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Probabilistic Power Flow Computation via
Low-Rank and Sparse Tensor Recovery

Zheng Zhang, Hung Dinh Nguyen, Konstantin Turitsyn and LDeaiel

Abstract—This paper presents a tensor-recovery method to become a popular technique for probabilistic power flow
solve probabilistic power flow problems. Our approach geneates  analysis [[#]-[8]. This method assumes the solution being a
a_high-dimensional and sparse generalized polynomial-clos g, mation of some univariate functions, then it computes th
expansion that provides useful statistical information. Te result . . . -
can also speed up other essential routines in power systemsd., moments using a set of one-dimensional quadrature pomts._
stochastic planning, operations and controls). Stochastic spectral methods[18] have emerged as a promis-

Instead of simulating a power flow equation at all quadrature ing technique for the uncertainty analysis of many engiinger
points, our approach only simulates an extremely small sul® problems including power system5 [13], [14], [19]. [20].
of samples. We suggest a model to exploit the underlying low- Tay apnroximate the stochastic solution by a generalized

rank and sparse structure of high-dimensional simulation dta | ial-ch - 211 Thi tati
arrays, making our technique applicable to power systems wh polynomial-chaos expansion_[21]. IS representation can

many random parameters. We also present a numerical method Provide various statistical information (e.g., momentsl an
to solve the resulting nonlinear optimization problem. probability density function); it can also accelerate many

Our algorithm is implemented in MATLAB and is verified by  stochastic problems in power systems (e.g., stochastit uni
sevgral benchmarks in MATPQWER 5.1. Accurate results are commitment[[9] and parameter inferentel[22]), whereasiprev
obtained for power systems with up to50 independent random .
parameters, with a speedup factor up to9 x 102°. ous approaches generally cannot._Howev_er, stochaspd:rabe_c

methods may require lots of basis functions and simulation
samples for problems with many uncertainties. In the uncer-
tainty quantification community, some techniques based on
compressed sensing [23], [24], proper generalized decsimpo
I. INTRODUCTION tion [25], [26] and tensor-train decomposition [20], [2§28]

R EALISTIC power systems are affected by various uncef@ve been developed for high-dimensional problems.
tainties, such as the randomness of generations and loadd,"iS paper develops an alternative stochastic spectral
insufficient knowledge about network parameters, and noig}ﬁth_od to solve probabilistic power flow problems with pessi
measurement [1]=[14]. Uncertainties may increase in éutu? y h|gh—d|men5|opal random parameters. Our main contribu
power systems, since many renewables highly depend on {8 are summarized as the following: i) We use tensors [29]
uncertain weather conditior’s [6[][9]. These uncertaintimist (-8-, high-dimensional data arrays) to represent the kagef
be considered in simulation, such that subsequent tasksecaflat@ samples required in stochastic simulation. With aoens
completed in an efficient and robust way. format, we propose a low-rank and sparse tensor recovery

This work investigates the probabilistic power flow probSchéme to generate a high-dimensional and sparse approxi-
lem [2], which quantifies the uncertainties of bus voltage§@ation while using an extremely small subset of quadrature
and line flows under uncertain loads, generations or netwgigmples. i) We present the detailed numerical implementa-
parameters. Currently, this problem is routinely solved #on Of the tensor recovery method. Our algorithm relies on
a number of decision-making procedures. Examples inclugii€rnating minimization and the alternating directiontinoei
transmission expansion and planning under long-term udf Multipliers (ADMM) [30]. Although only locally optimal
certainties in renewables penetration and regulationcigsli solutions are guaranteed, the developed solver perforris we
[15], [16]. In operations, the operators assess the sgoofit for many practical cases. We demonstrate the performance
the system and calculate Available Transfer Capabilitpgsi ©f the proposed technique with numerical simulations3on
random scenario samplirig [17] where the ability to average tP€nchmarks in MATPOWER.1 [31].
steady state solution over a large number of random scenario
is essential for secure power operations. Il. PROBLEM FORMULATION

Probabilistic power flow problems have been solved hy. Probabilistic Power Flow Problem
Monte Carlo and many analytical methods (including multi-
linearization [10], the comulant methdd [11], fuzzy loadvwflo d
analysis [[12], and so forth). Recently, point estimatiors ha
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A steady-state power system with uncertainties can be
escribed with parameterized power flow equations:

—
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whereP;, Q;, V;, 0; are the active and reactive power, voltage

magnitude and angle at load bygespectivelyG;, and By, - - - -
are conductances and susceptanggs:= 0, —0; is the voltage

angle difference between buseandk. - - - -
We employ random paramete&s=[¢;,---,&;] € R? to - - - -

describe the uncertainties of load power consumptions that
further influence bus voltages and angles. After computing
Vi's and#;’s, an out of interesy (e.g., the line flows) can be Fig. 1. Demonstration of vectors (left), matrices (middie)l tensors (right).
easily extracted. Obviously also depends 0§ and thus can

be written agy = g(£). We assume that a deterministic solver

is available to solved {1) given a sample&fFor simplicity, we I1l. A TENSORRECOVERY APPROACH

assume that all elements gfare mutually independent then

o - _ o This section presents our tensor-recovery method to solve
their joint probability density function i (&) = H Pe(&k):  high-dimensional probabilistic power flow problems.

where pi (&) is the marginal probability denS|ty functlon of
&x. Moreover, the slack bus is assigned to compensate for the

variations of loads and losses. A. Tensor Representations @)
_ _ As a generalization of vectors and matrices, a tendor
B. Stochastic Collocation Method R™ % *ma represents a high-dimensional data arrayl [29].

If the power flow problem is solvable, ane=g(€) smoothly  The number of dimensions/, is called the mode of a
dgggpgiszeodrf o}hﬁgm‘ﬁ_é:ﬁgogggrgﬂg%e[gﬁ a truncated tansor: ;. is the size of thek-th dimension. Given index
g poly P i= (i1, - ,iq) (with integeri, € [1,my]), we can specify

) _ one elementA(i). Fig.[d shows d-mode tensor (i.e., vector),
D ca > With Wa(£) H rei(&r) @ 49 mode tensor (i.e., matrix) and3amode tensor.

Jex|< . :
g First, we define al-mode tensoiG € R™>*xm

The multivariate polynomial basisl, (&) is indexed by
_ d i i . i1 i
a_[ald, ,agq)eN? with the total polynomial degree G(i) = g(€, -+, &), (6)

la|=3" |ax| < p. The total number of basis functions is _ .
=1 Next, for every¢, and its degreer, polynomial ¢y o, (k).

(p+d)! we define a vectow( ) € R™ with its ij-th element being
K= SPIE ®3)
As shown in Appendiﬂ the degree; univariate polyno- $(ik) = Pk (€ Wit )

mials {¢r,a, (§x) 1o, —o are orthonormal to each other. There-
fore, the muItivanate basis functions are also orthondyarad
ca Can be computed with projection

o = [ Wal@a(Ep(E)ic B W wl o owl® o Wa

Rd
This integral can be evaluated by a proper quadrature rll'-ll%reo
which requires computing(¢) at a set of samples.

For every index vectody, We further construct d-moderank-
1 tensor W, € R™*~

8)

HE@.

denotes an outer product. As a result, the right-hand
side of [B) is theinner product of G and W, :

C. Integration Rules and Curse of Dimensionality ooy ooy
Among different quadrature rules [32]=[34], this work Ca = (G, Wq) = Z . Z G(I)Wa(i). 9)
considers computing, by a tensor-rule Gauss quadrature =1 ig=1
method. First, use Gauss quadratire [35] (in Appehdix B) to
decidem guadrature samples and weigr{@vjw;j anl for In summary, in order to obtain the generalized polynomial-
&, Next, we compute,, by a tensor rule § chaos approximatiofi}2) we need to compute: 1) tegsoR)
d tensorW,, for eacha satisfying|a| < p. Since eachV,, is
o & Z Z L gl H Droy (S, (5) the outer product of vectors and many of them can be reused,

computingW,,’s is trivial. However, directly computings
és almost |mp053|ble since the power flow equation must be
simulatedm? times.

11=1 iq=1

This method requires simulating the power flow equ
tion m? times, and obviously it only works well for low-
dimensional problems (e.g., whehis below5 or 6). Sparse
grid has been applied to simulate power systéms [13], whi
can compute{4) with aboat K samples for high-dimensional
cases[[19]. In this paper, we aim to use orlyK samples Instead of computingg directly, we approximateG by
from a tensor rule to computEl(4). tensor recovery. The key idea is described below.

gj. Low-Rank and Sparse Tensor-Recovery



1) Sub-SamplingWe randomly compute a small portion ofAlgorithm 1 Alternating Minimization for Solving[(I5).
elements ing, then seek for a tens@f to approximateg. Let 1. Initialize: U0 ¢ R™*" for k =1, ---d;
T = {i|]1 < i < m} include the indices for all elements (v 2. for1=0,1,---

The size ofZ, |Z|, is m?. We choose a subsét C Z (with 3. for k=1, --- ,d do
|| < |Z]) that includes a small number of indices randomly 4: solve [IT) by Alg[® to obtaify(*).i+1 ;
selected froniZ, and computeg (i) = g(&',--- , &) forany s end for
i € Q. Then, we look for a tensog such that it matche§ 6. break if converged;
at all elements specified 1y, i.e., 7 end for
. 8: return UK = U®Hl for kb =1,...  d.
IPo (G- 6) I =o0. (10)

HerePq, is a linear operator for tensors:
2) Optimization Step: Solve [15) to obtain matrices

B=Pq(A) < B(i)= { ?(i)hif i 6 . 11) UW,..- U@ that represent tens@ in (I4).
; otherwise. 3) Model Generation:Replaceg by G, and calculate,,’s
The Frobenius-norm of a general tensor is defined as according to[(P). With low-rank tensor factors, the comfiata

can be simplified to
Al = V(A A, (12) }
A r T
An infinite number of tensors exist that satisfies the require cq ~ <g,Wa> = Z [H ((ug-k)) w&’f})], (16)

ment [I0) but significantly differs frong. Therefore, some j=1 Lk=1
constraints can be addeq to regularize this problem. which involves only cheap vector inner products.
2) Constraintl— Sparsity: Let vectorc = [- -+, ca, -] € Since we can approximatg by using only a small number

RX includes all coefficients in the generalized polynomials simulation samples, our method can be applied to many
chaos approximation. In high-dimensional cagds,generally high-dimensional problems.

very sparse — most of its elements are close to zero. Using
norm as a measure of sparsity [36], we have

el =Y leal = > (6. Wa)
a<p a<p

3) Constraint2—Low Tensor Rankin many casesg has A. Outer Loop: Alternating Minimization

a low tensor rank and can be well approximated by the 12 Algorithm Flow: Starting from an initial guess
summation of a few rank-tensors. Therefore, we assume thatU(*):01¢_  we perform the following iterations: at iteration

IV. OPTIMIZATION SOLVER
is small (13) This section describes how to sole](15).

the solutiong has arank-r decomposition I+1 we use{U®):1}d_ as an initial guess and obtain updated
, tensor factors{U®)-+114_ ~ py alternating minimization.
G=T (U(l), . 7U(d)) — Z uPo...oul? (14) Eachiteration consists afsteps, and at thee-th step,U(*)-!+
= J J is obtained by solving
Whereug}k)eRle is thej-th column of matrixU®*) e R™*", UM = arg nin f ( TN A & IRy )
Therefore, we may usématrices to represent the whole tensor 17)
instead of computing and storing all elementsGof Since all factors expect)*) are fixed, [IV) becomes a
4) Final Tensor-Recovery ModeWe describe the low-rank convex optimization problem, and its global minimum can
and sparse tensor-recovery model as follows: be computed by the solver in Sectibn IV-B. The alternating
Giveng(i) for everyi € (2, solve minimization method ensures that the cost function deeeas
in T (U(l) U(d>) monotoqically to a Ioca_l minimgl. The pseudo codes are
{(U® ermxr}? o summarized in Alg:ll, which terminates when the convergence
e " @ 5 (15) criteria in Appendix{_C is satisfied.
=32 HPQ (T(U -, UY) — g)HF 2) Prediction Error: An interesting question is: how ac-
+A Y [(T(UW, - UMW) Wy)|. curate isG compared with the exact tensg? Our tensor
|l <p recovery formulation enforces consistency betwgeand G
Here A > 0 is a regularization parameter. at the indices specified . We hope thag also has a good

predictive behavior -G (i) is also close toG(i) for i ¢ Q.
) In order to measure the predictive property of our results, w
C. Summary of Main Steps define a heuristic prediction error
We summarize the main steps of our approach as below.

1) Simulation Step:Randomly generate a small subset 5 (Q(i) —g(i))Qw- )
Q C T such that|2] < K < md For every index e ' D e — i« (18)
i= i, - ,i4 € Q, simulate the power flow equatiof] (1) “°" ~ S G0 w Wik s = kI:[lwk :

once to obtain a deterministic val@i) = g(¢}', -+ ,£5). ieqy



Algorithm 2 ADMM for Solving (@3).

1: Initialize: form A,F and b according to AppendiXD,
specify initial guesx?, u® andz’;

2: for j=0,1,--- do

3. computex’t!, z/*1 andu’/*! according to[(20);

4 breakif |[Fx' ™' -2/t < ¢ & |[FT (271! —27)|| < e2;
5: end for

6: return UF)-H1 = yeshape(x/*1, [m, r]) .

Fig. 2. The6-bus system.
Here Q) € T is a small-size index set such that N Q = (.
Obviously, G has good predictive behavior i,y is small.
Estimatinge,, requires simulating the power flow equation at
some extra quadrature samples. However, a smallsgizsan
provide a good heuristic estimation.

ok v o N &
bk & o v s

B. Inner Loop: Numerical Solver fof_(1L7)

Following the procedures in AppendiX D, we rewrite Prob-
lem ({I7) as the generalized LASSO problem:

Fig. 3. Left: all quadrature samples; right: samples use@msor recovery.

1
vec (U(k)’lﬂ) = argmin B [Ax — b”g +A[Fx|| (19)

where A € RI®Ixmr | ¢ RExmr gndb e RG> and V. SIMULATIONS

_ mrXx1 ; H H H -
x = vec(X) € R™" " is the vectorization oK (.., x(jm—  This section reports the simulation results for severa tes
m +i) = X(i, j) for any integerl <i <m andl <j <7). ;ases from MATPOWER.1 [31]. All codes are implemented
Note that|2| is the number of simulations samples in tensqf, MATLAB. We find that a 2nd- or 3rd-order generalized

recovery, andx is the total number of basis functions. olynomial-chaos expansion can provide good accuracy for
We solve [[ID) by the alternating direction method of mu&any cases, therefore we get= 2 (or 3) in (@) andm = 3
tipliers (ADMM) [30]. Problem [I®) can be rewritten as (or 4) in qujation ) .

min1|\Ax—b||§+/\|z| st. Fx—z=0.
. X .2 3 . . A 6-Bus Case (witt8 Random Parameters)
By mtrodtgcm% an a%xmary vgmabla and s_tarulng W|_th initial The case6wwexample in MATPOWER 5.1 (c.f. Fidl2) is
guessesc, u’ = z° = Fx’, the following iterations are e a5 a demonstrative example. Weisendom parameters
performed to update andz: to describe the uncertain active powers at the load bdses
= (ATA + sFTF)_1 (ATb + sFT (2" — u")) to 6. We aim to obtain a 3rd-order generalized polynomial-
L — shrink/\/s(kaH +2b 4 uh) (20) chaos expansion for th(_e real power injected from_ Buw
bl et . Bu_s 4, leading t020 basis functions in total. Applyl_ng.a—
utt =ut +FxTT -2t point Gauss-quadrature rule to perform numerical intégmat
Here s > 0 is an augmented lagrangian parameter, and tf each dimension, we generaié quadrature points in total.
soft thresholding operator is defined as In order to compute the generalized polynomial-chaos ex-
) pansion, onlyl8 quadrature points (as shown in Fid. 3) are
, a—Afs, ifa>A/s randomly sub-selected. The simulation results at thesetsel
shrink,/s(a) = { 0, %f lal <A/s samples are used to perform tensor recovery. For this case, w
at s ifa<—A/s find that setting the tensor rank= 3 and the regularization
The pseudo codes for solving_{17) are given in Alg. 2. parametei = 0.25 is a good choice. Starting from a randomly
S generated ranRk- tensor, our algorithm converged aftép
C. Limitations iterations as shown in Fig[] 4. The obtained low-rank tensor
Firstly, the cost function of[{15) is non-convex, and it i@pproximation has an estimated prediction error 0c%.
non-trivial to compute its global minimum with theoreticaWith the obtained tensor approximation, the coefficients fo
guarantees. Although researchers and engineers are very odll generalized polynomial-chaos basis functions arelyasi
satisfied with a local minimal, the obtained result may naalculated based ofi {[16). The coefficientsdor= 0 is 31.83,
be good enough for some cases. Secondly, in this work taich is the mean value of the output. All other coefficients
parameters\ [the regularization parameter if_{15)] and are plotted in Figl5, where a sparsity pattern is observed.
[the tensor rank in[{14)] are set based on some heuristicNext we validate our results by Monte Carlo. Here we
experiences. This treatment is definitely not optimal anesdouse 5000 samples in Monte Carlo simulation and treat its
not guarantee high accuracy for all cases. result as a golden reference solution. As shown in Tableel, th
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Fig. 4. Convergence for the 6-bus example. The left figurevshibe relative update of tensor factors (i@,¢cnsor); the middle figure shows the update
of the generalized-polynomial-chaos coefficients (kg4pc); the right figure shows the value of the objective functiae.( f;).
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Fig. 5. Coefficients of W (&) 'fa‘:l for the 6-bus example. Fig. 6. Coefficients of ¥ (&) ‘2‘1‘:1 for the 30-bus example.
TABLE |
MOMENTS OF THE6-BUS EXAMPLE. 200 (a) Monte Carlo 100, (b) Proposed tensor recovery
350 350
Tensor Recovery] Monte Carlo 200
samples 18 5000 %0
Mean 31.83 31.87 250 250
stand. dev. 0.0439 0.0448 200 200

150 150

100 100

mean value and standard deviation from our tensor recover

approach is very close to that from Monte Carlo. Jos
Complexity Reduction. Since we usel8 samples out of

64 quadrature points, the reduction ratio for this problem i=g. 7. Histograms of the simulated output for the 30-buseple .

3.6. Note that the number of samples in tensor recovery is less

than the number of basis functions (i.20).

50

0
-10.4 -10.3 -10.2 -10.1 -10 -10.5 -10.4 -10.3 -10.2 -10.1 -10

the estimated prediction error(s55%. Although this example
B. 30-Bus Case (witl24 Random Parameters) has many random parameters, its generalized polynomial-

Next we consider thecase30example in MATPOWER Chaos expansion is very sparse, as shown in[Fig. 6.
5.1, with the active powers of4 load buses modeled by In order to check the accuracy, we perform Monte Carlo
Gaussian random variables. We applgral-order generalized Simulation using5000 random samples. Table] Il compares
polynomial-chaos expansion for the real power from buso the mean values and standard deviations from both ap-
bus23, requiring totally325 basis functions. For each paramproaches, and they are very close. An advantage of gerestaliz
eter,3 quadrature points are used, leadingth ~ 2.8 x 101 polynomial-chaos expansion is that one can easily evathate
samples in total. Obviously, it is prohibitively expensit@ €xpression with many samples to get a density function or
simulate the power system at all quadrature points. histogram. Such information cannot be easily obtained by a

In our tensor recovery scheme, we randomly pizk0 point-estimation method. The histogram from our method is
quadrature points from the full tensor-rule quadraturegiasn close to that from Monte Carlo (c.f. Fidl] 7).
and approximateg by a rank4 tensor. Setting\ = 0.3 and Complexity Reduction. Since we use&80 samples out of
starting with a random initial guess, our algorithm conesrg 3%* quadrature points, the reduction ratio for this example is
nicely’ after26 iterations which are similar to Figl 4. Wits0  10°. The number of samples in tensor recovery is also smaller
newly sub-sampled quadrature points as the testing samptaan the number of basis functions (i.825).
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Fig. 9. Coefficients of ¥ (£) for the 57-bus example. Fig. 10. Computed probability density functions for the-bus example.

2
|a]=1
TABLE Il

TABLE Il
MOMENTS OF THE57-BUS EXAMPLE.

MOMENTS OF THE30-BUS EXAMPLE.

Tensor Recovery] Monte Carlo Tensor Recovery] Monte Carlo
Samples 280 5000 Samples 800 5000
Mean 10.23 10.22 Mean 0.721 0.724
stand. dev. 0.048 0.049 stand. dev. 0.0596 0.0609

equations. The mean values and standard deviations fram bot
. ) ) approaches are very close (c.f. Table Il).

Finally we consider theaseS7example in MATPOWER  complexity Reduction. Since we use300 samples out of
5.1, with 50 Gaussian randpm variables descrlbmg the activgo quadrature points, the reduction ratio for this example is
powers at load buses. With 2nd-order polynomial-chaos 5p6yt9 x 102°. The number of samples in tensor recovery is

expansion, we aim to approximate the real power injectedain smaller than the number of basis functions (L&26).
from Bus 19 to Bus 20 with 1326 basis functions. Using

3 Gauss-quadrature points for each parameter, a tensor-rule
quadrature method requirgs® > 7 x 10%? samples in total.
It is impossible to store the samples on a personal computerThis paper has presented a probabilistic power flow simula-
let alone simulating the power flow equation at all samplestion algorithm based on tensors and stochastic collocation
Our tensor recovery scheme randomly sub-seledfi8 order to break the curse of dimensionality, we have develope
samples to perform power flow simulations. Starting with a high-dimensional method that exploits the low-rank and
random initial guess, we approximate the full tengbrby sparse property of tensors. This tensor framework has com-
a rankb tensor, with an estimated prediction error . pleted the huge-data-size simulation task with an extrgmel
Fig. [8 shows the convergence of our solver. Eig. 9 plots tisenall-size simulation data set. We have further developed a
coefficients for all non-constant basis functions. Cleattye numerical solver for the tensor recovery problem and tested
result is extremely sparse for this high-dimensional edempit on three power flow benchmarks. This algorithm has suc-
In order to get a full picture about the statistical behawibr cessfully generated high-dimensional and sparse geredali
the output, we evaluate the computed generalized polyrilemipolynomial-chaos expansions for the solutions. Good aayur
chaos expansion with000 random samples and plot its proba{measured by prediction errors and comparison againsté/lont
bility density function. As shown in Fig._10, the result i®sé Carlo) as well as significant computational cost reductiuith(
to that from Monte Carlo simulation on the original power flowup to 9 x 10%° times) have been observed in this work.

C. 57-Buse Case (witlh0 Random Parameters)

VI. CONCLUSIONS ANDFUTURE WORK



To the best of our knowledge, this is the first work studyingith an error decreasing exponentially as increases. An
stochastic power systems from a tensor perspective. Whilgact result is obtained if(¢;) is a polynomial function
several limitations exist in the current work, the authaebdve of degree< 2m — 1. One can obtain{(§*, w) )}f:ll
that many problems are worth investigation in this dirattio reusing the recurrence parameterdid (21) to form a syrm:netri
Firstly, it is worth investing global non-convex optimiiat tridiagonal matrixJ € R+ x(+1):

to solve [I5) or trying to convexify the formulation. Sectnd

; . i1, if1=17
some future work about the optimal choice bfand r» may j/n_l ilf Z: j.+ 1
help improve the robustness of our framework. Finally, it is J (i,7) = \/5_1»7 iy _‘; 1 for1 <i,j<p+1.
7 -

worth developing better sampling schemes to improve the
performance of tensor recovery.

One particularly attractive application of this technigee Let J = QXQT be an eigenvalue decomposition a@ya
the construction of probabilistic static equivalents ofud-s unitary matrix, therf““ = Y(ig, i) andw,i’“ = (Q(l,z’k))z.
networks. These equivalents can be used both for distoibuti

0, otherwise

grid models with high penetration of intermittent renevesbl APPENDIXC
and for probabilistic modeling of random disturbances in ERROR CONTROL IN ALG.[I
neighbor areas in multi-area power systems. With tensor factorsU()*14_  obtained afted iterations

A second natural application is the stochastic contingengy the outer loops of Algll1, we ' define
analysis over a range of operating conditions. Currently de

. OK; (d),1
terministic contingency analysis is considered in somécbas / == f (U U ) [updated cost func. of ([13)]
cases with given operating condition. However, as the syste g ._ 7 (U(l“, . 7U<d),l) (approximated tensor)
change and are subject to uncertainties, one need to take A
multiple cases or scenarios into account. The fast avegagin. = gl7Wa> [updated coefficient for ¥ o ()]
technique developed in this paper can effectively allevtae
L . A K
heavy computation in such situations. and letc’ = [+ ,cq,---] € R® forall [af < p. Then, we
define the following quantities for error control:
APPENDIXA « Relative update of the tensor factors:
ORTHONORMAL POLYNOMIALS
d

Consider a single random parametgre R with a prob-

- ) i _ Uk)l — ),l—1 Uk),i—12
ability density functionp, (&), one can construct a set of Cl tensor Z | 1% /Z ” -
polynomial functions subject to the orthonormal condition _

« Relative update ot = [--- ,cq, -]

o d&y = 6, ) .
R/¢k, (&) D, (E) pre (§r ) A 5 e — el — e
where 4, 5 is a Delta function, integerr is the highest < Relative update of the cost function:

degree of¢y (&k). Such polynomials can be constructed eteoss = i — Fial/Ifial.
as follows [37]. First, one constructs orthogonal polynalsi 08
{70 (&) }0_, with an leading coefficient 1 recursively The solution{U®):1}¢_ is regarded as a local minimal if

€ , € ande are small enough.
Th,a+1(&k) = (€6 — Ya) Th,a (Ek) — KaTh,a—1(Ek) Ltensors £aPC heost g

for « = 0,1,---p — 1, with initial conditionsmy,_1(&;) = APPENDIXD
0, mr0(€x) = 1 and kg = 1. For a > 0, the recurrence  ASSEMBLING THE MATRICES AND VECTOR IN (19)
parameters are defined as Consider the tensor factofg()-1+1, ... [UkE-1.1+1 X
U<k+1) coo, U@L n . We denote théi,j) element
E (ékﬁﬁ,a(ik)) E (ﬁkﬁi,aﬂ(fk)) Y (e 9])  thei, j)
= g = . (21) of U®) (or X) by U, (or z;,;), and itsj-th column by
E (Wz,a(ﬁk)) E (&cﬂﬁ,a(&c)) u;k’)l (or x,). Then, the cost function il (17) is
Here E denotes the operator that calculates expectation. Sec-f ( DR S (U ORER I 'l § (GanbR) )
ond, one can obtaifigx, « (&)} _, by normalization: ’ ’

E 1% X W(k)
a,j \&j) ak

1 . .
Oral(E) = _ Thal8) Jfora=0,1,---,p. =3 > <Zl’ik,jﬂi,j - g(i) ) +A D>

KoK1 Ko ieQ \j=1 lee|<p |j=1
APPENDIXB where the scalarg; ; andv, ; are computed as follows:
GAUSS QUADRATURE RULE [35] b1 d
Given ¢, € R with a density functiorp; (¢,) and a smooth my =[] uz(f i 11 uz(f o
function ¢(&;), Gauss quadrature evaluates the integral k=1 K =k+1
m -1 d
o (k'),z+1 W) ) (k)
/q(ﬁk)pk(&)d& ~ Y g wy vay = ] (u wie)) T wi)).
2 ip=1 k'=1 k'=k+1



Since each row (or element) &€ (or b) corresponds to [18]
an indexi € , and each row off' corresponds to a basis
function ¥ (&), in this appendix we usé as the row index
(or element index) ofA (or b) and« as the row index oF'.
Now we specify the elements o, b andF of (I9).

[19]

20
« Foreveryi e Q, b(i) = G(i). 120)
e Sincex;, ; is the (j — 1)m + i,-th element ofx =
vec(X), for everyi € 2 we have 21]
s (s S\ Hi,jy fOI'jzl,"',’l’
AL (= Dm +ix) = { 0, otherwise. [22]

« Sincex; includes the elements of ranging from index
(j —1)m + 1 to jm, given an index vectorx the [23]
corresponding row oF can be specified as

F(a, jm—m+ir) = va W (ir) = Va,jor.a, (€ wjt B4

for all integersj € [1,7] andiy € [1,m)]. [25]
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