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Abstract— In this paper, we introduce a structural emergency
control to render post-fault dynamics of power systems from
the critical fault-cleared state to a stable equilibrium point (EP).
Theoretically, this is a new control paradigm that does not rely
on any continuous measurement or load shedding, as in the
classical setup. Instead, the grid is made stable by intentionally
changing the power network structure, and thereby, discretely
relocating the EP and its stability region such that the system
is consecutively driven from fault-cleared state through a set
of EPs to the desired EP. The proposed control is designed
by solving convex optimization problems, making it possibly
scalable to large-scale power grids. In the practical side, the
proposed control can be implemented by exploiting the FACTS
devices that will be widely available on the grids, and hence,
requiring minor investment.

Index Terms—Power grids, emergency control, intercon-
nected systems, synchronization

I. INTRODUCTION

Large scale level of intermittent renewable generations
is installed into power grids, that can compromise the
grid’s stability, while the low inertia of renewable gener-
ators challenges the grid’s controllability. As a result, the
next-generation power grids will be increasingly vulnerable
to unfavorable weather conditions and component failures,
which can eventually lead to major outages. Therefore, crit-
ical/emergency states of power grids will appear frequently,
and thus, emergency control, i.e., the action to recover the
stability of a power grid when a critical situation is detected,
should be paid serious attention.

Although the existing emergency controls of power grids,
such as remedial actions, special protection schemes (SPS),
and load shedding [1], [2], make current power grids rea-
sonably stable to disturbances, their drawbacks are twofold.
First, some of these emergency actions rely on interrupting
electrical service to customers and result in huge economic
cost due to power interruptions, e.g. about $79 billion a
year in the US [3]. Second, protective devices are usually
only effective for individual elements, but less effective in
preventing the whole grid from collapse. Recent major black-
outs exhibit the inability of operators to prevent grid from
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cascading failures [4], regardless of the good performance of
individual protective devices. The underlying reason is the
lack of coordination among protective devices, which makes
them incapable of maintaining the stability of the whole
grid. These drawbacks call for system-level, cost-effective
alternatives to the classical emergency control of power grids.

On the other hand, new generations of smart electronic
devices provide fast actuation to smart power grids. Also,
transmission resources are continuously installed into the
system and will be ubiquitously available in the future.
Motivated by the aforementioned observations, this paper
aims to extract more value out of the existing and future
fast-acting electronic resources and transmission facilities
to quickly stabilize the power grid when it is about to
lose synchronism after experiencing contingencies (but the
voltage is still well-supported). In particular, we propose to
use FACTS devices to adjust susceptances of a number of
selected transmission lines and/or power injections to thereby
stabilize the post-fault power systems.

One of the most remarkably technical difficulties to realize
such a control scheme is that the post-fault dynamic of a
power grid possesses multiple EPs, each of which has its
own stability region (SR), i.e., the set of states from which
the post-fault dynamics will converge to the EP. Real-time
direct time-domain simulation, which exploits advances in
computational hardware, can perform an accurate assessment
for post-fault transient dynamics following the contingencies
[5]. However, it does not suggest how to properly design
the emergency control actions that can surely drive criti-
cal/emergency states back to some stable operating condition.
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Fig. 1. Stability-driven smart transmission control: the fault-cleared state
is made stable by changing the stable equilibrium point (SEP) through
adjusting the susceptances of the network transmission lines.

In this paper, will change the transmission network and/or
power injection setpoints to obtain a new stable EP such that
the fault-cleared state is guaranteed to stay strictly inside the
stability region of this new EP, as shown in Fig. 1. Hence,
under the new post-fault dynamics, the system trajectory will
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converge from the fault-cleared state to the new EP. If this
new EP stays inside the SR of the desired EP, then we
recover the original transmission network/power injections
and the system state will automatically converge from the
new EP to the original EP. Otherwise, this convergence
can be performed through a sequence of new transmission
control actions which drive the system state to the original
EP through a sequence of other EPs as in Fig. 2.

It is worth emphasizing that in the proposed emergency
control, we drive the system from the initial state (i.e., the
fault-cleared state) to the desired EP by relocating its EP
and the corresponding stability region. This setup is unusual
from the classical control theory point of view where the
EP is usually assumed to be unchanged under the effects
of control inputs. Also, we do not require any continuous
measurement of any signals, as in the classical control setup.

In this paper, utilizing the Lyapunov function family
approach [6], the proposed discrete network changing is
designed by solving convex optimization problems, making
it possibly scalable to large-scale power grids. In the practical
side, the proposed emergency control can be implemented by
exploiting the FACTS devices which are widely available on
the existing grids, and thus, requires minor investment. In ad-
dition, it reduces the need for load shedding causing serious
damage to customers in traditional emergency control.

II. EMERGENCY CONTROL PROBLEM

In this paper, we consider power systems under critical
situations when the buses’ phasor angles may significantly
fluctuate but the buses’ voltages are still well-supported. For
such situations, we utilize the standard structure-preserving
model to describe the post-fault dynamics of generators
and loads [7]. Mathematically, the gird is described by an
undirected graph A(N , E), where N = {1, 2, . . . , |N |} is
the set of buses and E ⊆ N ×N is the set of transmission
lines connecting those buses. Here, |A| denotes the number
of elements in set A. The sets of generator buses and load
buses are denoted by G and L. We assume that the grid is
lossless with constant voltage magnitudes Vk, k ∈ N , and the
reactive powers are ignored. Then, the structure-preserving
model of the system is given by [7]:

mk δ̈k + dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =Pmk
, k ∈ G, (1a)

dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =− P 0
dk
, k ∈ L,

(1b)

where equation (1a) represents the dynamics at generator
buses and equation (1b) the dynamics at load buses [8].

The critical situations considered in this paper are when
the fault-on trajectory is leaving polytope Π/2 defined by
inequalities |δkj | ≤ π/2,∀{k, j} ∈ E , i.e., the fault-
cleared state δ0 stays outside polytope Π/2. In normal power
systems, protective devices will be activated to disconnect
faulted lines/nodes, which will isolate the fault and prevent
the post-fault dynamics from instability (this would usually
happen at some point beyond a voltage angle difference π/2).

Avoiding disconnecting line/node, our emergency control
objective is to make post-fault dynamics become stable by
controlling the post-fault dynamics from the fault-cleared
state δ0 to the stable equilibrium point δ∗origin, which, e.g.,
may be an optimum point of some optimal power flow (OPF)
problem. To achieve this, we consider adjusting the post-
fault dynamics through adjusting the susceptance of some
selected transmission lines and/or changing power injections.
These changes can be implemented by the FACTS devices
available on power transmission grids. The rationale of this
control is based on the observation illustrated in Fig. 1 that,
by appropriately changing the structure of power systems, we
can obtain new post-fault dynamics with a new equilibrium
point whose region of attraction contains the fault-cleared
state δ0, and therefore, the new post-fault dynamic is stable.

Formally, we consider the following problem:
(P) Structural Emergency Control Design: Given a fault-

cleared state δ0 and the stable EP δ∗origin, determine the
feasible values for susceptances of selected transmission
lines and/or feasible power injection such that the post-
fault dynamics are driven from the fault-cleared state δ0
to the original post-fault EP δ∗origin.

III. FAULT-DEPENDENT STABILITY CERTIFICATE

In this section, we construct a set of fault-dependent
Lyapunov functions that are convex and result in an easy-
to-verify stability certificate for assessing the control perfor-
mance in the next section. First of all, we obtain (see [8])
an equivalent representation of (1) as

ẋ = Ax−BF (Cx). (2)

To certify stability for fault-cleared state staying outside
polytope Π/2, which likely happens in emergency situations,
we construct a family of the fault-dependent convex Lya-
punov functions. Assume that the fault-cleared state x0 has
a number of phasor differences larger than π/2. Usually,
this happens when the phasor angle at a node becomes
significantly large, making the phasor difference associated
with it larger than π/2. Without loss of generality, we assume
that |δij(0)| > π/2,∀j ∈ Ni at some given node i ∈ N .
Also, it still holds that |δij(0) + δ∗ij | ≤ π for all j ∈ Ni.
Consider polytope Q defined by inequalities

|δij + δ∗ij | ≤ π,∀j ∈ Ni,

|δkj | ≤ π/2,∀j ∈ Nk,∀k 6= i. (3)

Hence, the fault-cleared state is inside polytope Q. Inside Q,
consider the Lyapunov function family given by

V (x) =
1

2
x>Qx−

∑
{k,j}∈E

K{k,j}
(
cos δkj + δkj sin δ∗kj

)
,

where the matrices Q,K ≥ 0 satisfying the following LMIs:[
A>Q+QA R

R> −2H

]
≤ 0, (4)

Q−
∑
j∈Ni

K{i,j}C
>
{i,j}C{i,j} ≥ 0, (5)
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Fig. 2. Selection of stable EPs δ∗i , i = 1, ..., N, such that the fault-cleared
state is driven through the sequence of EPs back to the desired EP δ∗origin.

where C{i,j} is the row of matrix C that corresponds to the
row containing K{i,j} in the diagonal matrix K. From (3)
and (5), we can see that the Hessian of the Lyapunov function
inside Q is positive semidefinite. As such, the Lyapunov
function is convex inside Q and thus, the corresponding
minimum value Vmin(Q), defined over the flow-out boundary
of Q, can be calculated in polynomial time:

Vmin = Vmin(Q) = min
x∈∂Qout

V (x). (6)

Similar to [6], we can prove that the following set

RQ = {x ∈ Q : V (x) < Vmin} (7)

is an estimate of the stability region.
It is worth noting that LMIs (4)-(5) provide us with a

family of Lyapunov functions, characterized by matrices Q
and K. For a given fault-cleared state, by an adaptation
algorithm similar to that in [6], we can find the best suitable
function in this family to certify its stability [9].

IV. STRUCTURAL EMERGENCY CONTROL DESIGN

In this section, we solve the post-fault emergency control
problem (P). As illustrated in Fig. 2, to render the post-fault
dynamics from the fault-cleared state x0 to the EP δ∗origin,
we will find a sequence of stable EPs δ∗1 , ..., δ

∗
N with their

corresponding region of attractions SR1, ...,SRN such that

x0 ∈ SR1, δ
∗
1 ∈ SR2, ..., δ

∗
N−1 ∈ SRN, δ

∗
N ∈ SRorigin.

Then, the post-fault dynamics can be attracted from the fault-
cleared state x0 to the original EP δ∗origin through a sequence
of appropriate structural changes in the power network. We
will show that we only need to determine a finite number of
EPs through solving convex optimization problems.

Recall that, the equilibrium point δ∗ is a solution to the
power flow-like equations:∑

j∈Nk

VkVjBkj sin δ∗kj = Pk,∀k ∈ N . (8)

As such, the sequence of EPs δ∗1 , ..., δ
∗
N can be obtained

by appropriately changing the susceptances {Bkj} of the
transmission lines or by changing the power injection Pk.

A. Design the first EP by changing power injections

The post-fault dynamics are locally stable when the
equilibrium point stays inside the polytope defined by the
inequalities |δkj | < π/2. The post-fault dynamics are more
stable when the EP is further from the stability margin
|δkj | = π/2, i.e., when the phasor differences δkj are nearer
to 0. As such, to search for the EP δ∗1 such that x0 ∈ SR1,
we will find the EP δ∗1 such that its phasor differences are
as small in magnitude as possible.

We recall in [10] that, for almost all power systems, to
make sure |δ∗kj | < γ < π/2, we need

‖L†p‖E,∞ ≤ sin γ. (9)

Here, L† is the pseudoinverse of the network Laplacian ma-
trix, p = [P1, ..., P|N |]

>, and ‖x‖E,∞ = max{i,j}∈E |x(i)−
x(j)|. Therefore, to make the phasor differences of the
equilibrium point δ∗1 as small as possible, we will find
the power injection Pk such that ‖L†p‖E,∞ as small as
possible, i.e., minimizing ‖L†p‖E,∞. Note that, with fixed
susceptances, the Laplacian matrix L† is fixed. As such,
minimizing ‖L†p‖E,∞ over all possible power injections is
a convex optimization problem.

After designing the first EP δ∗1 , we can check if x0 ∈ SR1

by applying the stability certificate presented in the previous
section. In particular, given the EP δ∗1 and the fault-cleared
state x0, we can adapt the Lyapunov function family to find
a suitable function V (x) such that V (x0) < Vmin. A similar
adaptation algorithm with what was introduced in [6] can
find such a Lyapunov function after a finite number of steps.

B. Design other EPs by changing line susceptances

Now, given the EPs δ∗1 and δ∗origin, we will design
a sequence of stable EPs δ∗2 , ..., δ

∗
N such that δ∗1 ∈

SR2, ..., δ
∗
N−1 ∈ SRN, δ

∗
N ∈ SRorigin. Since all the stable

EPs stay inside polytope Π/2, this design can be feasible.
Case 1: The number of transmission lines that we can

change is larger than the number of buses |N | (i.e., the
number of lines with FACTS/PST devices available is larger
than |N |), and there are no constraints on the corresponding
susceptances. Then, given the EP δ∗, it is possible to solve
equation (8) with variables the varying susceptances. Now,
we can choose the sequence of stable EPs equi-spaced
between the EPs δ∗1 and δ∗origin, and find the corresponding
susceptances. Then we use the presented stability certificate
to check if δ∗1 ∈ SR2, ..., δ

∗
N−1 ∈ SRN, δ

∗
N ∈ SRorigin.

Case 2: The number of transmission lines that we can
change is smaller than the number of buses |N |, or there are
some constraints on the corresponding susceptances. Then,
it is not always possible to find the suitable susceptances
satisfying equation (8) from the given EP δ∗.

In each step, to allow the convergence from δ∗i−1 to δ∗i ,
we will search over all the reachable susceptance values of
selected transmission lines the best one that minimizes the
distance from δ∗i−1 to δ∗i . At the same time, we will make
the distance from these EPs to the original EP δ∗origin strictly
decreasing to make sure that only a finite number of EPs is

3420



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ
∗

originδ
∗

i−1

di−1 − d

Possible

position of δ∗
i

Fig. 3. Localization of δ∗i as the closest point to δ∗i−1 that stays inside
the ball around δ∗origin with the radius di−1(δ

∗
i−1, δ

∗
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minimization of the distance is taken over all the possible susceptance values
of the selected transmission lines. Here, d > 0 is sufficiently small such
that convergence from δ∗i−1 to δ∗i is guaranteed.

needed. Intuitively, the localization of the EP δ∗i is shown
in Fig. 3. Accordingly, for the reachable set of transmission
susceptances, we define δ∗i as the closest possible EP to δ∗i−1
and the distance between δ∗i and δ∗origin satisfies

di(δ
∗
i , δ
∗
origin) ≤ di−1(δ∗i−1, δ

∗
origin)− d. (10)

Here, d > 0 is a sufficiently small constant chosen such
that the convergence from δ∗i−1 to δ∗i is satisfied for all
i = 2, ..., N , and di(δ

∗
i , δ) is the distance from δ to the

equilibrium point δ∗i , which is defined via {B(i)
kj }, i.e.,

di(δ
∗
i , δ) =

∑
k∈N

( ∑
j∈Nk

VkVjB
(i)
kj (sin δ∗ikj

− sin δkj)
)2

=
∑
k∈N

(
Pk −

∑
j∈Nk

VkVjB
(i)
kj sin δkj

)2
.

Note that, with d = 0, the trivial solution to all of the
above optimization problems is δ∗N ≡ ... ≡ δ∗2 ≡ δ∗1 , and
the convergence from δ∗i−1 to δ∗i is automatically satisfied.
Nonetheless, since each of the EPs has a nontrivial stability
region, there exists a sufficiently small d > 0 such that the
convergence from δ∗i−1 to δ∗i must still be satisfied for all i.

On the other hand, since di(δ
∗
i , δ
∗) is a quadratic func-

tion of {B(i)
kj }, defining δ∗2 , ..., δ

∗
N can be described by the

quadratically constrained quadratic program (QCQP):

min
{B(i)

kj }
di(δ

∗
i , δ
∗
i−1) (11)

s.t. di(δ
∗
i , δ
∗
origin) ≤ di−1(δ∗i−1, δ

∗
origin)− d.

In optimization problem (11), di−1(δ∗i−1, δ
∗
origin) is a con-

stant obtained from the previous step. Note that, the condi-
tion di(δ

∗
i , δ
∗
origin) ≤ di−1(δ∗i−1, δ

∗
origin) − d will probably

place δ∗i between δ∗i−1 and δ∗origin, which will automatically
guarantee that δ∗i stays inside polytope Π/2. Also, since the
equilibrium points are strictly staying inside polytope Π/2,
the functions di(δ

∗
i , δ
∗
i−1) and di(δ

∗
i , δ
∗
origin) are strictly

convex functions of {B(i)
kj }. As such, QCQP (11) is convex

and can be quickly solved using convex optimization solvers.
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Fig. 4. Buses angular dynamics when the proposed control is not employed

When all of these optimization problems are feasible, then
with d > 0 from Eqs. (10), we have

d1(δ∗1 , δ
∗
origin) ≥ d2(δ∗2 , δ

∗
origin) + d ≥ ...

≥ dN (δ∗N , δ
∗
origin) + (N − 1)d. (12)

Hence, N ≤ 1 + (d1(δ∗1 , δ
∗
origin)/d), i.e., there is only a

finite number of EQs δ∗2 , ..., δ
∗
N to be determined.

V. NUMERICAL VALIDATION

Consider the 9-bus 3-machine system with 3 gener-
ator buses and 6 load buses as in [8]. The suscep-
tances of the transmission lines are as follows [11]:
B14 = 17.3611p.u., B27 = 16.0000p.u., B39 =
17.0648p.u., B45 = 11.7647p.u., B57 = 6.2112p.u., B64 =
10.8696p.u., B78 = 13.8889p.u., B89 = 9.9206p.u., B96 =
5.8824p.u. The parameters for generators: m1 = 0.1254,
m2 = 0.034, m3 = 0.016, d1 = 0.0627, d2 = 0.017,
d3 = 0.008. For simplicity, let dk = 0.05, k = 4 . . . , 9.

Assume that the fault trips the line between buses 5 and
7 and make the power injection variate. When the fault is
cleared this line is re-closed. We also assume the fluctuation
of the generation (probably due to renewables) and load such
that the bus voltages Vk, mechanical inputs Pmk

, and steady
state load −P 0

dk
of the post-fault dynamics after clearing the

fault are given in Tab. I. The stable operating condition is
calculated as δ∗origin = [−0.1629 0.4416 0.3623 −0.3563 −
0.3608 − 0.3651 0.1680 0.1362 0.1371]>, δ̇∗origin = 0.
However, the fault-cleared state, with angles δ0 = [0.025 −
0.023 0.041 0.012 − 2.917 − 0.004 0.907 0.021 0.023]>

and generators angular velocity [−0.016 − 0.021 0.014]>,
stays outside polytope Π/2. By our adaptation algorithm,
we do not find a suitable Lyapunov function certifying
the convergence of this fault-cleared state to the original
equilibrium point δ∗origin, so this fault-cleared state may be
unstable. We will design emergency control actions to bring
the post-fault dynamics from the possibly unstable fault-
cleared state to the equilibrium point δ∗origin. All the convex
optimization problems will be solved by CVX software.

1) Designing the first EP: Assume that the three gen-
erators 1-3 are dispatchable and terminal loads at buses 4-
6 are controllable, while terminal loads at the other buses
are fixed. We design the first EP by changing the power
injections of the three generators 1-3 and load buses 4-
6. With the original power injection, ‖L†p‖E,∞ = 0.5288.
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Node V (p.u.) Pk (p.u.)
1 1.0284 3.6466
2 1.0085 4.5735
3 0.9522 3.8173
4 1.0627 -3.4771
5 1.0707 -3.5798
6 1.0749 -3.3112
7 1.0490 -0.5639
8 1.0579 -0.5000
9 1.0521 -0.6054

TABLE I
BUS VOLTAGES, MECHANICAL INPUTS, AND STATIC LOADS.
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2.

Minimizing ‖L†p‖E,∞ we obtain the new power injections
at buses 1-6 as follows: P1 = 0.5890, P2 = 0.5930, P3 =
0.5989, P4 = −0.0333, P5 = −0.0617, and P6 = −0.0165.
Accordingly, the minimum value of ‖L†p‖E,∞ = 0.0350 <
sin(π/89). Hence, the first EP obtained from equation (8)
will stay in the polytope defined by the inequalities |δkj | ≤
π/89,∀{k, j} ∈ E , and can be approximated by δ∗1 ≈ L†p =
[0.0581 0.0042 0.0070 0.0271 0.0042 0.0070 − 0.0308 −
0.0486 − 0.0281]>.

Using the adaptation algorithm presented in [6], after some
steps we find that there is a Lyapunov function in this family
such that V (x0) < Vmin. As such, when we turn on the new
power injections, the post-fault trajectory will converge from
the fault-cleared state x0 to the new EP δ∗1 . Then, we switch
power injections to the original values.

2) Designing the other EPs by changing transmission
susceptances: Using the adaptation algorithm, we do not find
a suitable Lyapunov function certifying that δ∗1 ∈ SRorigin.
As such, the new EP δ∗1 may stay outside the stability
region of the original EP δ∗origin. We design the impedance
adjustment controllers to render the post-fault dynamics from
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the new EP back to the original EP.
Assume that the impedances of transmission lines

{1, 4}, {2, 7}, {3, 9} can be adjusted by FACTS devices.
The distance from the first equilibrium point to the original
equilibrium point is calculated as d1(δ∗1 , δ

∗
origin) = 70.6424.

Let d = d1(δ∗1 , δ
∗
origin)/2 + 1 = 36.3212, and solve the

following convex QCQP with variable B(2)
14 , B

(2)
27 , and B(2)

39 :

min
{B(2)

kj }
d2(δ∗2 , δ

∗
1) (13)

s.t. d2(δ∗2 , δ
∗
origin) ≤ d1(δ∗1 , δ

∗
origin)− d = 34.3212.

Solving this convex QCQP problem, we obtain the new
susceptances at transmission lines {1, 4}, {2, 7}, {3, 9} as
B

(2)
14 = 33.4174p.u., B

(2)
27 = 22.1662p.u., and B

(2)
39 =

24.3839p.u., with which the distance from the second EP
to the first EP and the original EP are given by d2(δ∗2 , δ

∗
1) =

60.9209 and d2(δ∗2 , δ
∗
origin) = 34.3212. Using the adaptation

algorithm, we can check that δ∗1 ∈ SR2 and δ∗2 ∈ SRorigin.
3) Simulation results: When there is no control in use,

the post-fault dynamics evolve as in Fig. 4 in which we can
see that the angle of the load bus 5 significantly deviates
from that of other buses with the angular differences larger
than 6. This implies that the post-fault dynamics evolve to a
different EP instead of the desired stable EP δ∗origin, where
the angular differences are all smaller than 0.6.

We subsequently perform the following control actions:
(i) Changing the power injections of generators 1-3 and

controllable load buses 4-6 to P1 = 0.5890, P2 =
0.5930, P3 = 0.5989, P4 = −0.0333, P5 =
−0.0617, P6 = −0.0165. From Fig. 5 and Fig 6,
it can be seen that the bus angles of the post-fault
dynamics converge to the EP of the controlled post-
fault dynamics which is the first EP δ∗1 . In Fig. 7,
we can see that the generator frequencies converge
to the nominal frequency, implying that the post-fault
dynamics converge to the stable EP δ∗1 . However, it
can be seen that the frequencies remarkably fluctuate.
The fluctuation happens because we only change the
power injection one time and let the post-fault dynamics
automatically evolve to the designed EP δ∗1 . This is
different from using the AGC where the fluctuation of
the generator frequencies is minor, however we need to
continuously measure the frequency and continuously
update the control.
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(ii) To recover the resource spent for the power injection
control, we switch the power injections to the origi-
nal value. At the same time, we change the suscep-
tances of transmission lines {1, 4}, {2, 7}, and {3, 9} to
B

(2)
14 = 33.4174p.u., B

(2)
27 = 22.1662p.u., and B

(2)
39 =

24.3839p.u. The system trajectories will converge from
the first EP δ∗1 to the second EP δ∗2 , as shown in Figs.
8-10. In this case we also observe the fluctuation of
generator frequencies, which is the result of the one-
time change of line susceptances and autonomous post-
fault dynamics after this change.

(iii) Switch the susceptances of lines {1, 4}, {2, 7}, and
{3, 9} to the original values. The system trajectories
will autonomously converge from the second EP to the
original EP as shown in Fig. 11.

VI. CONCLUSIONS

In this paper, we presented a novel emergency control for
power grids by exploiting the transmission facilities widely
available on the grids. In particular, we designed remedial
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Fig. 11. Autonomous dynamics when we switch the line susceptances to
the original values: the convergence of the distance Dorigin(t) to 0. Here,
the Euclid distance Dorigin(t) between a post-fault state and the original
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√∑9
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)2.

action to recover the transient stability of power systems
by adjusting the transmission susceptances of the post-fault
dynamics such that a given fault-cleared state, that originally
can lead to unstable dynamics, will be attracted to the post-
fault EP. Utilizing the Lyapunov function-based stability cer-
tificate, we determined suitable amount of transmission lines’
susceptance to be adjusted for remedial actions. We showed
that the considered control design can be quickly performed
through solving a number of convex optimization problems
in the form of SDP and convex QCQP. The advantage of this
control is that the transmission line’s susceptance or power
injection only needs to be adjusted one time in each step,
and no continuous measurement of system state is required.
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