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Abstract—Security assessment of large-scale, strongly
nonlinear power grids containing thousands to millions
of interacting components is a computationally expensive
task. Targeting at reducing the computational cost, this
paper introduces a framework for constructing a robust
assessment toolbox that can provide mathematically rigor-
ous certificates for the grids’ stability in the presence of
variations in power injections, and for the grids’ ability to
withstand a bunch sources of faults. By this toolbox we
can “offline” screen a wide range of contingencies or power
injection profiles, without reassessing the system stability
on a regular basis. In particular, we formulate and solve two
novel robust stability and resiliency assessment problems
of power grids subject to the uncertainty in equilibrium
points and uncertainty in fault-on dynamics. Furthermore,
we bring in the quadratic Lyapunov functions approach to
transient stability assessment, offering real-time construc-
tion of stability/resiliency certificates and real-time stability
assessment. The effectiveness of the proposed techniques
is numerically illustrated on a number of IEEE test cases.

Index Terms—Power grids, renewable integration, re-
silience, robust stability, transient stability.

I. INTRODUCTION

A. Motivation

The electric power grid, the largest engineered system ever,
is experiencing a transformation to an even more complicated
system with increased number of distributed energy sources and
more active and less predictable load endpoints. Intermittent
renewable generations and volatile loads introduce high uncer-
tainty into system operation and may compromise the stability
and security of power systems. Also, the uncontrollability of
inertia-less renewable generators makes it more challenging
to maintain the power system stability. As a result, the exist-
ing control and operation practices largely developed several
decades ago need to be reassessed and adopted to more stressed
operating conditions [1]–[3]. Among other challenges, the ex-
tremely large size of the grid calls for the development of a new
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generation of computationally tractable stability assessment
techniques.

A remarkably challenging task discussed in this work is the
problem of security assessment defined as the ability of the sys-
tem to withstand most probable disturbances. Most of the large-
scale blackouts observed in power systems are triggered by
random short-circuits followed by counter-action of protective
equipments. Disconnection of critical system components dur-
ing these events may lead to loss of stability and consequent
propagation of cascading blackout. Modern Independent Sys-
tem Operators in most countries ensure system security via
regular screening of possible contingencies, and guaranteeing
that the system can withstand all of them after the intervention
of special protection system [4]. The most challenging aspect
of this security assessment procedure is the problem of cer-
tifying transient stability of the postfault dynamics, i.e., the
convergence of the system to a normal operating point after
experiencing disturbances.

The straightforward approach in the literature to address this
problem is based on direct time-domain simulations of the tran-
sient dynamics following the faults [5], [6]. However, the large
size of a power grid, its multiscale nature, and the huge number
of possible faults make this task extremely computationally
expensive. Alternatively, the direct energy approaches [7], [8]
allow fast screening of the contingencies, while providing
mathematically rigorous certificates of stability. After decades
of research and development, the controlling unstable equilib-
rium point (UEP) method [9] is widely accepted as the most
successful method among other energy function-based methods
and is being applied in industry [10]. Conceptually similar is the
approaches utilizing Lyapunov functions of Lur’e-Postnikov
form to analyze transient stability of power systems [11], [12].

In modern power systems, the operating point is constantly
moving in an unpredictable way because of the intermittent
renewable generations, changing loads, external disturbances,
and real-time clearing of electricity markets. Normally, to en-
sure system security, the operators have to repeat the security
and stability assessment approximately every 15 min. For a
typical power system composed of tens to hundred thousands
of components, there are millions of contingencies that need to
be reassessed on a regular basis. Most of these contingencies
correspond to failures of relatively small and insignificant com-
ponents, so the postfault states is close to the stable equilibrium
point and the postfault dynamics is transiently stable. There-
fore, most of the computational effort is spent on the analysis
of noncritical scenarios. This computational burden could be
greatly alleviated by a robust transient stability assessment
toolbox, that could certify stability of power systems in the
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presence of some uncertainty in power injections and sources
of faults. This work attempts to lay a theoretical foundation
for such a robust stability assessment framework. While there
has been extensive research literature on transient stability
assessment of power grids, to the best of our knowledge, only
few approaches have analyzed the influences of uncertainty
in system parameters onto system dynamics based on time-
domain simulations [13], [14] and moment computation [15].

B. Novelty

This paper formulates and solves two novel robust stability
problems of power grids and introduces the relevant problems
to controls community.

The first problem involves the transient stability analysis of
power systems when the operating condition of the system vari-
ates. This situation is typical in practice because of the natural
fluctuations in power consumptions and renewable generations.
To deal with this problem, we will introduce a robust transient
stability certificate that can guarantee the stability of postfault
power systems with respect to a set of unknown equilibrium
points. This setting is unusual from the control theory point of
view, since most of the existing stability analysis techniques in
control theory implicitly assume that the equilibrium point is
known exactly. On the other hand, from practical perspective,
development of such certificates can lead to serious reductions
in computational burden, as the certificates can be reused even
after the changes in operating point.

The second problem concerns the robust resiliency of a given
power system, i.e., the ability of the system to withstand a set
of unknown faults and return to stable operating conditions.
In vast majority of power systems subject to faults, initial
disconnection of power system components is followed by
consequent action of reclosing that returns the system back
to the original topology. Mathematically, the fault changes the
power network’s topology and transforms the power system’s
evolution from the prefault dynamics to fault-on dynamics,
which drives away the system from the normal stable operating
point to a fault-cleared state at the clearing time, i.e., the time
instant at which the fault that disturbed the system is cleared
or self-clears. With a set of faults, then we have a set of fault-
cleared states at a given clearing time. The mathematical ap-
proach developed in this work bounds the reachability set of the
fault-on dynamics, and therefore the set of fault-cleared states.
This allows us to certify that these fault-cleared states remain in
the attraction region of the original equilibrium point, and thus
ensuring that the grid is still stable after suffering the attack of
faults. This type of robust resiliency assessment is completely
simulation-free, unlike the widely adopted controlling-UEP
approaches that rely on simulations of the fault-on dynamics.

The third innovation of this paper is the introduction of the
quadratic Lyapunov functions for transient stability assessment
of power grids. Existing approaches to this problem are based
on energy function [8] and Lur’e-Postnikov-type Lyapunov
functions [11], [12], [16], both of which are nonlinear non-
quadratic and generally nonconvex functions. The convexity of
quadratic Lyapunov functions enables the real-time construc-
tion of the stability/resiliency certificate and real-time stability

assessment. This is an advancement compared to the energy
function based methods, where computing the critical UEP for
stability analysis is generally an NP-hard problem.

On the computational aspect, it is worthy to note that all
the approaches developed in this work are based on solving
semidefinite programming (SDP) with matrices of sizes smaller
than two times of the number of buses or transmission lines
(which typically scales linearly with the number of buses due to
the sparsity of power networks). For large-scale power systems,
solving these problems with off-the-shelf solvers may be slow.
However, it was shown in a number of recent studies that
matrices appearing in a power system context are characterized
by graphs with low maximal clique order. This feature is
efficiently exploited in a new generation of SDP solvers [17]
enabling the related SDP problems to be quickly solved by SDP
relaxation and decomposition methods. Moreover, an important
advantage of the robust certificates proposed in this work is that
they allow the computationally cumbersome task of calculating
the suitable Lyapunov function and corresponding critical value
to be performed offline, while the much more cheaper compu-
tational task of checking the stability/resilience condition will
be carried out online. In this manner, the proposed certificates
can be used in an extremely efficient way as a complementary
method together with other direct methods and time-domain
simulations for contingency screening, yet allowing for effec-
tively screening of many noncritical contingencies.

C. Relevant Work

In [16], we introduced the Lyapunov functions family ap-
proach to transient stability of power system. This approach
can certify stability for a large set of fault-cleared states, deal
with losses in the systems [18], and is possibly applicable to
structure-preserving model and higher order models of power
grids [19]. However, the possible nonconvexity of Lyapunov
functions in Lur’e-Postnikov form requires to relax this ap-
proach to make the stability certificate scalable to large-scale
power grids. The quadratic Lyapunov functions proposed in
this paper totally overcome this difficulty. Quadratic Lyapunov
functions were also utilized in [20] and [21] to analyze the sta-
bility of power systems under load-side controls. This analysis
is possible due to the linear model of power systems considered
in those works. In this paper, we however consider the power
grids that are strongly nonlinear. Among other works, we
note the practically relevant approaches for transient stability
and security analysis based on convex optimizations [22] and
power network decomposition technique and Sum of Square
programming [23]. Also, the problem of stability enforcement
for power systems attracted much interest [24]–[26], where the
passivity-based control approach was employed.

The paper is structured as follows. In Section II we introduce
the standard structure-preserving model of power systems. On
top of this model, we formulate in Section III two robust
stability and resiliency problems of power grids: one involves
the uncertainty in the equilibrium points and the other involves
the uncertainty in the sources of faults. In Section IV we
introduce the quadratic Lyapunov functions-based approach to
construct the robust stability/resiliency certificates. Section V
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illustrates the effectiveness of these certificates through numer-
ical simulations.

II. NETWORK MODEL

A power transmission grid includes generators, loads, and
transmission lines connecting them. A generator has both in-
ternal ac generator bus and load bus. A load only has load
bus but no generator bus. Generators and loads have their own
dynamics interconnected by the nonlinear ac power flows in
the transmission lines. In this paper we consider the standard
structure-preserving model to describe components and dynam-
ics in power systems [27]. This model naturally incorporates
the dynamics of generators’ rotor angle as well as response of
load power output to frequency deviation. Although it does not
model the dynamics of voltages in the system, in comparison to
the classical swing equation with constant impedance loads the
structure of power grids is preserved in this model.

Mathematically, the grid is described by an undirected graph
A(N , E), where N = {1, 2, . . . , |N |} is the set of buses and
E ⊆ N ×N is the set of transmission lines connecting those
buses. Here, |A| denotes the number of elements in the set
A. The sets of generator buses and load buses are denoted by
G and L and labeled as {1, . . . , |G|} and {|G|+ 1, . . . , |N |}.
We assume that the grid is lossless with constant voltage
magnitudes Vk, k ∈ N , and the reactive powers are ignored.

Generator Buses: In general, the dynamics of generators
is characterized by its internal voltage phasor. In the context
of transient stability assessment the internal voltage magnitude
is usually assumed to be constant due to its slow variation in
comparison to the angle. As such, the dynamics of the kth
generator is described through the dynamics of the internal
voltage angle δk in the so-called swing equation

mk δ̈k + dk δ̇k + Pek − Pmk
= 0, k ∈ G (1)

where mk > 0 is the dimensionless moment of inertia of the
generator, dk > 0 is the term representing primary frequency
controller action on the governor, Pmk

is the input shaft power
producing the mechanical torque acting on the rotor, and Pek

is the effective dimensionless electrical power output of the kth
generator.

Load Buses: Let Pdk
be the real power drawn by the

load at the kth bus, k ∈ L. In general Pdk
is a nonlinear

function of voltage and frequency. For constant voltages and
small frequency variations around the operating point P 0

dk
, it is

reasonable to assume that

Pdk
= P 0

dk
+ dk δ̇k, k ∈ L (2)

where dk > 0 is the constant frequency coefficient of load.
AC Power Flows: The active electrical power Pek injected

from the kth bus into the network, where k ∈ N , is given by

Pek =
∑
j∈Nk

VkVjBkj sin(δk − δj), k ∈ N . (3)

Here, the value Vk represents the voltage magnitude of the kth
bus which is assumed to be constant; Bkj is the (normalized)
susceptance of the transmission line {k, j} connecting the kth
bus and jth bus; Nk is the set of neighboring buses of the kth

bus. Let akj = VkVjBkj . By power balancing we obtain the
structure-preserving model of power systems as

mk δ̈k + dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =Pmk
, k ∈ G (4a)

dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =− P 0
dk
, k ∈ L (4b)

where (4a) represents the dynamics at generator buses and the
equations (4b) the dynamics at load buses.

The system described by (4) has many stationary points
with at least one stable corresponding to the desired operating
point. Mathematically, the state of (4) is presented by δ =
[δ1, . . . , δ|G|, δ̇1, . . . , δ̇|G|, δ|G|+1, . . . , δ|N |]

T , and the desired op-
erating point is characterized by the buses’ angles δ∗ =
[δ∗1, . . . , δ

∗
|G|, 0, . . . , 0, δ

∗
|G|+1, . . . , δ

∗
|N |]

T . This point is not
unique since any shift in the buses’ angles [δ∗1 + c, . . . , δ∗|G|+

c, 0, . . . , 0, δ∗|G|+1 + c, . . . , δ∗|N | + c]T is also an equilibrium.
However, it is unambiguously characterized by the angle differ-
ences δ∗kj = δ∗k − δ∗j that solve the following system of power-
flow like equations:∑

j∈Nk

akj sin
(
δ∗kj

)
= Pk, k ∈ N (5)

where Pk = Pmk
, k ∈ G, and Pk = −P 0

dk
, k ∈ L.

Assumption: There is a solution δ∗ of equations (5) such
that |δ∗kj | ≤ γ < π/2 for all the transmission lines {k, j} ∈ E .

We recall that for almost all power systems this assumption
holds true if we have the following synchronization condition,
which is established in [28]

‖L†p‖E,∞ ≤ sin γ. (6)

Here, L† is the pseudoinverse of the network Laplacian matrix,
p = [P1, . . . , P|N |]

T , and ‖x‖E,∞ = max{i,j}∈E |x(i)− x(j)|.
In the sequel, we denote as Δ(γ) the set of equilibrium points
δ∗ satisfying that |δ∗kj | ≤ γ < π/2, ∀ {k, j} ∈ E . Then, any
equilibrium point in this set is a stable operating point [28].

We note that, beside δ∗ there are many other solutions of (5).
As such, the power system (4) has many equilibrium points,
each of which has its own region of attraction. Hence, analyzing
the stability region of the stable equilibrium point δ∗ is a
challenge to be addressed in this paper.

III. ROBUST STABILITY AND RESILIENCY PROBLEMS

A. Contingency Screening for Transient Stability

In contingency screening for transient stability, we consider
three types of dynamics of power systems, namely prefault
dynamics, fault-on dynamics, and postfault dynamics. In nor-
mal conditions, a power grid operates at a stable equilibrium
point of the prefault dynamics. After the initial disturbance, the
system evolves according to the fault-on dynamics laws and
moves away from the prefault equilibrium point δ∗pre. After
some time period, the fault is cleared or self-clears, and the
system is at the fault-cleared state δ0 = δF (τclearing). Then,
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Fig. 1. Convergence of the postfault dynamics from two different fault-
cleared states δF (τclearing), which are obtained from two different fault-
on dynamics at the clearing times τclearing, to the postfault equilibrium
point δ∗post.

the power system experiences the postfault transient dynam-
ics. The transient stability assessment problem addresses the
question of whether the postfault dynamics converges from the
fault-cleared state to a postfault stable equilibrium point δ∗post.
Fig. 1 shows the transient stability of the postfault dynamics
originated from the fault-cleared states to the stable postfault
equilibrium.

B. Problem Formulation

The robust transient stability problem involves situations
where there is uncertainty in power injections Pk, the sources
of which are intermittent renewable generations and varying
power consumptions. Particularly, while the parameters mk, dk
are fixed and known, the power generations Pmk

and load
consumption P 0

dk
are changing in time. As such, the postfault

equilibrium δ∗post defined by (5) also variates. This raises the
need for a robust stability certificate that can certify stability
of postfault dynamics with respect to a set of equilibria. When
the power injections Pk change in each transient stability
assessment cycle, such a robust stability certificate can be re-
peatedly utilized in the “offline” certification of system stability,
eliminating the need for assessing stability on a regular basis.
Formally, we consider the following robust stability problem:

(P1) Robust stability w.r.t. a set of unknown equilibria:
Given a fault-cleared state δ0, certify the transient stability
of the postfault dynamics described by (4) with respect to
the set of stable equilibrium points Δ(γ).

We note that though the equilibrium point δ∗ is unknown, we
still can determine if it belongs to the set Δ(γ) by checking if
the power injections satisfy the synchronization condition (6)
or not.

The robust resiliency property denotes the ability of power
systems to withstand a set of unknown disturbances and recover
to the stable operating conditions. We consider the scenario
where the disturbance results in line tripping. Then, it self-
clears and the faulted line is reclosed. For simplicity, assume
that the steady-state power injections Pk are unchanged during
the fault-on dynamics. In that case, the prefault and postfault

equilibrium points defined by (5) are the same: δ∗pre = δ∗post =
δ∗ (this assumption is only for simplicity of presentation, we
will discuss the case when δ∗pre 	= δ∗post). However, we assume
that we do not know which line is tripped/reclosed. Hence, there
is a set of possible fault-on dynamics, and we want to certify if
the power system can withstand this set of faults and recover to
the stable condition δ∗. Formally, this type of robust resiliency
is formulated as follows.

(P2) Robust resiliency w.r.t. a set of faults: Given a
power system with the prefault and postfault equilibrium
point δ∗ ∈ Δ(γ), certify if the postfault dynamics will
return from any possible fault-cleared state δ0 to the
equilibrium point δ∗ regardless of the fault-on dynamics.

To resolve these problems in the next section, we utilize
tools from nonlinear control theory. For this end, we sepa-
rate the nonlinear couplings and the linear terminal system
in (4). For brevity, we denote the stable postfault equilib-
rium point for which we want to certify stability as δ∗. Con-
sider the state vector x = [x1, x2, x3]

T , which is composed
of the vector of generator’s angle deviations from equilib-
rium x1 = [δ1 − δ∗1, . . . , δ|G| − δ∗|G|]

T , their angular velocities

x2 = [δ̇1, . . . , δ̇|G|]
T

, and vector of load buses’ angle deviation

from equilibrium x3 = [δ|G|+1 − δ∗|G|+1, . . . , δ|N | − δ∗|N |]
T . Let

E be the incidence matrix of the graph G(N , E), so that
E[δ1, . . . , δ|N |]

T = [(δk − δj){k,j}∈E ]
T . Let the matrix C be

E[Im×m Om×n;O(n−m)×2m I(n−m)×(n−m)]. Then

Cx=E
[
δ1 − δ∗1, . . . , δ|N | − δ∗|N |

]T
=

[
(δkj − δ∗kj){k,j}∈E

]T
.

Consider the vector of nonlinear interactions F in the simple
trigonometric form: F (Cx) = [(sin δkj − sin δ∗kj){k,j}∈E ]

T .
Denote the matrices of moment of inertia, frequency con-
troller action on governor, and frequency coefficient of load as
M1 = diag(m1, . . . ,m|G|), D1 = diag(d1, . . . , d|G|), andM =
diag(m1, . . . ,m|G|, d|G|+1, . . . , d|N |).

In state space representation, the power system (4) can be
then expressed in the following compact form:

ẋ1 = x2

ẋ2 = M−1
1 D1x2 − S1M

−1ETSF (Cx)

ẋ3 = −S2M
−1ETSF (Cx) (7)

where S = diag(akj){k,j}∈E , S1 = [Im×m Om×n−m], S2 =
[On−m×m In−m×n−m], n = |N |, m = |G|. Equivalently,
we have

ẋ = Ax−BF (Cx) (8)

with the matrices A,B given by the following expression:

A =

⎡
⎣ Om×m Im×m Om×n−m

Om×m −M−1
1 D1 Om×n−m

On−m×m On−m×m On−m×n−m

⎤
⎦

B =
[
Om×|E|; S1M

−1ETS; S2M
−1ETS

]
.

The key advantage of this state space representation of
the system is the clear separation of nonlinear terms that are
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Fig. 2. Strict bounds of nonlinear sinusoidal couplings (sin δkj −
sin δ∗kj) by two linear functions of the angular difference δkj as de-
scribed in (12).

represented as a “diagonal” vector function composed of simple
univariate functions applied to individual vector components.
This feature will be exploited to construct Lyapunov functions
for stability certificates in the next section.

IV. QUADRATIC LYAPUNOV FUNCTION-BASED STABILITY

AND RESILIENCY CERTIFICATES

This section introduces the robust stability and resiliency
certificates to address the problems (P1) and (P2) by utiliz-
ing quadratic Lyapunov functions. The construction of these
quadratic Lyapunov functions is based on exploiting the strict
bounds of the nonlinear vector F in a region surrounding the
equilibrium point and solving a linear matrix inequality (LMI).
In comparison to the typically nonconvex energy functions
and Lur’e-Postnikov type Lyapunov functions, the convexity of
quadratic Lyapunov functions enables the quick construction
of the stability/resiliency certificates and the real-time stability
assessment. Moreover, the certificates constructed in this work
rely on the semilocal bounds of the nonlinear terms, which
ensure that nonlinearity F is linearly bounded in a polytope
surrounding the equilibrium point. Therefore, though similar
to the circle criterion, these stability certificates constitute an
advancement to the classical circle criterion for stability in
control theory where the nonlinearity is linearly bounded in the
whole state space.

A. Strict Bounds for Nonlinear Couplings

The representation (8) of the structure-preserving model (4)
with separation of nonlinear interactions allows us to natu-
rally bound the nonlinearity of the system in the spirit of
traditional approaches to nonlinear control [29]–[31]. Indeed,
Fig. 2 shows the natural bound of the nonlinear interactions
(sin δkj − sin δ∗kj) by the linear functions of angular difference
(δkj − δ∗kj). From Fig. 2, we observe that for all values of
δkj = δk − δj such that |δkj | ≤ π/2, we have

gkj
(
δkj−δ∗kj

)2≤(
δkj−δ∗kj

)(
sin δkj−sin δ∗kj

)
≤
(
δkj−δ∗kj

)2
(9)

where

gkj=min

{
1−sin δ∗kj
π/2−δ∗kj

,
1+sin δ∗kj
π/2+δ∗kj

}
=

1−sin
∣∣∣δ∗kj ∣∣∣

π/2−
∣∣∣δ∗kj ∣∣∣ . (10)

As the function (1− sin t)/(π/2− t) is decreasing on [0, π/2],
it holds that

gkj ≥
1− sinλ(δ∗)

π/2− λ(δ∗)
:= g > 0 (11)

where λ(δ∗) is the maximum value of |δ∗kj | over all the lines
{k, j} ∈ E , and 0 ≤ λ(δ∗) ≤ γ < π/2. Therefore, in the poly-
tope P , defined by inequalities |δkj | ≤ π/2, all the elements of
the nonlinearities F are bounded by

g
(
δkj−δ∗kj

)2≤(
δkj−δ∗kj

)(
sin δkj−sin δ∗kj

)
≤
(
δkj−δ∗kj

)2
(12)

and hence

(F (Cx) − gCx)T (F (Cx) − Cx) ≤ 0, ∀x ∈ P . (13)

B. Quadratic Lyapunov Functions

In this section, we introduce the quadratic Lyapunov func-
tions to analyze the stability of the general Lur’e-type system
(8), which will be instrumental to the constructions of stability
and resiliency certificates in this paper. The certificate construc-
tion is based on the following result which can be seen as an
extension of the classical circle criterion to the case when the
sector bound condition only holds in a finite region.

Lemma 1: Consider the general system in the form (8) in
which the nonlinear vector F satisfies the sector bound con-
dition that (F −K1Cx)T (F −K2Cx) ≤ 0 for some matrices
K1, K2, and x belonging to the set S. Assume that there exists
a positive definite matrix P such that

ATP + PA− CTKT
1 K2C +RTR ≤ 0 (14)

where R = BTP − (1/2)(K1 +K2)C. Then, the quadratic
Lyapunov function V (x(t)) = x(t)TPx(t) is decreasing along
trajectory of the system (8) whenever x(t) is in the set S.

Proof: See Appendix A. �
Note that when K1 = 0 or K2 = 0 then Condition (14) leads

to that the matrix A have to be strictly stable. This condition
does not hold for the case of structure-preserving model (4).
Hence in case when K1 = 0 or K2 = 0, it is hard to have a
quadratic Lyapunov function certifying the convergence of the
system (4) by Lemma 1. Fortunately, when we restrict the sys-
tem state x inside the polytopeP defined by inequalities |δkj | ≤
π/2, we have strict bounds for the nonlinear interactions F
as in (12), in which K1 = gI , K2 = I are strictly positive.
Therefore, we can obtain the quadratic Lyapunov function
certifying convergence of the structure-preserving model (4) as
follows.

Lemma 2: Consider power grids described by the structure-
preserving model (4) and satisfying Assumption 1. Assume
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that for given matrices A,B,C, there exists a positive definite
matrix P of size (|N |+ |G|) such that

(
A− 1

2
(1 + g)BC

)T

P + P

(
A− 1

2
(1 + g)BC

)

+ PBBTP +
(1− g)2

4
CTC ≤ 0 (15)

or equivalently (by Schur complement) satisfying the LMI⎡
⎣ĀTP + PĀ+

(1 − g)2

4
CTC PB

BTP −I

⎤
⎦ ≤ 0 (16)

where Ā = A− (1/2)(1 + g)BC. Then, along (4), the
Lyapunov function V (x(t)) is decreasing whenever x(t) ∈ P .

Proof: From (12), we can see that the vector of nonlin-
ear interactions F satisfies the sector bound condition: (F −
K1Cx)T (F −K2Cx) ≤ 0, in which K1 = gI , K2 = I and
the set S is the polytope P defined by inequalities |δkj | ≤ π/2.
Applying Lemma 1, we have Lemma 2 straightforwardly. �

We observe that the matrix P obtained by solving the LMI
(16) depends on matrices A,B,C and the gain g. Matrices
A,B,C do not depend on the parameters Pk in the structure-
preserving model (4). Hence, we have a common triple of
matrices A,B,C for all the equilibrium points δ∗ in the set
Δ(γ). Also, whenever δ∗ ∈ Δ(γ), we can replace g in (11) by
the lower bound of g as g = (1 − sin γ)/(π/2− γ) > 0. This
lower bound also does not depend on the equilibrium point δ∗

at all. Then, the matrix P is independent of the set Δ(γ) of
stable equilibrium points δ∗. Therefore, Lemma 2 provides us
with a common quadratic Lyapunov function for any postfault
dynamics with postfault equilibrium point δ∗ ∈ Δ(γ). In the
next section, we present the transient stability certificate based
on this quadratic Lyapunov function.

C. Transient Stability Certificate

Before proceeding to robust stability/resiliency certificates in
the next sections, we will present the transient stability certifi-
cate. We note that the Lyapunov function V (x) considered in
Lemma 2 is decreasing whenever the system trajectory evolves
inside the polytope P . Outside P , the Lyapunov function is
possible to increase. In the following, we will construct inside
the polytope P an invariant set R of the postfault dynamics
described by structure-preserving system (4). Then, from any
point inside this invariant set R, the postfault dynamics (4) will
only evolve insideR and eventually converge to the equilibrium
point due to the decrease of the Lyapunov function V (x).

Indeed, for each edge {k, j} connecting the generator buses
k and j, we divide the boundary ∂Pkj of P corresponding
to the equality |δkj | = π/2 into two subsets ∂P in

kj and ∂Pout
kj .

The flow-in boundary segment ∂P in
kj is defined by |δkj | = π/2

and δkj δ̇kj < 0, while the flow-out boundary segment ∂Pout
kj is

defined by |δkj | = π/2 and δkj δ̇kj ≥ 0. Since the derivative of
δ2kj at every point on ∂P in

kj is negative, the system trajectory of
(4) can only go inside P once it meets ∂P in

kj .

Define the following minimum value of the Lyapunov func-
tion V (x) over the flow-out boundary ∂Pout as:

Vmin = min
x∈∂Pout

V (x) (17)

where ∂Pout is the flow-out boundary of the polytope P that
is the union of ∂Pout

kj over all the transmission lines {k, j} ∈
E connecting generator buses. From the decrease of V (x)
inside the polytope P , we can have the following center result
regarding transient stability assessment.

Theorem 1: For a postfault equilibrium point δ∗ ∈ Δ(γ),
from any initial state x0 staying in set R defined by

R = {x ∈ P : V (x) < Vmin} (18)

then, the system trajectory of (4) will only evolve in the set R
and eventually converge to the stable equilibrium point δ∗.

Proof: See Appendix B. �
Remark 1: Since the Lyapunov function V (x) is convex,

finding the minimum value Vmin = minx∈∂Pout V (x) can be
extremely fast. Actually, we can have analytical form of Vmin.
This fact together with the LMI-based construction of the
Lyapunov function V (x) allows us to perform the transient
stability assessment in the real time.

Remark 2: Theorem 1 provides a certificate to determine if
the postfault dynamics will evolve from the fault-cleared state
x0 to the equilibrium point. By this certificate, if x0 ∈ R, i.e., if
x0 ∈ P and V (x0) < Vmin, then we are sure that the postfault
dynamics is stable. If this is not true, then there is no conclusion
for the stability or instability of the postfault dynamics by this
certificate.

Remark 3: The transient stability certificate in Theorem 1 is
effective to assess the transient stability of postfault dynamics
where the fault-cleared state is inside the polytope P . It can be
observed that the polytope P contains almost all practically in-
teresting configurations. In real power grids, high differences in
voltage phasor angles typically result in triggering of protective
relay equipment and make the dynamics of the system more
complicated. Contingencies that trigger those events are rare
but potentially extremely dangerous. They should be analyzed
individually with more detailed and realistic models via time-
domain simulations.

Remark 4: The stability certificate in Theorem 1 is con-
structed similarly to that in [16]. The main feature distinguish-
ing the certificate in Theorem 1 is that it is based on the
quadratic Lyapunov function, instead of the Lur’e-Postnikov-
type Lyapunov function as in [16]. As such, we can have
an analytical form for Vmin rather than determining it by a
potentially nonconvex optimization as in [16].

D. Robust Stability With Respect to Power
Injection Variations

In this section, we develop a “robust” extension of the
stability certificate in Theorem 1 that can be used to assess
transient stability of the postfault dynamics described by the
structure-preserving model (4) in the presence of power in-
jection variations. Specifically, we consider the system whose
stable equilibrium point variates but belongs to the set Δ(γ).
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As such, whenever the power injections Pk satisfy the syn-
chronization condition (6), we can apply this robust stability
certificate without exactly knowing the equilibrium point of the
system (4).

As discussed in Remark 3, we are only interested in the case
when the fault-cleared state is in the polytope P . Denote δ =
[δ1, . . . , δ|G|, δ̇1, . . . , δ̇|G|, δ|G|+1, . . . , δ|N |]. The system state x
and the fault-cleared state x0 can be then presented as x =
δ − δ∗ and x0 = δ0 − δ∗. Exploiting the independence of the
LMI (16) on the equilibrium point δ∗, we have the following
robust stability certificate for the problem (P1).

Theorem 2: Consider the postfault dynamics (4) with uncer-
tain stable equilibrium point δ∗ that satisfies δ∗ ∈ Δ(γ). Con-
sider a fault-cleared state δ0 ∈ P , i.e., |δ0kj

| ≤ π/2, ∀ {k, j} ∈
E . Suppose that there exists a positive definite matrix P of size
(|N |+ |G|) satisfying the LMI (16) and

δT0 Pδ0 < min
δ∈∂Pout,δ∗∈Δ(γ)

(
δTPδ − 2δ∗TP (δ − δ0)

)
. (19)

Then, the system (4) will converge from the fault-cleared state
δ0 to the equilibrium point δ∗ for any δ∗ ∈ Δ(γ).

Proof: See Appendix C. �
Remark 5: Theorem 2 gives us a robust certificate to

assess the transient stability of the postfault dynamics (4) in
which the power injections Pk variates. First, we check the
synchronization condition (6), the satisfaction of which tells us
that the equilibrium point δ∗ is in the set Δ(γ). Second, we
calculate the positive definite matrix P by solving the LMI (16)
where the gain g is defined as (1− sin γ)/(π/2− γ). Lastly,
for a given fault-cleared state δ0 staying inside the polytope P ,
we check whether the inequality (19) is satisfied or not. In the
former case, we conclude that the postfault dynamics (4) will
converge from the fault-cleared state δ0 to the equilibrium point
δ∗ regardless of the variations in power injections. Otherwise,
we repeat the second step to find other positive definite matrix
P and check the condition (19) again.

Remark 6: Note that there are possibly many matrices P
satisfying the LMI (16). This gives us flexibility in choosing
P satisfying both (16) and (19) for a given fault-cleared state
δ0. A heuristic algorithm as in [16] can be used to find the best
suitable matrix P in the family of such matrices defined by (16)
for the given fault-cleared state δ0 after a finite number of steps.

Remark 7: In practice, to reduce the conservativeness and
computational time in the assessment process, we can offline
compute the common matrix P for any equilibrium point δ∗ ∈
Δ(γ) and check online the condition V (x0) < Vmin with the
data (initial state x0 and power injections Pk) obtained online.
In some case the initial state can be predicted before hand, and if
there exists a positive definite matrix P satisfying the LMI (16)
and the inequality (19), then the online assessment is reduced
to just checking condition (6) for the power injections Pk.

E. Robust Resiliency With Respect to a Set of Faults

In this section, we introduce the robust resiliency certificate
with respect to a set of faults to solve the problem (P2). We
consider the case when the fault results in tripping of a line.
Then it self-clears and the line is reclosed. But we do not

know which line is tripped/reclosed. Note that the prefault
equilibrium and postfault equilibrium, which are obtained by
solving the power flow equations (5), are the same and given.

With the considered set of faults, we have a set of correspond-
ing fault-on dynamic flows, which drive the system from the
prefault equilibrium point to a set of fault-cleared states at the
clearing time. We will introduce technique to bound the fault-on
dynamics, by which we can bound the set of reachable fault-
cleared states. With this way, we make sure that the reachable
set of fault-cleared states remain in the region of attraction of
the postfault equilibrium point, and thus the postfault dynamics
is stable.

Indeed, we first introduce the resiliency certificate for one
fault associating with one faulted transmission line, and then
extend it to the robust resiliency certificate for any faulted line.
With the fault of tripping the transmission line {u, v} ∈ E ,
the corresponding fault-on dynamics can be obtained from the
structure-preserving model (4) after eliminating the nonlinear
interaction auv sin δuv. Formally, the fault-on dynamics is de-
scribed by

ẋF = AxF −BF (CxF ) +BD{u,v} sin δFuv
(20)

where D{u,v} is the unit vector to extract the {u, v} element
from the vector of nonlinear interactionsF . Here, we denote the
fault-on trajectory as xF (t) to differentiate it from the postfault
trajectory x(t). We have the following resiliency certificate
for the power system with equilibrium point δ∗ subject to the
faulted-line {u, v} in the set E .

Theorem 3: Assume that there exist a positive definite
matrix P of size (|N | + |G|) and a positive number μ such that

ĀTP + PĀ+
(1− g)2

4
CTC + PBBTP

+ μPBD{u,v}D
T
{u,v}B

TP ≤ 0. (21)

Assume that the clearing time τclearing satisfies τclearing <
μVmin where Vmin = minx∈∂Pout V (x). Then, the fault-cleared
state xF (τclearing) resulted from the fault-on dynamics (20) is
still inside the region of attraction of the postfault equilibrium
point δ∗, and the postfault dynamics following the tripping
and reclosing of the line {u, v} returns to the original stable
operating condition.

Proof: See Appendix D.
Remark 8: Note that the inequality (21) can be rewritten as

ĀTP + PĀ+
(1− g)2

4
CTC + PB̄B̄TP ≤ 0 (22)

where B̄ = [B
√
μBD{u,v}]. By Schur complement, inequality

(22) is equivalent with⎡
⎣ĀTP + PĀ+

(1− g)2

4
CTC PB̄

B̄TP −I

⎤
⎦ ≤ 0. (23)

With a fixed value of μ, the inequality (23) is an LMI which can
be transformed to a convex optimization problem. As such, the
inequality (21) can be solved quickly by a heuristic algorithm
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in which we vary μ and find P accordingly from the LMI (23)
with fixed μ. Another heuristic algorithm to solve the inequality
(21) is to solve the LMI (16), and for each solution P in this
family of solutions, find the maximum value of μ such that (21)
is satisfied.

Remark 9: For the case when the prefault and postfault
equilibrium points are different, Theorem 3 still holds true if we
replace the condition τclearing < μVmin by condition τclearing <
μ(Vmin − V (xpre)), where xpre = δ∗pre − δ∗post.

Remark 10: The resiliency certificate in Theorem 3 is
straightforward to extend to a robust resiliency certificate with
respect to the set of faults causing tripping and reclosing of
transmission lines in the grids. Indeed, we will find the positive
definite matrix P and positive number μ such that the inequality
(21) is satisfied for all the matrices D{u,v} corresponding to
the faulted line {u, v} ∈ E . Let D be a matrix larger than or
equals to the matrices D{u,v}D

T
{u,v} for all the transmission

lines in E (here, that X is larger than or equals Y means that
X − Y is positive semidefinite). Then, any positive definite
matrix P and positive number μ satisfying the inequality (21),
in which the matrix D{u,v}D

T
{u,v} is replaced by D, will give us

a quadratic Lyapunov function-based robust stability certificate
with respect to the set of faults similar to Theorem 3. Since
D{u,v}D

T
{u,v} = diag(0, . . . , 1, . . . , 0) are orthogonal unit ma-

trices, we can see that the probably best matrix we can have is
D =

∑
{u,v}∈E D{u,v}D

T
{u,v} = I|E|×|E|. Accordingly, we have

the following robust resilience certificate for any faulted line
happening in the system.

Theorem 4: Assume that there exist a positive definite
matrix P of size (|N |+ |G|) and a positive number μ such that

ĀTP + PĀ+
(1− g)2

4
CTC + (1 + μ)PBBTP ≤ 0. (24)

Assume that the clearing time τclearing satisfies τclearing <
μVmin where Vmin = minx∈∂Pout V (x). Then, for any faulted
line happening in the system the fault-cleared state
xF (τclearing) is still inside the region of attraction of the
postfault equilibrium point δ∗, and the postfault dynamics
returns to the original stable operating condition regardless of
the fault-on dynamics.

Remark 11: By the robust resiliency certificate in Theorem 4,
we can certify stability of power system with respect to any
faulted line happens in the system. This certificate as well
as the certificate in Theorem 3 totally eliminates the needs
for simulations of the fault-on dynamics, which is currently
indispensable in any existing contingency screening methods
for transient stability.

V. NUMERICAL ILLUSTRATIONS

A. Two-Bus System

For illustration purpose, this section presents the simulation
results on the most simple two-bus power system, described by
the single second-order differential equation

mδ̈ + dδ̇ + a sin δ − p = 0. (25)

Fig. 3. Robust transient stability of the postfault dynamics originated
from the fault-cleared state δ0 = [0.5 0.5]T to the set of stable equilib-
rium points Δ(π/6) = {δ∗post = [δ∗, 0]T : −π/6 ≤ δ∗ ≤ π/6}.

Fig. 4. Convergence of the quadratic Lyapunov function V (x)=xTPx=

(δ−δ∗)TP (δ−δ∗) from the initial value to 0 when the equilibrium point
δ∗ varies in the set Δ(π/6)={δ∗post=[δ∗, 0]T : −π/6≤δ∗≤π/6}.

For numerical simulations, we choose m = 0.1 p.u., d =
0.15 p.u., a = 0.2 p.u. When the parameters p changes from
−0.1 p.u. to 0.1 p.u., the stable equilibrium point δ∗ (i.e.,
[δ∗ 0]T ) of the system belongs to the set Δ = {δ∗ : |δ∗| ≤
arcsin(0.1/0.2) = π/6}. For the given fault-cleared state δ0 =
[0.5 0.5], using the CVX software we obtain a positive matrix
P satisfying the LMI (16) and the condition for robust stability
(19) as P = [0.8228 0.1402; 0.1402 0.5797]. The simulations
confirm this result. We can see in Fig. 3 that from the fault-
cleared state δ0 the postfault trajectory always converges to
the equilibrium point δ∗ for all δ∗ ∈ Δ(π/6). Fig. 4 shows the
convergence of the quadratic Lyapunov function to 0.

Now we consider the resiliency certificate in Theorem 3
with respect to fault of tripping the line and self-clearing.
The prefault and postfault dynamics have the fixed equilibrium
point: δ∗ = [π/6 0]T . Then the positive definite matrix P =
[0.0822 0.0370; 0.0370 0.0603] and positive number μ = 6 is
a solution of the inequality (21). As such, for any clearing time
τclearing < μVmin = 0.5406, the fault-cleared state is still in the
region of attraction of δ∗, and the power system withstands
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Fig. 5. Robust resiliency of power system with respect to the faults
whenever the clearing time τclearing < μVmin.

Fig. 6. Variations of the quadratic Lyapunov function V (x) = xTPx =

(δ − δ∗)TP (δ − δ∗) during the fault-on and postfault dynamics.

TABLE I
VOLTAGE AND MECHANICAL INPUT

the fault. Fig. 5 confirms this prediction. Fig. 6 shows that
during the fault-on dynamics, the Lyapunov function is strictly
increasing. After the clearing time τclearing, the Lyapunov func-
tion decreases to 0 as the postfault trajectory converges to the
equilibrium point δ∗.

B. Robust Resiliency Certificate for a Three-Generator
System

To illustrate the effectiveness of the robust resiliency certifi-
cate in Theorem 4, we consider the system of three genera-
tors with the time-invariant terminal voltages and mechanical
torques given in Table I.

The susceptance of the transmission lines are B12 =
0.739 p.u., B13 = 1.0958 p.u., and B23 = 1.245 p.u. The
equilibrium point is calculated from (5): δ∗ = [−0.6634 −

0.5046 − 0.5640 0 0 0]T . By using CVX software we can find
one solution of the inequality (24) as μ = 0.3 and the positive
definite matrix P as⎡
⎢⎢⎢⎢⎢⎢⎣

2.4376 1.7501 1.8190 4.0789 3.9566 3.9780
1.7501 2.3991 1.8576 3.9639 4.0710 3.9785
1.8190 1.8576 2.3302 3.9707 3.9859 4.0569
4.0789 3.9639 3.9707 17.2977 16.6333 16.7452
3.9566 4.0710 3.9859 16.6333 17.2425 16.8003
3.9780 3.9785 4.0569 16.7452 16.8003 17.1306

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The corresponding minimum value of Lyapunov function is
Vmin = 0.5536. Hence, for any faults resulting in tripping and
reclosing lines in E , whenever the clearing time less than
μVmin = 0.1661, then the power system still withstands all the
faults and recovers to the stable operating condition at δ∗.

C. 118-Bus System

Our test system in this section is the modified IEEE 118-bus
test case [32], of which 54 are generator buses and the other 64
are load buses as showed in Fig. 7. The data is taken directly
from the test files [32], otherwise specified. The damping and
inertia are not given in the test files and thus are randomly
selected in the following ranges: mi ∈ [2, 4], ∀ i ∈ G, and di ∈
[1, 2], ∀ i ∈ N . The grid originally contains 186 transmission
lines. We eliminate nine lines whose susceptance is zero, and
combine seven lines {42, 49}, {49, 54}, {56, 59}, {49, 66},
{77, 80}, {89, 90}, and {89, 92}, each of which contains
double transmission lines as in the test files [32]. Hence, the
grid is reduced to 170 transmission lines connecting 118 buses.
We renumber the generator buses as 1–54 and load buses
as 55–118.

1) Stability Assessment: We assume that there are varying
generations (possibly due to renewable) at 16 buses 1–16 (i.e.,
30% generator buses are varying). The system is initially at
the equilibrium point given in [32], but the variations in the
renewable generations make the operating condition to change.
We want to assess if the system will transiently evolve from
the initial state to the new equilibrium points. To make our
proposed robust stability assessment framework valid, we as-
sume that the renewable generators have the similar dynamics
with the conventional generator but with the varying power
output. This happens when we equip renewable generators
with synchronverter [33], which will control the dynamics of
renewables to mimic the dynamics of conventional generators.
Using the CVX software with the Mosek solver, we can see
that there exists a positive definite matrix P satisfying the
LMI (16) and the inequality (19) with γ = π/12. As such,
the grid will transiently evolve from the initial state to any
new equilibrium point in the set Δ(π/12). To demonstrate
this result by simulation, we assume that in the time period
[20 s, 30 s], the power outputs of the renewable generators
increase 50%. Since the synchronization condition ‖L†p‖E,∞ =
0.1039 < sin(π/12) holds true, we can conclude that the new
equilibrium point, obtained when the renewable generations
increased 50%, will stay in the set Δ(π/12). From Fig. 8, we
can see that the grid transits from the old equilibrium point to
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Fig. 7. IEEE 118-bus test case.

Fig. 8. Transition of the 118-bus system from the old equilibrium to the
new equilibrium when the renewable generations increase 50% in the
period [20 s, 30 s].

the new equilibrium point when the renewable power outputs
increase. Similarly, if in the time period [20 s, 30 s] the power
outputs of the renewable generators decrease 50%, then we can
check that ‖L†p‖E,∞ = 0.0762 < sin(π/12). Therefore by the
robust stability certificate, we conclude that the grid evolves
from the old equilibrium point to the new equilibrium point,
as confirmed in Fig. 9.

2) Resiliency Assessment: We note that in many cases
in practice, when the fault causes tripping one line, we end
up with a new power system with a stable equilibrium point
possibly staying inside the small polytope Δ(γ). As such, using
the robust stability assessment in the previous section we can
certify that, if the fault is permanent, then the system will transit

Fig. 9. Transition of the 118-bus system from the old equilibrium to the
new equilibrium when the renewable generations decrease 50% in the
period [20 s, 30 s].

from the old equilibrium point to the new equilibrium point.
Therefore, to demonstrate the resiliency certificate we do not
need to consider all the tripped lines, but only concern the case
when tripping a critical line may result in an unstable dynamics,
and we use the resiliency assessment framework to determine
if the clearing time is small enough such that the postfault
dynamics recovers to the old equilibrium point.

Consider such a critical case when the transmission line
connecting the generator buses 19 and 21 is tripped. It can be
checked that in this case the synchronization condition (6) is
not satisfied even with γ ≈ π/2 since ‖L†p‖E,∞ = 1.5963 >
sin(π/2). As such, we cannot make sure that the fault-on
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dynamics caused by tripping the transmission line {19, 21} will
converge to a stable equilibrium point in the set Δ(π/2). Now
assume that the fault self-clears and the transmission line {19,
21} is reclosed at the clearing time τclearing. With μ = 0.11 and
using CVX software with a Mosek solver on a laptop (Intel
Core i5 2.6 GHz, 8-GB RAM), it takes 1172 s to find a positive
definite matrix P satisfying the inequality (23) and to calculate
the corresponding minimum value of Lyapunov function as
Vmin = 0.927. As such, whenever the clearing time satisfies
τclearing < μVmin = 0.102 s, then the fault-cleared state is still
inside the region of attraction of the postfault equilibrium point,
i.e., the power system withstands the tripping of critical line and
recover to its stable operating condition.

VI. CONCLUSIONS AND PATH FORWARD

This paper has formulated two novel robust stability and
resiliency problems for nonlinear power grids. The first prob-
lem is the transient stability of a given fault-cleared state
with respect to a set of varying postfault equilibrium points,
particularly applicable to power systems with varying power
injections. The second one is the resiliency of power systems
subject to a set of unknown faults, which result in line tripping
and then self-clearing. These robust stability and resiliency
certificates can help system operators screen multiple contin-
gencies and multiple power injection profiles, without relying
on computationally wasteful real-time simulations. Exploiting
the strict bounds of nonlinear power flows in a practically rele-
vant polytope surrounding the equilibrium point, we introduced
the quadratic Lyapunov functions approach to the constructions
of these robust stability/resiliency certificates. The convexity
of quadratic Lyapunov functions allowed us to perform the
stability assessment in real time.

There are many directions that can be pursued to push the
introduced robust stability/resiliency certificates to the indus-
trially ready level. First, and most important, the algorithms
should be extended to more general higher order models of
generators [34]. Although these models can be expected to be
weakly nonlinear in the vicinity of an equilibrium point, the
higher order model systems are no longer of Lur’e type and
have multivariate nonlinear terms. It is necessary to extend
the construction from sector-bounded nonlinearities to more
general norm-bounded nonlinearities [35].

It is also promising to extend the approaches described in
this paper to a number of other problems of high interest to
power system community. These problems include intentional
islanding [36], where the goal is to identify the set of tripping
signals that can stabilize the otherwise unstable power system
dynamics during cascading failures. This problem is also inter-
esting in a more general context of designing and programming
of the so-called special protection system that help to stabilize
the system with the control actions produced by fast power
electronics based HVDC lines and FACTS devices. Finally, the
introduced certificates of transient stability can be naturally in-
corporated in operational and planning optimization procedures
and eventually help in development of stability-constrained
optimal power flow and unit commitment approaches [37], [38].

APPENDIX

A. Proof of Lemma 1

Along the trajectory of (8), we have

V̇ (x) = ẋTPx+ xTP ẋ = xT (ATP + PA)x− 2xTPBF.
(26)

Let W (x) = (F −K1Cx)T (F −K2Cx). Then W (x) ≤ 0,
∀x ∈ S and W (x) = FTF − FT (K1 +K2)Cx + xTCTKT

1

K2Cx. Subtracting W from V̇ (x), we obtain

V̇ (x) −W (x)

= xT (ATP + PA)x− 2xTPBF

− FTF + FT (K1 +K2)Cx− xTCTKT
1 K2Cx

= xT (ATP + PA)x− xTCTKT
1 K2Cx

−
∥∥∥∥F +

(
BTP − (K1 +K2)C

2

)
x

∥∥∥∥
2

+ xT

[
BTP− (K1+K2)C

2

]T [
BTP− (K1+K2)C

2

]
x

= xT
[
ATP + PA− CTKT

1 K2C +RTR
]
x− STS (27)

where R=BTP − (1/2)(K1 +K2)C and S = F+(BTP −
(1/2)(K1 +K2)C)x.

Note that (14) is equivalent with the existence of a nonnega-
tive matrix Q such that

ATP + PA− CTKT
1 K2C +RTR = −Q. (28)

Therefore

V̇ (x) = W (x)− xTQx− STS ≤ 0, ∀x ∈ S. (29)

As such V (x(t)) is decreasing along trajectory x(t) of (8)
whenever x(t) is in the set S. �

B. Proof of Theorem 1

The boundary of the set R defined as in (18) is composed
of segments which belong to the boundary of the polytope P
and segments which belong to the Lyapunov function’s sublevel
set. Due to the decrease of V (x) in the polytope P and the
definition of Vmin, the system trajectory of (4) cannot escape
the set R through the flow-out boundary and the sublevel-
set boundary. Also, once the system trajectory of (4) meets
the flow-in boundary, it will go back inside R. Therefore, the
system trajectory of (4) cannot escape R, i.e., R is an invariant
set of (4).

Since R is a subset of the polytope P , from Lemma 2
we have V̇ (x(t)) ≤ 0 for all t ≥ 0. By LaSalle’s Invariance
Principle, we conclude that the system trajectory of (4) will
converge to the set {x ∈ P : V̇ (x) = 0}, which together with
(29) means that the system trajectory of (4) will converge to
the equilibrium point δ∗ or to some stationary points lying on
the boundary of P . From the decrease of V (x) in the polytope
P and the definition of Vmin, we can see that the second case
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cannot happen. Therefore, the system trajectory will converge
to the equilibrium point δ∗. �

C. Proof of Theorem 2

Since the matrix P , the polytope P , and the fault-cleared
state δ0 are independent of the equilibrium point δ∗, we have

Vmin − V (x0)

= min
x∈∂Pout

(
(δ − δ∗)TP (δ − δ∗)− (δ0 − δ∗)TP (δ0 − δ∗)

)
= min

δ∈∂Pout

(
δTPδ − δT0 Pδ0 − 2δ∗TP (δ − δ0)

)

= min
δ∈∂Pout

(
δTPδ − 2δ∗TP (δ − δ0)

)
− δT0 Pδ0. (30)

Hence, if min
δ∈∂Pout,δ∗∈Δ(γ)

(δTPδ−2δ∗TP (δ−δ0))>δT0 Pδ0,

then Vmin > V (x0) for all δ∗ ∈ Δ(γ). Applying Theorem 1,
we have Theorem 2 directly. �

D. Proof of Theorem 3

Similar to the proof of Lemma 1, we have the derivative of
V (x) along the fault-on trajectory (20) as follows:

V̇ (xF ) = ẋF
TPxF + xT

FP ẋF = xT
F (A

TP + PA)xF

− 2xT
FPBF + 2xT

FPBD{u,v} sin δFuv

=W (xF )− STS + 2xT
FPBDuv sin δFuv

+ xT
F

[
ATP + PA− CTKT

1 K2C +RTR
]
xF .

(31)

On the other hand

2xT
FPBD{u,v} sin δFuv

≤ μxT
FPBD{u,v}D

T
{u,v}B

TPxF

+
1

μ
sin2 δFuv

. (32)

Therefore

V̇ (xF ) ≤ W (xF )− STS + xT
F Q̃xF +

1

μ
sin2 δFuv

(33)

where Q̃=ATP + PA− CTKT
1 K2C +RTR+ μPBD{u,v}

DT
{u,v}B

TP . Note that W (xF ) ≤ 0, ∀xF ∈ P , and

Q̃ = ĀTP + PĀ+
(1− g)2

4
CTC + PBBTP

+ μPBD{u,v}D
T
{u,v}B

TP ≤ 0. (34)

Therefore

V̇ (xF ) ≤
1

μ
sin2 δFuv

≤ 1

μ
(35)

wherexF in the polytope P .

We will prove that the fault-cleared state xF (τclearing) is still
in the set R. It is easy to see that the flow-in boundary ∂P in

prevents the fault-on dynamics (20) from escaping R.
Assume that xF (τclearing) is not in the set R. Then the fault-

on trajectory can only escape R through the segments which
belong to sublevel set of the Lyapunov function V (x). Denote
τ to be the first time at which the fault-on trajectory meets one
of the boundary segments which belong to sublevel set of the
Lyapunov function V (x). Hence xF (t) ∈ R for all 0 ≤ t ≤ τ .
From (35) and the fact that R ⊂ P , we have

V (xF (τ)) − V (xF (0)) =

τ∫
0

V̇ (xF (t)) dt ≤
τ

μ
. (36)

Note that xF (0) is the prefault equilibrium point, and thus
equals to postfault equilibrium point. Hence, V (xF (0)) = 0
and τ ≥ μV (xF (τ)). By definition, we have V (xF (τ)) =
Vmin. Therefore τ ≥ μVmin, and thus τclearing ≥ μVmin, which
is a contradiction. �
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