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Data-Driven Diagnostics of Mechanism
and Source of Sustained Oscillations

Xiaozhe Wang, Member, IEEE, and Konstantin Turitsyn, Member, IEEE

Abstract—Sustained oscillations observed in power systems can
damage equipment, degrade the power quality and increase the
risks of cascading blackouts. There are several mechanisms that
can give rise to oscillations, each requiring different countermea-
sure to suppress or eliminate the oscillation. This work develops
mathematical framework for analysis of sustained oscillations and
identifies statistical signatures of each mechanism, based on which
a novel oscillation diagnosis method is developed via real-time pro-
cessing of phasor measurement units (PMUs) data. Case studies
show that the proposed method can accurately identify the exact
mechanism for sustained oscillation, and meanwhile provide in-
sightful information to locate the oscillation sources.

Index Terms—Power system stability, oscillation diagnostics,
phasor measurement units, weakly damped oscillation, limit cycle,
Hopf bifurcation, forced oscillation.

I. INTRODUCTION

S USTAINED low frequency oscillations are one of major
concerns to power system operation. Oscillations cause

problems for power quality and can potentially damage power
grid equipment or activate protective equipment. In most severe
scenarios, growing oscillations may lead to catastrophic black-
outs [1].
Generally speaking, there are three mechanisms of power

system oscillations. Firstly, the oscillation can appear due to
weak damping arising from high-gain fast exciters, long trans-
mission lines, or high transmission powers [2]–[4]. This kind of
oscillation can be quenched by appropriate power system sta-
bilizer (PSS) tuning, intertie line controls, and generator power
reduction. Second mechanism of oscillation appearance is at-
tributed to supercritical Hopf bifurcation such that a stable limit
cycle is born [5]–[10]. Unlike the weakly damped oscillation
which can be analyzed by linearizing the system, the limit cycle
is an essentially nonlinear behavior which only exists in non-
linear systems. The emergence of limit cycle implies that the
stability property of the system has changed, and in order to
push the system back to stability, operation point may need to
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be reset. In addition, another mechanism of oscillation is forced
oscillation, which is excited by external periodic disturbance in-
cluding cyclic loads, control loops in power plants, diesel gen-
erators, etc. [11]–[15]. The most effective countermeasure is to
locate and separate the external disturbance from the system. In
summary, there are different mechanisms of power system os-
cillations, and different countermeasures need to be adopted ac-
cordingly. Hence, detecting power system oscillations and diag-
nosing the corresponding mechanism are of utmost importance
in power system monitoring, and of great significance to ensure
the secure operation of any power system.
Phasor measurement units (PMUs) have been widely de-

ployed in power grids to provide system states and dynamics
in real time [16], [17]. The high quality PMU data provides in-
valuable information to enable oscillation diagnosis. Regarding
the weakly damped oscillation, different methods to identify
oscillation modes and damping ratios are proposed including
Prony analysis [18], frequency domain decomposition analysis
[19], subspace identification method [20], robust RLS methods
[21] and so forth. Hopf bifurcation has been studied in terms
of dynamic stability. Hopf bifurcation not only involves with
the oscillation, but also closely relates to the voltage stability.
The previous studies show that voltage collapse may arise
from the existence of Hopf bifurcation, which is prior to the
appearance of saddle-node bifurcation [5]–[10]. In addition,
forced oscillation has also been studied by exploring frequency
domain techniques [11]–[15]. It has been shown that if the
forced oscillation is close to the natural frequencies, resonance
may be observed which leads to severe consequences [3], [14],
[15]. Even though each type of the oscillation has been widely
investigated, little effort has been made to distinguish the three
mechanisms from time series data such that the right control
actions can be executed. The challenges of oscillation diagnosis
include low signal-to-noise ratio (SNR) especially when the
amplitude of oscillation is small while load fluctuation and
noise intensity are large, as well as similar characteristics of
time series data. Specifically, the time series data of oscillations
with different mechanisms all looks alike to each other.
This paper proposes a novel method to diagnose the mecha-

nisms of sustained oscillations using PMU data. A unified math-
ematical framework to describe sustained oscillation is devel-
oped, under which the statistical signatures of different models
are explored. It is shown that sustained oscillations of different
mechanisms exhibit distinct statistical signatures including the
kurtosis and the power spectral density, based on which an os-
cillation diagnosis method is developed. Numerical examples
show that the proposed diagnosis method is able to accurately
identify the exact mechanism for oscillation even when the SNR
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is low, and meanwhile provides insightful information to lo-
cate the oscillation sources, which are crucial to implement the
right control actions in a timely manner. Note that the goals and
focus of the proposed method and conventional waveform anal-
ysis techniques are different and complementary to each other.
The proposedmethod is to diagnose different oscillation mecha-
nisms and locate the potential sources, whereas the conventional
waveform analysis techniques focus on analyzing damping, fre-
quency, oscillation mode shapes, etc. By nature, the traditional
waveform analysis does not distinguish between different oscil-
lation mechanisms.
The paper is organized as follows. Section II describes a uni-

fied framework under which the mathematical model for each
oscillation mechanism is developed. Section III presents the
statistical signatures for each oscillation mechanism based on
which an oscillation diagnosis method is proposed. Case studies
are presented in Section IV to demonstrate the accuracy and fea-
sibility of the proposed method. Conclusions and perspectives
are given in Section VI.

II. MECHANISMS OF SUSTAINED OSCILLATIONS

The power system dynamic model can be described as:

(1)
(2)

Equation (1) describes dynamics of generators and their asso-
ciated control as well as load dynamics, and (2) describes the
electrical transmission system and the internal static behaviors
of passive devices. and are continuous functions; vectors

and are the corresponding state variables
(generator rotor angles, rotor speeds, etc.) and algebraic vari-
ables (bus voltages, bus angles, etc.), and is the vector de-
scribing stochastic behaviors in real-world power systems. The
stochastic perturbations can be originated by load variations, re-
newable energy power injections, transient rotor vibrations of
synchronous machines, measurement errors of control devices,
etc. [22], [23]. In this paper, we are interested in the stochastic
perturbations like load variations and renewable energy power
injections, which can be modeled as the Ornstein-Uhlenbeck
process, which is stationary, Gaussian andMarkovian [23], [24]:

(3)

where which relates to the cor-
relation times of the stochastic processes [23], is a vector of
independent standard Gaussian random variables, is the in-
tensity of noise.
Linearizing (1) and (3), and also eliminating algebraic vari-

ables from (2), the stochastic power system model takes the
form:

(4)

where

.
In the rest of the paper, we focus on the stochastic model de-

scribed in (4), where is a vector Ornstein-Uhlenbeck process.

Fig. 1. (a). A sample path of in a weakly damped system (6) with given pa-
rameters; (b). A sample path of in system (8) with given parameters, which
has a stable limit cycle; (c). A sample path of in system (10) with given pa-
rameters, which has a forced oscillation.

As discussed in the introduction, sustained oscillations of
power systems can be produced by several vastly different
mechanisms. In the sections below we discuss possible origins
of oscillations and develop the corresponding mathematical
models.

A. Weakly Damped Oscillation
Weakly damped oscillation can be classified into local mode

oscillations, and interarea mode oscillations. Local mode os-
cillations are usually caused by automatic voltage regulators
(AVRs) operating at high output and feeding into weak trans-
mission networks; interarea mode oscillations are associated
with weak transmission links and heavy power transfers. Power
system stabilizers (PSSs) are the most common means of en-
hancing the damping and suppressing the oscillations.
Mathematically, weak damping means that all eigenvalues of
in (4) are still in the left half plane, whereas the principal

eigenvalue which has the minimum absolute value has been
very close to the imaginary axis. According to normal form anal-
ysis [25], the dynamics of system (4) can be decomposed into
dynamics of individual modes, and we focus on the dynamics
of the least stable mode described as below:

(5)

where and is close to zero.
Let , and represent (5) in Cartesian

coordinate, we have:

(6)

The processes and are Ornstein-Uhlen-
beck process which is stationary, Gaussian and Markovian.
Fig. 1(a) shows a typical sample path of in system (6), where

.
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B. Limit Cycle
Supercritical Hopf bifurcation, which leads to the emergence

of a stable limit cycle, is another mechanism of power system
oscillation. Unlike the weakly damped oscillation, the occur-
rence of Hopf bifurcation indicates that the equilibrium point of
system has already lost its stability. The oscillation due to Hopf
bifurcation can be regarded as an early warning of voltage col-
lapse, since Hopf bifurcation usually occurs before saddle node
bifurcation which results in the final voltage collapse [5]. Coun-
termeasures like power reschedule, load tap changer blocking,
and other emergency control may be needed to stop the voltage
degradation.
Limit cycles are inherently nonlinear phenomena that can be

described only via nonlinear equations. Near the Hopf bifurca-
tion point, the normal form of the stochastic system can be gen-
erally represented as:

(7)

Here coincides with the amplitude of the most
unstable mode in the leading order and is the
same noise term as in linear case. It is possible to represent (7)
in Cartesian coordinates:

(8)

Fig. 1(b) shows a typical sample path of in system (8), where
, and .

C. Forced Oscillation
Another type of power system oscillation is raised by forced

oscillation from cyclic loads, control loops in power plants,
diesel or hydro generators, wind turbines, etc. [13]–[15]. This
kind of oscillation is not a result of the general dynamics of
power system, instead, it is caused by an external forcing with
a distinct oscillatory behavior. Particularly, forced oscillation
may lead to voltage flickering when the frequency is around
10 Hz where the human eye is most sensitive; forced oscil-
lation near the natural modes may result in resonance, and
small disturbance is then amplified and expanded rapidly in
the whole power system. The most effective countermeasure
against forced oscillation is to locate and remove the external
oscillation source.
Mathematically, the system undergoing forced oscillation can

be described as:

(9)

where is the natural frequency and is the forced frequency.
Let , and represent (9) in Cartesian

coordinate, we have:

(10)

Fig. 1(c) shows a typical sample path of in system (9) with
, and .

From Fig. 1(a)–(c), it is clearly seen that power system oscil-
lations with different mechanisms all look similar to each other

from time series data, which makes it hard to diagnose the exact
cause and adopt the right control actions. In the next section, a
novel method will be presented to identify the mechanisms for
sustained oscillations by exploring the statistical signatures of
time series data.

III. STATISTICAL SIGNATURES OF DIFFERENT
OSCILLATION MECHANISMS

In this section, several statistical characteristics will be briefly
introduced, and then elaborated analytically for different oscil-
lation mechanisms. It will be shown that time series data of os-
cillation in different mechanisms exhibit different statistical sig-
natures, based on which a diagnosis method is developed.
Kurtosis is a descriptor of the shape of a probability distri-

bution, and can be regarded as a measure of deviation from
Gaussian distribution. Mathematically, kurtosis is defined as the
standardized fourth moment around the mean of a distribution
[26], [27]:

(11)

where E is the expectation operator, is the mean, is the
fourth moment. The Gaussian distribution has a kurtosis of 3,
so , termed as excess kurtosis, is often used so
that the reference Gaussian distribution has a kurtosis of zero.
In this paper, we use in the subsequent analysis. For sym-
metric unimodal distributions, positive excess kurtosis indicates
heavy tails and peakedness relative to the normal distribution,
while negative excess kurtosis indicates light tails and flatness.
In addition, the kurtosis is not affected by the variance since it
is scaled with respect to the variance.
The power spectral density (PSD) describes how the strength

of a signal is distributed in the frequency domain. By Wiener-
Khinchin theorem:

(12)

where is the autocorrelation func-
tion. For example, periodic signals give peaks at a fundamental
frequency and its harmonics, while white noise has a flat PSD.
It will be shown that the kurtosis together with the PSD func-

tion can be used to distinguish the different mechanisms of os-
cillations. Firstly, the kurtosis can be used to distinguish the
weakly damped oscillation from the limit cycle and the forced
oscillation. Then, the PSD can be used to differentiate the limit
cycle and the forced oscillation. Detailed analysis is to be pre-
sented for each scenario.

A. Weakly Damped Oscillation
System (6) can be represented as:

(13)

where is a vector Ornstein-Uhlenbeck process,

. Then the PSD
function can be calculated [28]:

(14)
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Fig. 2. Power spectral density of the sample path in Fig. 1(a).

Specifically, the PSD of is:

(15)

Fig. 2 shows the PSD of the sample path presented in
Fig. 1(a). The power spectrum has a peak around
Hz with a wide bandwidth under the condition that .
It indicates that if the system is weakly damped, the random
excitation by the noise may lead to an oscillation near the
natural frequency of the system.
Regarding the kurtosis, the process is Gaussian since

all linear functionals of a Gaussian process are also Gaussian.
Hence, the kurtosis of should be approximately zero. In-
deed, for the example shown in Fig. 1(a), the kurtosis of the
sample path is 0.24.

B. Limit Cycle
Consider system (8), near the Hopf bifurcating point, the am-

plitude of the limit cycle grows with , and the angular fre-
quency is approximately . The solution can be approximated
as:

(16)

where is an Ornstein-Uhlenbeck process
independent of is a Brownian motion with
deterministic drift [29]. The PSD of can be represented as
[30]:

(17)

where is the PSD of :

(18)

The phase noise leads to a shift of the spectral peak, and even
for very stable limit cycles , the power spectrum has a
non-vanishing bandwidth, leading to the temporal decoherence
which is known as “jitter” in electronic signal theory [31], [32].
Fig. 3 shows the PSD of the sample path in Fig. 1(b), which has
a peak around 0.15 Hz with a wide bandwidth.
Even though the weakly damped oscillation and the limit

cycle have similar power spectrums, they have different proper-
ties with respect to the kurtosis. The kurtosis of

is given below, refer to Appendix A for detailed
derivation.

(19)

Fig. 3. Power spectral density of the sample path in Fig. 1(b).

Fig. 4. Power spectral density of the sample path in Fig. 1(c).

From (19), we have that if , the
kurtosis is negative; as grows, i.e., the amplitude of the limit
cycle is more and more larger than the noise intensity ,
the kurtosis gets more and more closer to , which makes

more distinguishable from Gaussian distribution, and thus
from the weakly damped oscillation. For the example shown
in Fig. 1(b), the kurtosis is , which is much farther away
from zero compared with the weakly damped oscillation.

C. Forced Oscillation
We next consider system (10) whose solution can be repre-

sented as:
(20)

where satisfies

(21)

and is a vector Ornstein-Uhlenbeck process:

(22)

We consider the real part , the stationary solution (i.e.,
) of can be represented as: ,

with the PSD function:

(23)

Fig. 4 presents the PSD of the sample path shown in Fig. 1(c).
It demonstrates that in a well-damped system, the PSD function
has a thin spike at the frequency corresponding to the func-
tion in (23).
Compare Fig. 4 with Figs. 3 and 2, the forced oscillation is

characterized by a thin spike in the power spectrum, which is
distinct from the other oscillation mechanisms. In practice, the
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Fig. 5. Histograms of kurtosis value for all mechanisms.

width of the spike will be determined by the decoherence time
of the external forcing, so it will be narrow for truly periodic
load variations.
Furthermore, the kurtosis of can

be represented as below, whose detailed derivation is given in
Appendix A.

(24)

(24) implies that the kurtosis of is negative, which means
that the distribution of has light tails and flatness compared
with Gaussian distribution. In addition, , and
the absolute value of depends on .
If the noise intensity of is much less than the amplitude
of the oscillation , the kurtosis will be far away from zero and
close to , which makes the distribution of distinguish-
able from Gaussian distribution. Indeed, for the example shown
in Fig. 1(c), the kurtosis is .
Monte Carlo simulations are also done to demonstrate the

characteristic of kurtosis for each mechanism. 500 s simulation
has been run for 100 times for each mechanism, and histograms
of kurtosis value are shown in Fig. 5. The widely spread of
kurtosis value makes different oscillation mechanisms readily
distinguishable. Additionally, 90% confidence levels have been
calculated. 90% confidence interval of the kurtosis for weakly
damped oscillation is , 90% confidence interval of
the kurtosis for limit cycle is , and that of the kur-
tosis for forced oscillation is . The histograms and
confidence intervals have demonstrated the pronounced distin-
guishability of kurtosis.
From the above analysis, we see that different oscillation

mechanisms exhibit different properties regarding the kurtosis
and the PSD. Specifically, the kurtosis can be used to distin-
guish the weakly damped oscillation, which has approximately
zero kurtosis, from the forced oscillation and the limit cycle,
which have negative kurtosis. Furthermore, the PSD can be used

Fig. 6. Flowchart of the algorithm to diagnose sustained oscillations.

to distinguish the limit cycle which has a wide bandwidth, and
the forced oscillation which has a thin spike. We hence pro-
pose an algorithm to diagnose the sustained oscillation causes
as shown in Fig. 6. The threshold has to be decided by consid-
ering noise intensity, confidence interval, system features and
so forth in practical implementation; the detection of thin spike
also depends on the tradeoff between noise intensity and forcing
strength. Further studies are needed to improve the decision pro-
cedures in this algorithm. Besides, further investigations about
control design are needed, while some preliminary results are to
be presented in the following case studies, which is to locate the
oscillation source or problematic components via the kurtosis.

IV. CASE STUDIES

Fig. 7 shows three different oscillation scenarios in 14-bus
systems, from which the exact mechanism of each scenario can
be hardly identified. In this section, we apply the proposed di-
agnostic method to identify the oscillation mechanism for each
scenario using the simulated PMU data. Note that all the time
series data is obtained from time-domain simulation of three dif-
ferent 14-bus systems which are modified from the IEEE 14-bus
benchmark system. Stochastic loads are added to the systems.
Particularly, all load fluctuations follow the Ornstein-Uhlenbeck
process, with in (3). Besides, we use the exponential
recovery load which has been widely used in studying voltage
stability [4], [33] and can be modelled as follows:

(25)

(26)

where is a dimensionless demand variable, is the reference
voltage, and and are active and reactive power exponents
depending on the type of load [33], [34]. All simulations were
performed on PSAT-2.1.8 [34]. Parameter values of the base
case are given in Appendix B, and all test systems are posted
online: https://github.com/xiaozhew/Test-Systems-.
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Fig. 7. One specific voltage magnitude in three cases. (a) Voltage magnitude
at Bus 2, (b) Voltage magnitude at Bus 2, (c) Voltage magnitude at Bus 5.

Fig. 8. (a). The moving kurtosis of the voltage magnitude shown in
Fig. 7(a) without measurement noise.; (b). The moving kurtosis of the voltage
magnitude under the influence of measurement noise.

A. Case I

From the time series data shown in Fig. 7(a), we see that the
system is slowly evolving between 300 s and 700 s probably
due to changing parameters. Given that the new steady state
(between 700 s to 1500 s) suffers from oscillation, we intend
to figure out the exact mechanism of the oscillation.
Following the algorithm shown in Fig. 6, we firstly estimate

the kurtosis of the time series data in Fig. 7(a). The moving kur-
tosis of the time series data with a window size of 50 s is pre-
sented in Fig. 8(a). The peak in the figure corresponds to the
transient dynamics due to changing parameters, while the kur-
tosis before and after the variation doesn't change much. In fact,
the kurtosis of the new steady state (between 700 s to 1500 s) is
0.006, which indicates that the random process is still approx-
imately Gaussian and the nonlinearity doesn't outstand. There-
fore, we conclude that the sustained oscillation is due to weak
damping. It implies that as the system evolves, the principal
eigenvalue is getting closer to the imaginary axis, or in other
words, the systems is getting closer to its stability boundary.
We also examine the impact of measurement noise on the pro-

posed oscillation diagnostic method. Measurement noise may
wash out useful information and affect the observed statistics,

and thus affect the detection and decision. To address this issue,
the band-pass filter was applied to filter out measurement noise
in [23]. It has been shown that the standard deviation (STD)
of the measurement noise after filtering can be reduced to the
order of if the STD of the original measurement noise is

. Following [23], we apply a white Gaussian noise with
as the measurement noise to the simulated PMU

data, and obtain the corresponding kurtosis shown in Fig. 8(b).
The estimated kurtosis of the new steady state (between 700 s
to 1500 s) is . Even though the measurement noise de-
teriorates the statistic, it is still obvious from Fig. 8(b) that the
kurtosis is close to zero, and thus system has weakly damped
oscillation.
The actual situation is that the variation of system voltages

is a result of increasing loads. Starting from 300 s, the expo-
nential recovery loads at Bus 5 and Bus 12 increase gradually,
and by 380 s, both loads grow by 8% and stop increasing after-
wards. The increasing loads require more power support from
the generators, making the field currents of generators closer to
their limits. As the power required by the loads gets closer to the
limit of the generators and the transmission network, the system
is pushed closer to its voltage stability boundary, which leads
to the weak damping of the complete power system. In order
to maintain the stable operation of the system, damping of the
system needs to be increased possibly by tuning the parameters
of the excitation system.
From this example, we see that the proposed oscillation di-

agnostic method is able to accurately distinguish the weakly
damped oscillation from the other mechanisms, and provide im-
portant guidance to further design the right control actions.

B. Case II
In the second case, the time series data in Fig. 7(b) performs

similarly as the previous case. Given that the new steady state
exhibits oscillations after a transient period between 300 s to
700 s, we want to diagnose the exact oscillation mechanism.
By the proposed method, we firstly estimate the kurtosis to

discern the weakly damped oscillation from the other mech-
anisms. Fig. 9(a) shows the moving kurtosis of the data in
Fig. 7(b), from which we can observe a significant change of
the kurtosis before and after the variation. In fact, the kurtosis
of the new steady-state time series data between 700 s and 1500
s is , which implies that the stochastic process has already
deviated from Gaussian process. Hence, the weakly damped
oscillation has been eliminated from all the mechanisms in this
scenario. Next, we estimate the PSD of the steady-state time
series data between 700 s and 1500 s to differentiate the forced
oscillation and the limit cycle. As presented in Fig. 9(b), there is
a clear peak around 0.12 Hz in the power spectrum with a wide
bandwidth. Hence, we conclude that the system has passed the
Hopf Bifurcation point. The original equilibrium point has lost
its stability and a stable limit cycle has emerged, which may be
an early warning sign of voltage collapse.
Similarly, we also incorporates measurement noise in this

case. We apply a white Gaussian noise with
as the measurement noise to the simulated PMU data, and ob-
tain the corresponding moving kurtosis and PSD as shown in
Fig. 10(a)–(b). It is observed that both the kurtosis and the PSD
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Fig. 9. (a) The moving kurtosis of the voltage magnitude shown in Fig. 7(b);
(b) The power spectral density of the steady-state time series data between 700
s and 1500 s in Fig. 7(b).

Fig. 10. (a) The moving kurtosis of the voltage magnitude with measurement
noise; (b) The power spectral density of the steady-state time series data between
700 s and 1500 s with measurement noise.

perform similarly as the case without measurement noise. Par-
ticularly, the moving kurtosis of the new steady-state time series
data between 700 s and 1500 s is , and the power spec-
trum has a clear peak around 0.12 Hz with a wide bandwidth.
Regarding the SNR, the amplitude of the limit cycle in the sub-
space of is p.u., and variance of measurement
noise is , hence the SNR is approximately dB. In
practice, both load fluctuations and electromechanical excita-
tions act as an effective noise, thus making the SNR even lower.
These effects are considered separately from the measurement
noise in our study.
In fact, the oscillation in this case is a result of continuously

increasing the loads after 380 s in Case I. The exponential re-
covery loads at Bus 5 and Bus 12 start increasing at 300 s, grow
by 12% at 420 s, and stop increasing afterwards. The increasing
loads result in the oscillation of over excitation limiter (OXL)
for the generator at Bus 2, which further excites the fast vari-
ables of AVRs. The effect of OXL to voltage stability has been
discussed in extensive literatures [4], [33], [35]–[38]. In this
case, the competing effect between load dynamics and OXLs
finally leads to the voltage instability. The power system passes
the Hopf bifurcation point around 400 swhen a stable limit cycle
is born.
To show the characteristics of kurtosis before and after Hopf

bifurcation in this power system, Monte Carlo simulations
have been done for both Case I and Case II. The histograms in
Fig. 11 are plotted according to 55 360 s samples of for
both cases. The 90% confidence interval of kurtosis for Case I
(i.e., weakly damped oscillation) is , and the 90%
confidence interval of kurtosis for Case II (i.e., limit cycle)

Fig. 11. Histograms of kurtosis value for all mechanisms.

TABLE I
THE KURTOSIS OF VOLTAGE MAGNITUDES AT DIFFERENT BUSES FOR
THE NEW STEADY STATE (BETWEEN 700 S AND 1500 S) IN CASE II

is . The confidence intervals do not overlap
with each other, which makes the decision procedure very
easy. These results further validate the ability of kurtosis to
distinguish between weakly damped oscillation and limit cycle.
This example shows that the proposed oscillation diagnosis

method is able to identify the limit cycle from all the mech-
anisms even when the SNR is low, and thus provides signifi-
cant guidance to adopt the right control strategy in time. In this
example, load increasing needs to be stopped to avoid further
voltage degradation or even voltage collapse.
We further observed that the kurtosis of real-time data may

also help locate the oscillation source or the problematic com-
ponents, because the absolute value of the kurtosis indicates the
amplitude of oscillation under fixed noise intensity as shown
in (19). By comparing the kurtosis of the voltage magnitudes
at different buses which can be achieved from PMU data, the
problematic components like the most stressed generator may
be identified. In this example, the kurtosis of each voltage mag-
nitude is shown in Table I. For illustration purpose, we do not
consider measurement noise here. We see that the kurtosis of
the voltage magnitude at Bus 2 has the maximum absolute value
which indicates that the amplitude of voltage oscillation is larger
at Bus 2 compared with other buses. The oscillation with larger
amplitude implies more severe problem and potential oscilla-
tion source, which is true in this case. The activation of OXL
of the generator at Bus 2 results in the excitation of other fast
variables of AVRs, and finally leads to the voltage oscillation
issue. Additionally, as the power support for the load at Bus 5
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Fig. 12. (a). The moving kurtosis of the voltage magnitude shown in Fig. 7(c);
(b). The power spectral density of the steady-state time series data between 700 s
and 1500 s in Fig. 7(c).

is mainly from the generator at Bus 2, the load at Bus 5 needs
to stop increasing in order to avoid further voltage degradation;
parameters of the excitation system of the generator at Bus 2
also need to be tuned to suppress the oscillation.

C. Case III

In the last case, it is again hard to distinguish the oscillation
mechanism directly from the time series data shown in Fig. 7(c).
Likewise, following the proposed method, we firstly estimate
the kurtosis to discern the weakly damped oscillation from the
forced oscillation and the limit cycle. The moving kurtosis of
the time series data with a window size of 50 s is presented in
Fig. 12(a), from which we can observe a significant change of
the kurtosis before and after the variation. Particularly, the kur-
tosis of the new steady-state time series data (between 700 s
and 1500 s) is , and hence the weakly damped oscilla-
tion has been ruled out from all the mechanisms. We next es-
timate the power spectral density of the steady-state time se-
ries data between 700 s and 1500 s in Fig. 7(c). As presented
in Fig. 12(b), there is a thin spike around 0.15 Hz in the power
spectrum. Hence, we conclude that the system is experiencing
forced oscillation at a frequency around 0.15 Hz.
We also include measurement noise in simulations. A white

Gaussian noise with is added to the simulated
PMU data, and the corresponding moving kurtosis and PSD are
shown in Fig. 13(a)–(b). It is found that both the kurtosis and the
PSD perform similarly as the case without measurement noise.
Particularly, the moving kurtosis of the new steady-state time
series data between 700 s and 1500 s is , and the power
spectrum has a clear peak around 0.15 Hz with a thin spike. Be-
sides, the amplitude of the forced oscillation in the subspace of

is p.u., and variance ofmeasurement noise is ,
hence the SNR is approximately dB, which is very low
and will be even lower if the influence of load fluctuations is
considered.
The actual situation is as follows, the exponential recovery

load at Bus 5 increases by 5% between 300 s and 350 s, then
one cyclic load joins at Bus 5 with a forced frequency 0.15 Hz.
Therefore, the increasing fluctuation of the bus voltage shown
in Fig. 7(c) is due to forced oscillation.
This example shows that the proposed diagnosis method can

successfully identify the forced oscillation among all the mech-
anisms at a low SNR. As mentioned before, The mechanism

Fig. 13. (a) The moving kurtosis of the voltage magnitude with measurement
noise; (b) The power spectral density of the steady-state time series data between
700 s and 1500 s with measurement noise.

TABLE II
THE KURTOSIS OF VOLTAGE MAGNITUDES AT DIFFERENT BUSES FOR THE

NEW STEADY STATE (BETWEEN 700 S AND 1500 S) IN CASE III

diagnosis for the oscillation with small amplitude is necessary
to implement mitigation control in a timely manner.
Similarly, the kurtosis may help locate the oscillation source.

The absolute value of the kurtosis indicates the amplitude of
oscillation as shown in (24). By comparing the kurtosis of the
voltage magnitudes at different buses, the location or region of
the forced oscillation may be identified. In this example, the kur-
tosis of each voltage magnitude is shown in Table II. For illus-
tration purpose, we do not consider measurement noise here.We
see that the kurtosis of the voltage magnitude at Bus 5 has the
maximum absolute value, which indicates that the amplitude of
voltage oscillation is larger at Bus 5 compared with other buses.
It turns out that the cyclic load indeed is at Bus 5 with a forced
frequency at 0.15 Hz. Removing of the cyclic load at Bus 5 after
the locating will then effectively eliminate the sustained oscil-
lation. Further studies may be needed to design a more compre-
hensive method for locating the oscillation sources.

V. VALIDATION ON DIFFERENT CASES

In order to show that the proposed oscillation diagnostic
method is robust, more simulation results are to be presented in
this section. We change some parameters of the base case, and
let the resulting system still experience Hopf bifurcation as the
loads increase. Likewise, we also add a cyclic load to the base
case in order to simulate forced oscillation. In particular, we set
the active power of the exponential recovery load at Bus 13 to
be 0.605 p.u. instead of 0.55 p.u. which is the value of the base
case for Case I-III. In other words, we make the active power
of the exponential recovery load increase by 10%.
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Fig. 14. Voltage magnitudes in different mechanisms. (a) Voltage magnitude
at Bus 2, (b) Voltage magnitude at Bus 2, (c) Voltage magnitude at Bus 5.

Starting from 300 s, the exponential recovery loads at Bus 5
and Bus 12 increase at twice the speed of Case I, and by 335 s,
both loads grow by 7% and stop increasing afterwards. Because
the load increasing stop before the Hopf bifurcation, the system
has weakly damped oscillation. Particularly, Fig. 14(a) shows
the voltage magnitude of Bus 2 of this case. Furthermore, if the
increasing of exponential recovery loads at Bus 5 and Bus 12
do not stop until 360 s, both loads grow by 12%. By then, the
system has passed the Hopf bifurcating point, and the voltage
magnitude at Bus 2 is shown in Fig. 14(b). Regarding the forced
oscillation, the manner of load changing is exactly the same as
that in Case III, and Fig. 14(c) shows the voltage magnitude at
Bus 5.
We then follow the proposed oscillation diagnostic method

and see whether the kurtosis and the PSD exhibit the expected
characteristics. The moving kurtosis for the case before Hopf
bifurcation is shown in Fig. 15(a), from which it is observed
that the kurtosis is still close to zero after the transient period.
Actually, the kurtosis of the new steady state (between 700 s
to 1500 s) is . As for the case that has passed the Hopf
bifurcating point, Fig. 15(b) shows its moving kurtosis, from
which it is seen that the kurtosis of the new steady state has
been away from zero. In fact, the kurtosis of new steady state is

. In the case of forced oscillation, the moving kurtosis is
presented in Fig. 15(c). It is seen that the kurtosis is away from
zero, which is actually for the new steady state. From
these results, it is seen that kurtosis is a robust statistic to discern
weakly damped oscillation from the other mechanisms.
We further estimate the PSD for the cases of limit cycle and

forced oscillation. The results are shown in Fig. 16(a)–(b). It is
observed that the PSD of the limit cycle has a wide bandwidth,
whereas the PSD of the forced oscillation exhibits a thin spike
around 0.15 HZ. Those results further validate that the PSD is
able to distinguish the forced oscillation from the limit cycle.

Fig. 15. (a) The moving kurtosis of the voltage magnitude shown in Fig. 14(a);
(b) The moving kurtosis of the voltage magnitude in Fig. 14(b); (c) The moving
kurtosis of the voltage magnitude shown in Fig. 14(c).

Fig. 16. (a) The power spectral density of the new steady state of the time series
data in Fig. 14(b). (b) The power spectral density of the new steady state of the
time series data in Fig. 14(c).

The extra simulation results given in this section are to
demonstrate that the proposed oscillation diagnostic method is
robust to the change of system parameters.

VI. CONCLUSIONS AND PERSPECTIVES

This paper elaborates the mechanisms of power system oscil-
lations in a unified mathematical framework, under which the
statistical signatures of different oscillation mechanisms are in-
vestigated. Even though oscillations with different mechanisms
look alike in time series data, they exhibit distinct statistical
signatures based on which an oscillation diagnosis method is
developed. Particularly, the oscillation diagnosis method utilize
the kurtosis to discern the weakly damped oscillation from the
others, and then use the power spectral density to differentiate
the limit cycle and the forced oscillation. Numerical example
show that the proposed method can accurately identify the
exact mechanism of sustained oscillation using PMU data, and
also provide insights towards locating the oscillation sources.
Though control actions are briefly discussed for each mech-
anism, further investigations are needed to better locate the
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problematic components and design the right control actions
after identifying the exact oscillation mechanism.

APPENDIX A
DERIVATION OF KURTOSIS

The kurtosis of can be derived
as follows. Denote , then we have:

(27)

(28)

(29)

The derivation of (29) uses the fact that for
Gaussian process and odd moments of Gaussian process are all
zero. The kurtosis of is:

(30)

Following similar procedures for the limit cycle, the kurtosis
of for the forced oscillation can be
derived as follows.

(31)

(32)

(33)

Therefore, the kurtosis of is:

(34)

APPENDIX B
PARAMETER VALUES OF THE BASE CASE

The base case is modified based on the test system
“d_014_dyn_mdl” in PSAT-2.1.8 [34]. The line between Bus
7–9 has been deleted. The active power of the load at Bus 2
has been increased to 0.55 p.u. from 0.189 p.u., and the active
power of the load at Bus 9 has been increase to 0.6 p.u. from
0.413 p.u. All loads are modelled as exponential recovery loads
whose parameter values are given in Table III. Besides, there
are two turbine governors for the generators at Bus 1 and 2,
with parameter values shown in Table IV. All generators are

TABLE III
EXPONENTIAL RECOVERY LOAD PARAMETER VALUES

TABLE IV
TURBINE GOVERNOR PARAMETER VALUES

TABLE V
OVER EXCITATION LIMITER PARAMETER VALUES

also controlled by OXLs whose parameter values are given in
Table V.
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