-
chaos expansion for the real power injected from Bus2 to
Bus 4, leading to20 basis functions in total. Applying a4-
point Gauss-quadrature rule to perform numerical integration
for each dimension, we generate64 quadrature points in total.

In order to compute the generalized polynomial-chaos ex-
pansion, only18 quadrature points (as shown in Fig. 3) are
randomly sub-selected. The simulation results at these selected
samples are used to perform tensor recovery. For this case, we
find that setting the tensor rankr = 3 and the regularization
parameterλ = 0.25 is a good choice. Starting from a randomly
generated rank-3 tensor, our algorithm converged after25
iterations as shown in Fig. 4. The obtained low-rank tensor
approximation has an estimated prediction error of0.2%.
With the obtained tensor approximation, the coefficients for
all generalized polynomial-chaos basis functions are easily
calculated based on (16). The coefficients forα = 0 is 31.83,
which is the mean value of the output. All other coefficients
are plotted in Fig. 5, where a sparsity pattern is observed.

Next we validate our results by Monte Carlo. Here we
use 5000 samples in Monte Carlo simulation and treat its
result as a golden reference solution. As shown in Table I, the
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for the 6-bus example.

TABLE I
MOMENTS OF THE6-BUS EXAMPLE.

Tensor Recovery Monte Carlo
samples 18 5000
Mean 31.83 31.87

stand. dev. 0.0439 0.0448

mean value and standard deviation from our tensor recovery
approach is very close to that from Monte Carlo.

Complexity Reduction. Since we use18 samples out of
64 quadrature points, the reduction ratio for this problem is
3.6. Note that the number of samples in tensor recovery is less
than the number of basis functions (i.e.,20).

B. 30-Bus Case (with24 Random Parameters)

Next we consider thecase30example in MATPOWER
5.1, with the active powers of24 load buses modeled by
Gaussian random variables. We apply a2nd-order generalized
polynomial-chaos expansion for the real power from bus15 to
bus23, requiring totally325 basis functions. For each param-
eter,3 quadrature points are used, leading to324 ≈ 2.8×1011

samples in total. Obviously, it is prohibitively expensiveto
simulate the power system at all quadrature points.

In our tensor recovery scheme, we randomly pick280
quadrature points from the full tensor-rule quadrature samples
and approximateG by a rank-4 tensor. Settingλ = 0.3 and
starting with a random initial guess, our algorithm converges
nicely’ after26 iterations which are similar to Fig. 4. With50
newly sub-sampled quadrature points as the testing samples,
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Fig. 6. Coefficients of{Ψα(ξ)}2
|α|=1

for the 30-bus example.
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Fig. 7. Histograms of the simulated output for the 30-bus example .

the estimated prediction error is0.55%. Although this example
has many random parameters, its generalized polynomial-
chaos expansion is very sparse, as shown in Fig. 6.

In order to check the accuracy, we perform Monte Carlo
simulation using5000 random samples. Table II compares
the mean values and standard deviations from both ap-
proaches, and they are very close. An advantage of generalized
polynomial-chaos expansion is that one can easily evaluatethe
expression with many samples to get a density function or
histogram. Such information cannot be easily obtained by a
point-estimation method. The histogram from our method is
close to that from Monte Carlo (c.f. Fig. 7).

Complexity Reduction. Since we use280 samples out of
324 quadrature points, the reduction ratio for this example is
109. The number of samples in tensor recovery is also smaller
than the number of basis functions (i.e.,325).
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TABLE II
MOMENTS OF THE30-BUS EXAMPLE.

Tensor Recovery Monte Carlo
samples 280 5000
Mean -10.23 -10.22

stand. dev. 0.048 0.049

C. 57-Buse Case (with50 Random Parameters)

Finally we consider thecase57example in MATPOWER
5.1, with 50 Gaussian random variables describing the active
powers at load buses. With a2nd-order polynomial-chaos
expansion, we aim to approximate the real power injected
from Bus 19 to Bus 20 with 1326 basis functions. Using
3 Gauss-quadrature points for each parameter, a tensor-rule
quadrature method requires350 > 7 × 1023 samples in total.
It is impossible to store the samples on a personal computer,
let alone simulating the power flow equation at all samples.

Our tensor recovery scheme randomly sub-selects800
samples to perform power flow simulations. Starting with a
random initial guess, we approximate the full tensorG by
a rank-5 tensor, with an estimated prediction error of1%.
Fig. 8 shows the convergence of our solver. Fig. 9 plots the
coefficients for all non-constant basis functions. Clearly, the
result is extremely sparse for this high-dimensional example.

In order to get a full picture about the statistical behaviorof
the output, we evaluate the computed generalized polynomial-
chaos expansion with5000 random samples and plot its proba-
bility density function. As shown in Fig. 10, the result is close
to that from Monte Carlo simulation on the original power flow
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Fig. 10. Computed probability density functions for the57-bus example.

TABLE III
MOMENTS OF THE57-BUS EXAMPLE.

Tensor Recovery Monte Carlo
samples 800 5000
Mean 0.721 0.724

stand. dev. 0.0596 0.0609

equations. The mean values and standard deviations from both
approaches are very close (c.f. Table III).

Complexity Reduction. Since we use800 samples out of
350 quadrature points, the reduction ratio for this example is
about9× 1020. The number of samples in tensor recovery is
again smaller than the number of basis functions (i.e.,1326).

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presented a probabilistic power flow simula-
tion algorithm based on tensors and stochastic collocation. In
order to break the curse of dimensionality, we have developed
a high-dimensional method that exploits the low-rank and
sparse property of tensors. This tensor framework has com-
pleted the huge-data-size simulation task with an extremely
small-size simulation data set. We have further developed a
numerical solver for the tensor recovery problem and tested
it on three power flow benchmarks. This algorithm has suc-
cessfully generated high-dimensional and sparse generalized
polynomial-chaos expansions for the solutions. Good accuracy
(measured by prediction errors and comparison against Monte
Carlo) as well as significant computational cost reduction (with
up to 9× 1020 times) have been observed in this work.



To the best of our knowledge, this is the first work studying
stochastic power systems from a tensor perspective. While
several limitations exist in the current work, the authors believe
that many problems are worth investigation in this direction.
Firstly, it is worth investing global non-convex optimization
to solve (15) or trying to convexify the formulation. Secondly,
some future work about the optimal choice ofλ and r may
help improve the robustness of our framework. Finally, it is
worth developing better sampling schemes to improve the
performance of tensor recovery.

One particularly attractive application of this techniqueis
the construction of probabilistic static equivalents of a sub-
networks. These equivalents can be used both for distribution
grid models with high penetration of intermittent renewables
and for probabilistic modeling of random disturbances in
neighbor areas in multi-area power systems.

A second natural application is the stochastic contingency
analysis over a range of operating conditions. Currently de-
terministic contingency analysis is considered in some basic
cases with given operating condition. However, as the systems
change and are subject to uncertainties, one need to take
multiple cases or scenarios into account. The fast averaging
technique developed in this paper can effectively alleviate the
heavy computation in such situations.

APPENDIX A
ORTHONORMAL POLYNOMIALS

Consider a single random parameterξk ∈ R with a prob-
ability density functionρk(ξk), one can construct a set of
polynomial functions subject to the orthonormal condition:

∫

R

φk,α(ξk)φk,β(ξk)ρk(ξk)dξk = δα,β

where δα,β is a Delta function, integerα is the highest
degree ofφk,α(ξk). Such polynomials can be constructed
as follows [37]. First, one constructs orthogonal polynomials
{πk,α(ξk)}pα=0 with an leading coefficient 1 recursively

πk,α+1(ξk) = (ξk − γα)πk,α(ξk)− καπk,α−1(ξk)

for α = 0, 1, · · · p − 1, with initial conditionsπk,−1(ξk) =
0, πk,0(ξk) = 1 and κ0 = 1. For α ≥ 0, the recurrence
parameters are defined as

γα =
E

(

ξkπ
2
k,α(ξk)

)

E

(

π2
k,α(ξk)

) , κα+1 =
E

(

ξkπ
2
k,α+1(ξk)

)

E

(

ξkπ2
k,α(ξk)

) . (21)

HereE denotes the operator that calculates expectation. Sec-
ond, one can obtain{φk,α(ξk)}pα=0 by normalization:

φk,α(ξk) =
πk,α(ξk)√
κ0κ1 · · ·κα

, for α = 0, 1, · · · , p.

APPENDIX B
GAUSS QUADRATURE RULE [35]

Given ξk ∈ R with a density functionρk(ξk) and a smooth
function q(ξk), Gauss quadrature evaluates the integral

∫

R

q(ξk)ρk(ξk)dξk ≈
m
∑

ik=1

q(ξikk )wik
k

with an error decreasing exponentially asm increases. An
exact result is obtained ifq(ξk) is a polynomial function
of degree≤ 2m − 1. One can obtain{(ξikk , wik

k )}p+1
ik=1 by

reusing the recurrence parameters in (21) to form a symmetric
tridiagonal matrixJ ∈ R

(p+1)×(p+1):

J (i, j) =















γi−1, if i = j√
κi, if i = j + 1√
κj, if i = j − 1

0, otherwise

for 1 ≤ i, j ≤ p+ 1.

Let J = QΣQT be an eigenvalue decomposition andQ a
unitary matrix, thenξikk = Σ(ik, ik) andwik

k = (Q(1, ik))
2.

APPENDIX C
ERROR CONTROL IN ALG. 1

With tensor factors{U(1),k}dk=1 obtained afterl iterations
of the outer loops of Alg. 1, we define

fl := f
(

U
(1),l

, · · · ,U(d),l
)

[updated cost func. of (15)]

Ĝl := T

(

U
(1),l

, · · · ,U(d),l
)

(approximated tensor)

c
l
α
:=
〈

Ĝl,Wα

〉

[updated coefficient for Ψα(α)]

and letcl = [· · · , cl
α
, · · · ] ∈ R

K for all |α| ≤ p. Then, we
define the following quantities for error control:

• Relative update of the tensor factors:

ǫl,tensor =

√

√

√

√

d
∑

k=1

‖U(k),l −U(k),l−1‖2F /
d

∑

k=1

‖U(k),l−1‖2F .

• Relative update ofc = [· · · , cα, · · · ]
ǫl,gPC = ‖cl − cl−1‖/‖cl−1‖.

• Relative update of the cost function:

ǫl,cost = |fl − fl−1|/|fl−1|.
The solution{U(k),l}dk=1 is regarded as a local minimal if
ǫl,tensor, ǫl,gPC andǫl,cost are small enough.

APPENDIX D
ASSEMBLING THE MATRICES AND VECTOR IN (19)

Consider the tensor factorsU(1),l+1, · · · , U(k−1),l+1, X,
U(k+1),l, · · · , U(d),l in (17). We denote the(i, j) element
of U(k′),l (or X) by u

(k′),l
i,j (or xi,j ), and itsj-th column by

u
(k′),l
j (or xj). Then, the cost function in (17) is

f
(

· · · ,U(k−1),l+1
,X,U

(k+1),l
, · · ·

)

=
1

2

∑

i∈Ω

(

r
∑

j=1

xik,jµi,j − G(i)

)2

+ λ
∑

|α|≤p

∣

∣

∣

∣

∣

r
∑

j=1

να,j〈xj ,w
(k)
αk

〉

∣

∣

∣

∣

∣

where the scalarsµi,j andνα,j are computed as follows:

µi,j =

k−1
∏

k′=1

u
(k′),l+1
i
k′ ,j

d
∏

k′=k+1

u
(k′),l
i
k′ ,j ,

να,j =

k−1
∏

k′=1

〈u(k′),l+1
j ,w(k′)

α
k′
〉

d
∏

k′=k+1

〈u(k′),l
j ,w(k′)

α
k′
〉.



Since each row (or element) ofA (or b) corresponds to
an indexi ∈ Ω, and each row ofF corresponds to a basis
function Ψα(ξ), in this appendix we usei as the row index
(or element index) ofA (or b) andα as the row index ofF.
Now we specify the elements ofA, b andF of (19).

• For everyi ∈ Ω, b(i) = G(i).
• Since xik ,j is the (j − 1)m + ik-th element ofx =

vec(X), for everyi ∈ Ω we have

A(i, (j − 1)m+ ik) =

{

µi,j, for j = 1, · · · , r
0, otherwise.

• Sincexj includes the elements ofx ranging from index
(j − 1)m + 1 to jm, given an index vectorα the
corresponding row ofF can be specified as

F(α, jm−m+ik) = να,jw
(k)
αk

(ik) = να,jφk,αk
(ξikk )wik

k

for all integersj ∈ [1, r] and ik ∈ [1,m].
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