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Extreme-value statistics of work done in stretching a polymer in a gradient flow
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We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the
large deviation function (LDF) of the work in the full range of appropriate parameters by combining analytical and
numerical tools. The LDF shows two distinct asymptotes: “near tails” are linear in work and dominated by coiled
polymer configurations, while “far tails” are quadratic in work and correspond to preferentially fully stretched
polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean
and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.
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I. INTRODUCTION

Most systems in nature are out of their equilibrium,
dissipative, and subject to external forces. Entropy production,
heat production, and work produced by an external force are
common hallmarks of nonequilibrium systems characterizing
the degree of the detailed balance violation. Recent intriguing
results on production of entropy, work, as well as the statistics
of the dissipation rate suggest new directions in nonequilib-
rium statistical physics. These results are stated in terms of
various fluctuation theorems (FTs); see, e.g., Refs. [1–7] for
theory and Refs. [8–16] for applications to a variety of physical
systems. A typical FT expresses the symmetry possessed
by the probability distribution function (PDF) of the work
accumulated over a long time. In this limit, the logarithm
of the PDF is proportional to time, and the coefficient of
proportionality is the large deviation function (LDF).

A quantitative analysis of the LDF shape for linear systems
has been reported in the literature; see, e.g., Refs. [9,10,15]. In
a nonlinear case the LDF is difficult to evaluate analytically.
One obstacle is that the Gaussian Ansatz for the generating
function of the work or entropy production (utilized in
the linear stochastic problems) does not apply here. Farago
gives the leading order estimate for the LDF for several
pinning potentials [17]; however, this paper does not discuss
potentials due to singular forces (such as restitution forces of
finitely extensible polymers). Also, straightforward numerical
simulations are proven to be difficult in this regime, since even
the vicinity of the global minimum of the LDF corresponds
to rare events that are out of sampling reach for standard
Monte Carlo techniques. In this paper, we overcome these
difficulties in deriving the extreme value statistics of the work
done by stretching a polymer in a gradient flow. First, we
analyze the linear elasticity regime, similarly to Ref. [9].
Next we consider the other extreme, a regime where the
polymers are preferentially stretched close to their maximal
length by the external flow. The two cases give different
asymptotics, connected by an intermediate region, which we
obtain numerically, by implementing a rare-events sampling
algorithm from Ref. [18]. The method we use is general in that
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it is applicable for different nonlinear elasticities. We show
that the LDF is sensitive to the type of the nonlinearity, while
in Ref. [17] the LDF in leading order does not depend on the
pinning potential. All of the potentials considered here have
singularities, which makes the paper different from Ref. [17].
We also obtain the mean and the dispersion of work.

II. A FINITELY EXTENSIBLE POLYMER IN A
GRADIENT FLOW

We study the statistics of work of a finitely extensible poly-
mer subjected to a gradient flow and thermal fluctuations. The
flow breaks the detailed balance and stretches the polymer. The
work to stretch the molecule is stored as elastic energy, which
later dissipates with fluctuations of the molecule’s elongation.
The whole system is in a nonequilibrium dynamical state,
which is sustained by the energy flow from the fluid to the
molecule and back. It is well documented in the literature
[19] that even a minute amount of polymers is capable of
generating significant non-Newtonian effects. Some of the
most spectacular effects caused by anomalous stretching of
polymers are rod climbing [20], drag reduction [21], and elastic
turbulence [22]. Analysis of the statistics of stretching of single
polymers is a necessary prerequisite to grasp these phenomena.

We study the dumbbell polymer model in which the
polymer conformations are described solely by the end-to-
end vector r(t). A more realistic polymer model would
have a number of entropic springs connecting elements or
beads and would also allow for hydrodynamic interactions
between different beads. Numerical evidence suggests that
the statistical nature of polymer chains is insensitive to the
variation of bead number at sufficiently large and sufficiently
weak stretching (more precisely Weissenberg number, which
we will define below) [23]. We consider the case where the
polymer molecule is advected by an incompressible gradient
flow, v = σ r(t), correlated at length scales much larger the
maximal polymer length l. The velocity gradient matrix, σ =
diag(s, − s) is taken to be time independent. The stochastic
equation describing the balance of friction and elastic and
thermal forces exerted on the polymer in the reference frame
associated with its center of mass is

ζ {ṙ(t) − v[r(t)]} = F[r(t)] + ξ (t), (1)
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where F is the restitution force, ξ is the thermal noise,
and ζ is the friction coefficient [19]. We assume that the
statistics of thermal forces is fully described by 〈ξi(t)〉 = 0 and
〈ξi(t)ξj (t ′)〉 = (2ζ/β)δij δ(t − t ′). The potential energy can
take different shapes, depending on the polymer stiffness; see,
e.g., Refs. [24,25]. Our main example is the finitely extendable
nonlinear elastic (FENE) model with

F ≡ −∇U = −γ
r

1 − (r/ l)2
, (2)

but our analysis is general, and we also apply it to the
following elastic forces: −γ r/[1 − (r/ l)2]n and −γ r/[1 −
(r/ l)]n, where n ∈ Z+. The degree of polymer stretching can
be expressed in terms of the Weissenberg number Wi ≡ sτ ,
which is defined as the product of the characteristic velocity
gradient s and the polymer relaxation time τ = ζ/γ . The
value Wi = 1 separates the regime of the “coiled” phase
of effectively linear elasticity, from the principally nonlinear
phase, Wi > 1, where the polymer is predominately stretched
[26]. The relaxation time to a steady state increases with the
proximity of the coil-stretch transition [27,28], due to the
abundance of different polymer configurations that contribute
to the relaxation close to the transition.

III. THE STATISTICS OF WORK DONE BY THE FLOW TO
STRETCH A POLYMER

Work done by the flow to stretch the polymer fluctuates in
time, and it is given by

W [r(·)] ≡
∫ t

0
dt ′(∂t ′ + v · ∇)U, (3)

where the material derivative takes into account the effects
of the advection of the polymer by the external flow [9,10].
Langevin fluctuations translate into fluctuations of work,
which are described by the PDF P(W |t). At time t , which is
parametrically larger than the correlation time τc � {s−1,τ },
one expects the PDF to take a large-deviation form

P(w|t) ∝ exp

[
− t

τc

L(w)

]
, (4)

where w = βWτc/t andL(w) is the LDF of the work produced
over time t . Customarily in large deviation theory a rate
function is defined as the tails of the cumulative distribution
function of w (see, e.g., Ref. [29]); here L describes the tails
of the PDF. The two rates at large enough times differ by
logarithmic corrections [ln(t/τc) terms].

Our object of interest, L(w), is a convex function of
its argument. To analyze it in detail we study the Laplace
transform of P(W |t), also called the generating function (GF)
of work:

Z ≡ 〈eηβW [r(·)]〉. (5)

In the saddle point approximation we have that

Z � exp

{
t

τc

[w∗L′(w∗) − L(w∗)]

}
= e

t
τc

λ(η), (6)

where η = L′(w∗). The LDF and λ(η) are the Legendre
transforms of one other: L(w∗) = w∗η − λ(η). Below we will
obtain λ(η) and from there get the LDF. The Gallavotti-Cohen

fluctuation theorem [2,4,30] implies the relation L(w) =
L(−w) − w, which is equivalent to λ(η) = λ(−1 − η). Hence
in order to get λ(η) for η ∈ R, it is enough to look at η > − 1

2 .
The “standard” fluctuation theorem relates the probabilities

of positive and negative entropy production in the same system.
Here it is valid only if the flow and its time-inverse image are
physically equivalent, i.e., they coincide after properly chosen
spatial rotation and inversion. Although all planar flows satisfy
this, the condition is broken in a generic three-dimensional
(3D) gradient flow. For example the “standard” FT is violated
for a 3D axially symmetric elongational flow. Such a flow can
be specified with a velocity gradient matrix of the following
form: diag(2s, − s, − s). Namely, while such a flow with
s > 0 would deform a spherical blob of passive scalar (e.g.,
dye) into a one-dimensional filament, its time-reversed copy
(s → −s) would turn the same blob into a two-dimensional
“pancake.”

The GF Z is conditioned on the initial r(0) and final point
r(t). It can be formally expressed in terms of the path integral
in the polymer configuration space as

Z =
∫ r(t)

r(0)
[Dr(·)] exp

{
−S[r(·)] − ηβ

∫ t

0
dt ′v · F

}
, (7)

S ≡ −ζβ

4

∫ t

0
dt ′

[(
ṙ − v − F

ζ

)2

+ 2

βζ
∇ ·

(
v + F

ζ

)]
,

(8)

where S is the effective action [15,31]. From Eq. (7) one
obtains the Fokker-Planck equation (see, e.g., Ref. [32])

∂tZ = −∇ ·
[(

F
ζ

+ v

)
Z

]
+ ∇2Z

βζ
− ηβζv · F

ζ
Z. (9)

It is convenient to make the variables dimensionless. Hereafter
the unit of temperature is (γ l2/2), the unit of the polymer
length is l, and time is measured in units of τ .

We apply the substitution

Y = exp

[
−Wi

T

∫
d r ·

(
v + F

Wi

)]
Z (10)

to Eq. (9) and get a Schrödinger-like equation

−T ∂tY = − T 2

2Wi
∇2Y + V Y, (11)

where

V = T

2
∇ ·

(
F

Wi
+ v

)
+ Wi

2

(
F

Wi
+ v

)2

+ 2ηv · F.

(12)

Note the η → −1 − η invariance of the potential. This invari-
ance implies that the Gavallotti-Cohen fluctuation theorem
holds [2,4,30].

The large time behavior is determined by the ground state
energy λ(η). We obtain the ground state energy for several
different restitution forces in the following sections.
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IV. RESULTS

A. Linear-Hookean elasticity

The linear case, F = −γ r , is integrable and corresponds
to single particle quantum mechanics in a magnetic field [33],
where the ground state energy is

λ(η) = 1

Wi
− 1

2Wi
[
√

(1 + Wi )2 + 4Wi η

+
√

(1 − Wi )2 − 4Wi η]. (13)

This expression holds for η ∈ [− (1+Wi )2

4Wi , (1−Wi )2

4Wi ]. Similar
objects were derived in Refs. [9] and [10], where a polymer
was placed in a shear flow. The Legendre transform of Eq. (13)
gives the LDF

L(w) = [η−w − λ(η−)]θ (−w) + [η+w − λ(η+)]θ (w) (14)

with

η± =−1

2
± 1

4Wi w2
{−3 + [1 − (1 + Wi 2)w2]2

+ 2
√

1 + 2(1 + Wi 2)w2}1/2, (15)

where θ (w) is the Heaviside step function. For large values of
work the asymptotes are

lim
w→±∞L(w) = ± (1 ∓ Wi )2

4Wi
w. (16)

This implies that the PDF of the work is an exponential.
Notice that for Wi > 1 we have λ(0) �= 0, which amounts
to the breakdown of linear elasticity. Namely, for strong
velocity gradients the polymer cannot be in a steady state
if the restitution force is linear. This linear case analysis is
straightforwardly generalizable to a 3D case. Below we focus
on the nonlinear case.

B. Nonlinear elasticity

For a general nonlinear force Eq. (11) is nonintegrable.
However, here T , the ratio between that temperature and the
elastic energy at the maximal extension, is always smaller than
unity, since we consider a nonlinear polymer in a steady state.
Moreover often it is interesting to look at T � 1, which would
mean that the natural length of the polymer spring is much
smaller than its maximal length in the presence of the external
flow. We refer to the regime T � 1 as the “semiclassical
limit,” due to the apparent analogy with quantum mechanics
in Eq. (11). Below we will describe an approximate way
to obtain the ground state, λ(η), for the FENE polymer. In
the T � 1 regime we can assume that the polymer length is
close to the minimum of the potential V . To find the ground
state we expand the potential around the minimum r∗ and add
harmonic fluctuations

λ(η) � −V (r∗)

T
− 1

2
√

Wi
[
√

Vxx(r∗) + √
Vyy(r∗)]. (17)

The coupling term vanishes for V : Vxy(r∗) = 0. Note that
η → −η or v → −v changes the roles of x,y; also notice
that this potential is symmetric around x → −x and y → −y.
Thus when searching for minima one can look at, e.g., the

x > 0 semiaxis to get the full picture. Depending on η, Wi ,
and T there are two deep minima, one at the origin, with
ground state energy

λ(η) = 1

Wi
− 1

2Wi
[
√

(1 + Wi )2 + 4Wi η − 4T

+
√

(1 − Wi )2 − 4Wi η − 4T ] (18)

valid for η ∈ [− (1+Wi )2−4T

4Wi , (1−Wi )2−4T

4Wi ]. The above expression
differs from the linear case Eq. (13) just slightly (terms with T ).
The other minimum is at y∗ = 0 and

x∗ =
⎡
⎣1 + (2 − 4T )

1 + 2Wi + 4Wi η

√
[1 + Wi (2 + 4η)]3

3Wi 2(1 − 2T )2

× cos

⎛
⎝1

3
arctan

⎧⎨
⎩
√

[1 + Wi(2 + 4η)]3

27Wi 2(1 − 2T )2
− 1

⎫⎬
⎭− 2π

3

⎞
⎠
⎤
⎦

1/2

.

(19)

The ground state energy for η � 1 can be approximated as
λ(η) ≈ (2Wi /T )η2, and this leads to Gaussian statistics of w

(see Fig. 1). The two different asymptotic are connected with
an intermediate region, that we investigated numerically with
a “cloning algorithm” [18]. The results for the ground state
energies are shown in Fig. 2.

In an analogous manner one can consider different nonlin-
ear forces, such as F = −γ r/(1 − r)2 (wormlike polymers
[24]) and F = −γ r/(1 − r2)n. The formulas for the semi-
classics at origin will be dominated by linear elasticity; e.g.,
in the later case we get Eq. (18) where we just need to replace
T with nT . In the nonlinear case large η limit for F =
−γ r/(1 − r)2 has a simple expression: λ(η) ≈ [(1 + T ) −
T

√
1 − 3T ](2Wi /T )η2. The minimum of the corresponding

potential is at r∗ ≈ (1 − (2Wi η)−1,0). Here the leading order
with T for λ(η � 1) is the same as for the FENE polymer.
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FIG. 1. (Color online) The LDF L as a function of work w. Here
we show the two different asymptotics at temperature 0.005(γ l2/2).
The markers represent the Legendre transform of the numerically
obtained ground state energy λ (numerics done with a “cloning
algorithm” described in Ref. [18]). The solid lines represent L
obtained analytically from the semiclassical solutions for the ground
state, given in Eq. (17), dominated by root at origin [Eq. (18)] and
the root at Eq. (19).
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C. Validity

In the considered cases the ground state energies were
continuous and convex. Therefore the Gartner-Ellis theorem
is applicable, and it guaranties that the LDF is the Legendre
transform of the ground state energy [29]. The LDF of ground
state energies (shown in Fig. 2) can be seen on Fig. 1.

The semiclassical description holds as long as the semiclas-
sical ground state wave function |Yg〉 width is smaller than the
system size:

max[1/
√

Vxx(r∗),1/
√

Vyy(r∗)] �
√

Wi /T , (20)

and the kinetic term in Eq. (11) is negligible compared to the
potential part, i.e.,

〈Yg| − (T 2/2Wi )∇2|Yg〉 � 〈Yg|V |Yg〉. (21)

For FENE polymer at T = 0.005
(
γ l2/2

)
the semiclassical

description is a good approximation almost everywhere: for
Wi = 0.5 it works for 0.1 > η > 0.12 and for Wi = 1.0–2.0
it works everywhere except in the vicinity of η = 0 (cf.
Fig. 2). Our simulations of the semiclassical ground state
λ(η) (see Fig. 2) were done by a “cloning algorithm” [18].
The parameters of the simulation were time step 0.01τ and
evolution time 103τ .

Especially it is interesting to look at the phase transition at
Wi = 1. Notice that the ground state energy is discontinuous
at η = 0 for Wi > 1. We use our analytical expressions for the
ground state energy λ(η) to find the mean 〈w〉 = λ′(0) and the
dispersion of work (〈w2〉 − 〈w〉2)/〈w〉 = λ′′(0), in the vicinity
of Wi = 1. The analytical results away for the transition match
the Monte Carlo averages over the polymer trajectories (see
Fig. 3). Notice that the dispersion goes to a maximum at
Wi = 1. This corresponds to the multitude of very different
polymer configurations that are present at the transition. Below
the transition, Wi � 1, 〈w〉 ∝ 2Wi , (〈w2〉 − 〈w〉2)/〈w〉 ∝
1/Wi . Close to the transition Wi → 1− we have 〈w〉 ∝
1/(1 − Wi) and (〈w2〉 − 〈w〉2)/〈w〉 ∝ 1/(1 − Wi).
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FIG. 2. (Color online) The ground state energy λ of a FENE
polymer as a function the generating function parameter η at
temperature 0.005(γ l2/2). The inset zooms into the region η ∈
[−0.5,0]. The solid lines represent the semiclassical solution for the
ground state dominated by the root at origin [see Eq. (18)] and the
root in Eq. (19). The markers are the numerics done by a “cloning
algorithm” described in Ref. [18].
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FIG. 3. (Color online) The mean and the dispersion of work w for
Wi = 0.1–2.0. The red solid line is 〈w〉 = λ′(0), and the green solid
line is (〈w2〉 − 〈w〉2)/〈w〉 = λ′′(0)/λ′(0). The ground state energy for
Wi < 1 is given by Eq. (18), and for Wi > 1 we have Eq. (17) at
minimum Eq. (19). The dots represent the numerical estimates of the
mean and dispersion obtained by averaging 105 trajectories. In the
simulations the evolution time was 103τ , and the temperature was
0.005(γ l2/2).

V. DISCUSSION AND CONCLUSIONS

It is important to emphasize that our theory and numerics
work well for flows of different gradient strengths, as our
assumptions require only small T (small thermal fluctuations),
and T is a flow-independent parameter. In the “semiclassical”
limit (small T ) the nonlinear dumbbell spends most of the time
in the “coiled” or in the “extended” configurations. The drag
coefficient for long time intervals is or that of a sphere or that
of a thin rod, respectively. Thus, albeit simple and ignoring
hydrodynamical interactions, our model provides important
insights into the statistics of work and dissipation of polymers
in gradient flows.

We wish to highlight that even for nonlinear systems it is
often possible to theoretically investigate objects such as the
LDF. Rare events corresponding to anomalous rate of entropy
or work production are related to particular configurations
of the polymer molecule. It can be especially insightful to
look at the LDF near phase transitions, where its landscape
is richer, due to the occurrence of different phases and
many configurations that the system can take. In particular,
experimental results on the statistics of work of stretching of
polymers, near the coil-stretch transition, show critical slowing
down and enhanced fluctuations [28]. These effects, as the
authors of the experimental study [28] argue, most likely occur
due to the presence of a large number of possible polymer
configurations in the vicinity of a continuous thermodynamic
phase transition. In addition, one could use LDF statistics to
discern between different restitution forces. For the commonly
used singular potentials describing the finitely extensible
polymers, our results show that the LDF does depend on the
shape of the potential.

Modern experimental techniques allow one to track sin-
gle polymers. Dynamics of polymer molecules in external
flows was extensively studied; see, e.g., Refs. [34,35]. Such
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experiments improved the understanding of mechanical prop-
erties of polymer molecules. Measurement of the work
production provide another way of approaching the same
problem, such measurements could test our LDF results (see
Refs. [36,37]). Also by variation of the external flow one could
study the polymers in coiled and stretched states.

The situation considered in this letter is quite general. We
believe that our methods and results can be used in as a probe
of soft matter dynamics in other systems, such as various
nanodevices, molecular motors, polymer solutions, etc. Possi-
ble experimental realizations include elastic turbulence, drag
reduction, and optical tweezers experiments.
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