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Lyapunov Functions Family Approach
to Transient Stability Assessment

Thanh Long Vu and Konstantin Turitsyn, Member, IEEE

Abstract—Analysis of transient stability of strongly nonlinear
post-fault dynamics is one of the most computationally challenging
parts of dynamic security assessment. This paper proposes a novel
approach for assessment of transient stability of the system. The
approach generalizes the idea of energy methods, and extends the
concept of energy function to a more general Lyapunov functions
family (LFF) constructed via semidefinite programming tech-
niques. Unlike the traditional energy function and its variations,
the constructed Lyapunov functions are proven to be decreasing
only in a finite neighborhood of the equilibrium point. However,
we show that they can still certify stability of a broader set of
initial conditions in comparison to the energy function in the
closest-UEP method. Moreover, the certificates of stability can
be constructed via a sequence of convex optimization problems
that are tractable even for large scale systems. We also propose
specific algorithms for adaptation of the Lyapunov functions to
specific initial conditions and demonstrate the effectiveness of the
approach on a number of IEEE test cases.

Index Terms—Contingency screening, direct energy method,
Lyapunov stability method, power system dynamics, power system
security and risk analysis, transient stability.

I. INTRODUCTION

NSURING secure and stable operation of large scale

power systems exposed to a variety of uncertain stresses,
and experiencing different contingencies are among the most
formidable challenges that power engineers face today. Secu-
rity and more specifically stability assessment is an essential
element of the decision making processes that allow se-
cure operation of power grids around the world. The most
straightforward approach to the post-fault stability assessment
problem is based on direct time-domain simulations of tran-
sient dynamics following the contingencies. Rapid advances in
computational hardware made it possible to perform accurate
simulations of large scale systems faster than real-time [1].

At the same time, the fundamental disadvantage of these
approaches is their overall inefficiency. Reliable operation of
the system implies that most of the contingencies are safe. And
certification of their stability via direct simulations essentially
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wastes computational resources. Alternatively, the dynamics
following non-critical scenarios could be proven stable with
more advanced approaches exploiting the knowledge about
the mathematical structure of the dynamic system. In the
last decades numerous techniques for screening and filtering
contingencies have been proposed and deployed in industrial
setting. Some of the most common ideas explored in the field
are based on the artificial intelligence and machine learning
approaches [2]-[5]. Most notable of them is the method of
ensemble decision tree learning [4], [6] that is based on the
construction of hierarchical characterization of the dangerous
region in the space of possible contingencies and operating
states.

An alternative set of approaches known under the name of
direct energy methods were proposed in early 1980s [7]-[10]
and developed to the level of industrial deployments over the
last three decades [11]-[16]. These approaches are based on
rigorous analysis of the dynamical equations and mathematical
certification of safety with the help of the so-called energy func-
tions. Energy functions are a specific form of Lyapunov func-
tions that guarantee the system convergence to stable equilib-
rium points. These methods allow fast screening of the con-
tingencies while providing mathematically rigorous certificates
of stability. At the same time, limited scalability and conser-
vativeness of the classical energy methods limits their applica-
bility and requires enhancement of the method with advanced
algorithms for model reduction. Moreover, the algorithms rely
on identification of unstable equilibrium point (UEP) of energy
function which is known to be an NP-hard problem. In the recent
decades a lot of research was focused on both extension of en-
ergy function to different system components [13], [17] and the
improvement of algorithms that identify the UEPs [18]—[20].
Remarkably, the concept of controlling UEP [21] provides a
practical and less conservative way to certify stability of the
given fault-cleared state based on knowledge of the fault-on tra-
jectory.

In this work we extend the ideas of classical energy method
and propose its extension that alleviates some of the draw-
backs discussed above. Basically, this paper makes two main
contributions. First, we show that there exists a convex set of
Lyapunov functions certifying the transient stability of a given
power system, each corresponding to a different stability region
estimate. Second, we introduce an adaptation algorithm to find
the best suited Lyapunov function in the family to specific
contingency situations. The proposed method can generally
certify broader regions of stability compared to the closest-UEP
method, and does not rely on knowledge of the fault-on tra-
jectory as the controlling-UEP method. Also, the Lyapunov
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functions family is constructed via a sequence of semidefinite
programming (SDP) problems that are known to be convex.
Computational approaches for solving SDP problems have been
in active development in the mathematical community over the
last two decades and were recently successfully applied to a
number of power systems, most importantly to optimal power
flow [22], [23] and voltage security assessment [24] problems.

In addition to construction of Lyapunov functions family we
propose several ways of their application to the problem of cer-
tification of power system stability. The first technique relies on
minimization of possibly nonconvex Lyapunov functions over
the flow-out boundary of a polytope in which the Lyapunov
function is decaying. This technique certifies the largest regions
of stability at the expense of reliance on non-convex optimiza-
tion. Another alternative is to use only the convex region of
the Lyapunov function, which allows more conservative but fast
certification that can be done with polynomial convex optimiza-
tion algorithm. The latter technique is similar to the recently pro-
posed convex optimizations based on the classical direct energy
method utilized to certify the security of the post-contingency
dynamics [25]. Finally, as the last alternative we propose an an-
alytical formulation that does not require any optimizations at
all but also produces conservative stability certificates.

Applying these stability certificates, we discuss a direct
method for contingency screening through evaluating the in-
troduced Lyapunov functions at the post-fault state defining the
contingency scenario. Unlike energy function approaches, the
proposed approach provides us with a whole cone of Lyapunov
functions to choose from. This freedom allows the adaptation
of the Lyapunov functions to a specific initial condition or their
family. We propose a simple iterative algorithm that possibly
identifies the Lyapunov function certifying the stability of a
given initial condition after a finite number of iterations.

Among other works that address similar questions we note re-
cent studies of the synchronization of Kuramoto oscillators that
are applicable to stability analysis of power grids with strongly
overdamped generators [26], [27]. Also, conceptually related to
our work are recent studies on transient stability [28] and [29]
that propose to utilize network decomposition of power grids
based on sum of square programming and port-Hamiltonian ap-
proach, respectively.

The structure of this paper is as follows. In Section IT we
introduce the transient stability problem addressed in this paper,
and reformulate the problem in a state-space representation
that naturally admits construction of Lyapunov functions. In
Section III we explicitly construct the Lyapunov functions and
corresponding transient stability certificates. Section IV ex-
plains how these certificates can be used in practice. Finally, in
Section V we present the results of simulations for several IEEE
example systems. We conclude in Section VI by discussing
the advantages of different approaches and possible ways in
improving the algorithms.

II. TRANSIENT STABILITY OF POWER SYSTEMS

Faults on power lines and other components of power system
are the most common cause for the loss of stability of power
system. In a typical scenario disconnection of a component is
followed by the action of the reclosing system which restores the
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topology of the system after a fraction of a second. During this
time, however the system moves away from the pre-fault equi-
librium point and experiences a transient post-fault dynamics
after the action of the recloser. Similar to other direct method
techniques, this work focuses on the transient post-fault dy-
namics of the system. More specifically, the goal of the study
is to develop computationally tractable certificates of transient
stability of the system, i.e., guaranteeing that the system will
converge to the post-fault equilibrium.

In order to address these questions we use a traditional swing
equation dynamic model of a power system, where the loads are
represented by the static impedance and the n generators have
perfect voltage control and are characterized each by the rotor
angle 0y, and its angular velocity d;. When the losses in the high
voltage power grid are ignored the resulting system of equations
can be represented as [30]

my0y + didp + ZBijij Sin((sk — 53') —P.,=0. (1)
J

Here, my, is the dimensionless moment of inertia of the gener-
ator, dy, is the term representing primary frequency controller
action on the governor. Bj; is the n x n Kron-reduced sus-
ceptance matrix with the loads removed from consideration. P
is the effective dimensionless mechanical torque acting on the
rotor. The value Vi, represents the voltage magnitude at the ter-
minal of the kth generator which is assumed to be constant.

Note, that more realistic models of power system should in-
clude dynamics of excitation system, losses in the network and
dynamic response of the load. Although we don't consider these
effects in the current work, most of the mathematical techniques
exploited in our work can be naturally extended to more so-
phisticated models of power systems. We discuss possible ap-
proaches in the end of the paper.

In normal operating conditions the system (1) has many sta-
tionary points with at least one stable corresponding to normal
operating point. Mathematically, this point, characterized by the
rotor angles d; is not unique, as any uniform shift of the rotor
angles 7, — 67, + c is also an equilibrium. However, it is unam-
biguously characterized by the angle differences é;; = d — &7
that solve the following system of power-flow like equations:

> Bi;ViVjsin(dy;) = Py 2)
J

Formally, the goal of our study is to characterize the so called
region of attraction of the equilibrium point d3, i.e., the set of
initial conditions {8y (0), 8 (0)} starting from which the system
converges to the stable equilibrium J;. To accomplish this task
we use a sequence of techniques originating from nonlinear con-
trol theory that are most naturally applied in the state space rep-
resentation of the system. Hence, we introduce a state space
vector z = [21,22]T composed of the vector of angle devia-
tions from equilibrium @1 = [6; — &} ... 8, — 45T and their
angular velocities 22 = [d1 ...68,]7. In state space representa-
tion the system can be expressed in the following compact form:

& = Az — BF(Cx) 3)
with the matrix A given by the following expression:
— OTLX’I'L In><n
A= Opnxn ~M~D “)
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Fig. 1. Bounding of nonlinear sinusoidal interaction (sin 8x; — sin & ;) by
two linear functions of angular difference (dx; — d;,) as described in (6).

where M and D are the diagonal matrices representing the in-
ertia and droop control action of the generators, O, x,, repre-
sents the zero and I, ,, the identity matrix of size n x n. The
other matrices in (3) are given by

OnXIE

B = |:M1E B:|7 C:[E O\E\Xn]' (5)

Here, |£| is the number of edges in the graph defined by the re-
duced susceptance matrix By, or equivalently the number of
non-zero non-diagonal entries in By;. E is the adjacency ma-
trix of the corresponding graph, so that E[8; ... 5,]7 = [(8x —
;)i jyee)” . We assume the increasing order of j and k for con-
venience of future constructions. Finally, the nonlinear transfor-
mation F' in this representation is a simple trigonometric func-
tion F(Cx) = [(sindr; — sindy, )k jyee]” - The key advan-
tage of this state space representation of the system is the clear
separation of nonlinear terms that are represented as a “diag-
onal” vector function composed of simple univariate functions
applied to individual vector components. This simplified repre-
sentation of nonlinear interactions allows us to naturally bound
the nonlinearity of the system in the spirit of traditional ap-
proaches to nonlinear control [31]-[33]. Our Lyapunov func-
tion construction is based on two key observations about the
nonlinear interaction.

First, we observe that for all values of dx; = d — J; such
that |0x; + 03,/ < 7 we have

0 S (5kj — 5Zj)(sin 5kj — sinézj) S (5kj — 5;;])2 (6)

This obvious property also illustrated in Fig. 1 allows us to nat-
urally bound the nonlinear interactions by linear ones. Second,
we note that in a smaller region |x;| < /2 the function
sind; — sindy, is monotonically increasing, a property that
will play an essential role in proving the convexity of the level
sets of Lyapunov functions in certain regions of the state space.
In the following section we show how these properties of the
system nonlinearity can be used to construct the Lyapunov
functions certifying the transient stability of the system.
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Energy function

Fig. 2. Energy function landscape depicted as a projection of the energy func-
tion into the surface defined by the angle differences {J12, d13}.

III. FAMILY OF LYAPUNOV FUNCTIONS
FOR STABILITY ASSESSMENT

The traditional direct method approaches are based on the
concept of the so-called Energy function. The Energy function
in its simplest version is inspired by the mechanical interpreta-
tion of the main (1):

o mkcﬁ
E=)_ 5
k

In this expression the first term in the right hand side repre-
sents the kinetic energy of the turbines and the second is the
potential energy of the system stored in the inductive lines in
the power grid network. The dissipative nature of the damping
term in (1) ensures that the energy constructed in this way is al-
ways decreasing in time. Moreover, the energy plays a role of a
Hamiltonian of the system defined for the natural momentum
variables pr = mdk, so the conservative part of the equa-
tions of motion (1) can be recovered via traditional Hamiltonian
mechanics approach. This observation implies, that extrema of
the potential energy in (7) are also the equilibrium points of the
equations of motion (1). An example of Energy function for a
simple 9-bus system considered in Section V is shown in Fig. 2.
As one can see, the energy function possesses multiple extrema
with only one of them corresponding to the actual equilibrium
point.

Although, the decreasing nature of the energy function pro-
vides the most natural certificate of local stability, it is not the
only function that can be shown to decrease in the vicinity of
the equilibrium point. To illustrate this point qualitatively we
first consider a trivial example of linear dynamics described
by the equation & = Axz. Whenever matrix A is Hurwitz, the
system has a trivial stable equilibrium = = 0. Suppose now,
that the left eigenvectors of A are given by uy, respectively, so
that u} A = Apul, where A is the corresponding eigenvalue.
In this case, for every eigenpair there exists a Lyapunov function
defined by Ly (x) = &7 (upul + jui )x > 0, where 1}, repre-
sents the complex conjugate of the vector. This Lyapunov func-
tion is simply the square amplitude of the state projection on the
pair of eigenvectors corresponding to conjugate pair of eigen-
values. Obviously, as long as the system is stable this square
amplitude is a strictly decaying function. Indeed, one can check
that dL/dt = 2Re(\;)L; < 0. This construction suggests

— Z BijkV}cos&kjfZPkék.. (7)
{k,j €€ k
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that any function of type L(x) = Y_, exLi(x) with ¢, > 0 is
a Lyapunov function certifying the linear stability of z* = 0.
In other words, the Lyapunov functions of stable linear systems
form a simple orthant-type convex cone defined by inequalities
¢ > 0.

In the context of energy functions, one can interpret the Lya-
punov function Ly as the energy stored in the mode k. Obvi-
ously for linear systems, the superposition principle implies that
all these energies are strictly decaying functions. However, in
the presence of nonlinearity, the energy of an individual mode
is no longer strictly decaying, since the nonlinear interactions
can transfer the energy from one mode to another. However, as
long as the effect nonlinearity is relatively small it is possible
to bound the rates of energy transfer and define smaller cone of
Lyapunov functions that certify the stability of an equilibrium
point.

For the system defined by (3) we propose to use the convex
cone of Lyapunov functions defined by the following system of
Linear Matrix Inequalities for positive, diagonal matrices K, H
of size |€] x |£] and symmetric, positive matrix @ of size 2n x
2n:

T
e | <o ®)

with R = QB — CTH — (KCA)T. For every pair Q, K satis-
fying these inequalities, the corresponding Lyapunov function
is given by
1 oo
Viz) = §J;TQ;L*7 Z K. jy (cos g + Og; smékj) .
{k.jtee

Here, the summation goes over all elements of pair set £, and
Ky, ;) denotes the diagonal element of matrix K corresponding
to the pair { &, j }. As one can see, the algebraic structure of every
Lyapunov function is similar to the energy function (7). The
two terms in the Lyapunov function (9) can be viewed as gen-
eralizations of kinetic and potential energy respectively. More-
over, the classical Energy function is just one element of the
large cone of all possible Lyapunov functions corresponding to
K1, jy = Bi;ViV; and @ given by the inertia matrix M.

In Appendix A we provide the formal proof of the following
central result of the paper. The Lyapunov function V (z) defined
by the (9) is strictly decaying inside the polytope P defined by
the set of inequalities [0x; + d5;| < 7. This polytope formally
defines the region of the phase space where the nonlinearity
can be bounded from above and below as shown in (6) and on
Fig. 1. In other words, as long as the trajectory of the system in
the state space stays within the polytope P, the system is guar-
anteed to converge to the normal equilibrium point 6* where
the Lyapunov function acquires its locally minimum value. The
convergence of Lyapunov function is proved in Appendix B by
using the LaSalle's Invariance Principle. Here, the Lyapunov
function V (2) is possibly negative. However, if we add the con-
stant ) e Kip 5y (cos 65 + 65 sin 6y ;) into the Lyapunov
function V' (z), we will obtain a function which is positive def-
inite in P and whose derivative is negative semidefinite in P.
Hence, we can rigorously apply the LaSalle's Invariance Prin-
ciple.
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Fig. 3. Comparison between invariant sets defined by convex and non-convex
Lyapunov functions and the stability region obtained by the closest UEP energy
method (black solid line). Invariant sets are intersection of the Lyapunov level
sets (blue and green solid lines) and the polytope defined by —m —é* < d <7
— 9%,

We note that there may exists the case when the initial state
lies inside P, but after some time periods, the system trajectory
escapes the polytope P, and then the Lyapunov function is no
longer decreasing. In order to ensure that the system will not es-
cape the polytope P during transient dynamics we will add one
condition to restrict the set of initial states inside . Formally,
we define the minimization of the function V() over the union
dP°"" of the flow-out boundary segments 9Pp%*:

Viin = min V()

zEgPout

(10)

where 87’,‘;;” is the flow-out boundary segment of polytope P
that is defined by |dg; + 5,’;j| = 7 and 5kj5kj > 0. Given the
value of Vi, the invariant set of the Lyapunov function V' (z)
where the convergence to equilibrium is certified is given by

(11).

Indeed, the decay property of Lyapunov function in the polytope
P ensures that the system trajectory cannot meet the boundary
segments {x : V(2) = Viuin} and 8P,‘§;t of the set R. Also,
once the system trajectory meets the flow-in boundary segment
577,?; defined by |8, + 5;gj| = mand dx;d; < 0, it can only go
in the polytope P. Hence, the set R is invariant, and thus, is an
estimate of the stability region.

Note that the stability region estimate is different for different
choice of Lyapunov function. This allows for adaptation of the
certificate to given initial conditions as well as the extension
of the certified set by taking the union of estimates from all the
Lyapunov functions. In the next section we describe the possible
applications of this adaptation technique to the security assess-
ment problem, while in Section V and in Fig. 3 we show that the
invariant sets defined by the Lyapunov functions are generally
less conservative in comparison to the classical Energy method
(closest UEP method).

We now discuss techniques to find the value of V,,;, for a
given choice of Lyapunov function in the family. This task can
be computationally difficult as both the function V' (z) and the
boundary of the polytope P are non-convex. In order to re-
duce the complexity of the stability certification we introduce
three constructions of V;, that can be more computationally

R={xcP:V(x) < Vuin}.
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tractable, although resulting in more conservative stability re-
gion estimate at the same time. While the first construction relies
on non-convex optimization and results in the largest estimate of
stability region, the second one only uses convex region of the
Lyapunov function and allows fast but more conservative cer-
tification. Finally, the third construction proposes an analytical
approximation of V;,;,, that does not require any optimizations
but produces conservative stability certificate.

In particular, the first construction is based on the observation
that Vi,in can be equivalently defined as the maximum value
at which the largest Lyapunov function's sublevel set does not
intersect the flow-out boundary 8P°“* of the polytope P. With
each sublevel set S(v) = {x : V(2) < v}, we can find the
following maximum value:

g(v) = (12)

max 5kj5kj~
{k,j}EE,2E8(w)NIP
A sublevel set that does not intersect the flow-out boundary
Pt of the polytope P is thus characterized by the inequality
g(v) < 0. So, we can formally define the minimum value Vi,ip
as

Vinin = max wv.
g(v)<0

(13).
Although this formulation may be easier to use in practice in
comparison to the original defined by (10), the nonlinear con-
straint makes this problem non-convex, and difficult to solve for
relatively large systems.

The second construction of V,;, is based on the observa-
tion that the function V{(z) is convex in the polytope @ de-
fined by the set of inequalities |5;| < /2, or equivalently
19kill < /2. So, all the sublevel sets that do not intersect
the flow-out boundary 8#Q°%* of the polytope @ will result in
an invariant set as long as @ C P, condition that holds for
most of the practically interesting situations. The convexity of
the Lyapunov function helps us easily compute the maximum
value g®°"¥*(v) defined as in (12) with 9P replaced by 0Q
(see also [25] for the discussion of similar approach applied to
the energy function based methods). Formally, one can then de-
fine the corresponding value of V,,,;,, as

‘/COYL ver

min = max v.

gco'n_'ue.r (’U)<0

(14)

Therefore, this certificate unlike the formers can be constructed
in polynomial time.

The third construction of V,,;,, is based on a lower approxima-
tion of the minimization of V' (z) taken place over the flow-out
boundary dP°* of polyt fe P.In Appendlx C, we prove that
the minimum value V%7* of V{(z) on the boundary segment

min

373‘”” of the polytope P is larger than

(:I:Tr - k:])2
200,y @~ C{m}
— K jy(cos(£m — ki) + (+

— Z Ky vy (cosdy,, + 0,
{u,v}#{k.3}

Vik,jt =
sind’, ).
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As such, the value of V,,;;;, can be approximated by

approx __
Vmin -

(15

{krn?éé‘ k.d}

where the minimization takes places over all elements of pair
set £. This formulation of V;;,, though conservative, provides
us with a simple certificate to quickly assess the transient sta-
bility of many initial states x, especially those near the stable
equilibrium point 6*.

IV. DIRECT METHOD FOR CONTINGENCY SCREENING

The LFF approach can be applied to transient stability as-
sessment problem in the same way as other approaches based
on energy function do. For a given post-fault state determined
by integration or other techniques the value of ¥ = V (zq) can
be computed by direct application of (9). This value should be
then compared to the value of V},,;,, calculated with the help of
one of the approaches outlined in the previous section. When-
ever Vo < Viain the configuration zg is certified to converge to
the equilibrium point. If, however Vj > Vjin, no guarantees
of convergence can be provided but the loss of stability or con-
vergence to another equilibrium cannot be concluded as well.
These configurations cannot be screened by a given Lyapunov
function and should be assessed with other Lyapunov functions
or other techniques at all.

The optimal choice among three different approaches for cal-
culation of Vi, is largely determined by the available compu-
tational resources. Threshold defined by (10) corresponds to the
least conservative invariant set. However, the main downside
of using (10) is the lack of efficient computational techniques
that would naturally allow to perform optimization over the
non-convex boundary of the polytope P°%. The second for-
mulation of V,,;,, in (14) based on convex optimizations makes it
easier to compute by conventional computation techniques, but
results in a more conservative invariant set. Finally, the third ap-
proach defined by (15) can be evaluated without any optimiza-
tions at all, but also provides more conservative guarantees.

The main difference of the proposed method with the energy
method based approaches lies in the choice of the Lyapunov
function. Unlike energy based approaches the LFF method pro-
vides a whole cone of Lyapunov functions to choose from. This
freedom can be exploited to choose the Lyapunov function that
is best suited for a given initial condition or their family. In the
following we propose a simple iterative algorithm that identi-
fies the Lyapunov function that certifies the stability of a given
initial condition 2y whenever such a Lyapunov function exits.
The algorithm is based on the repetition of a sequence of steps
described below.

First, we start the algorithm by identifying some Lyapunov
function V() satisfying the LMIs (8), evaluate the function
at the initial condition point V() (xp), and find the value of
Vn(lm As long as the equilibrium point is stable such a function
is probably guaranteed to exist, one possible choice would
be the traditional energy function. Next, we solve again the
problem (8) with an additional constraint V(?) (z,) < Vn(m)1 —e,
where € is some step size. Note that the expression V' (2)(:60)
is a linear function of the matrices ), K, H to imposing
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Fig. 4. Adaptation of the Lyapunov functions to the contingency scenario over
the iterations of the identifying algorithm in Section IV.

this constraint preserves the linear matrix inequality struc-
ture of the problem. If a solution is found, two alternatives
exit: either Vﬁ) > V®(z4) in which case the certificate
is found; or Vrgn < V@ (xy) in which case the iteration is
repeated with V(1 replaced by V). In the latter, we have
V< v@(zg) < V) — ¢ Hence, the value of Vi is
decreasing by at least ¢ in each of the iteration step, and thus,
the technique is guaranteed to terminate in a finite number of
steps. Once the problem is infeasible, the value of ¢ is reduced
by a factor of 2 until the solution is found. Therefore, whenever
the stability certificate of the given initial condition exists it is
possibly found in a finite number of iterations. Fig. 4 illustrates
the adaptation of Lyapunov functions over iterations to the
initial states in a simple 2-bus system considered in Section V.

V. SIMULATION RESULTS

A. Classical 2-Bus System

The effectiveness of the LFF approach can be most naturally
illustrated on a classical 2-bus with easily visualizable state-
space regions. This system is described by a single 2nd order
differential equation

mé + dd + asind — P =0. (16).

For this system §* = arcsin(P/a) is the only stable equilibrium
point (SEP). For numerical simulations, we choose m = 1 p.u.,
d = 1pu,a = 0.8 pu, P = 04 pu., and §* = 7/6.
Fig. 3 shows the comparison between the invariant sets defined
by convex and non-convex Lyapunov functions with the sta-
bility region obtained by the closest UEP energy method. It can
be seen that there are many contingency scenarios defined by the
configuration 2y whose stability property cannot be certified by
the closest UEP energy method, but can be guaranteed by the
LFF method. Also, it can be observed that the non-convex Lya-
punov function in (10) provides a less conservative certificate
compared to the convex Lyapunov function, at the price of an
additional computational overhead. For the obtained Lyapunov
function, it can be computed that Vi, = VobP™* = (0.7748
and Vionver = 0.2073.

Fig. 4 shows the adaptation of the Lyapunov function identi-
fied by the algorithm in Section IV to the contingency scenario
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TABLE I
VOLTAGE AND MECHANICAL INPUT
Node | V (p.u.) | P (p.u)
1 1.0566 -0.2464
2 1.0502 0.2086
3 1.0170 0.0378

defined by the initial state y. It can be seen that the algorithm
results in Lyapunov functions providing increasingly large sta-
bility regions until we obtain one stability region containing the
initial state zg.

B. Kundur 9-Bus 3-Generator System

Next, we consider the 9-bus 3-generator system with data as
in [34]. When the fault is cleared, the post-fault dynamics of the
system is characterized by the data presented in Table I.

The reduced transmission admittance matrix is given in
Table II, from which we have, B2 ~ [|Y12] = 0.739 p.u.,
Bis =~ [Yi3] = 1.0958 p.u., Bag ~ |Ya3| = 1.245 p.u.
By (2), we can calculate the stable equilibrium point:
33, = —0.1588, é;3 = —0.1005. For simplicity, we take
mg = 2 p.au., dp = 1 p.u. Fig. 2 shows the landscape of
the energy function (7). From Fig. 2, it can be observed that
the stability of the contingency defined by the initial state
{412(0) = 2.513,613(0) = 0.7854} cannot be guaranteed by
the energy method since the initial energy, F(0) = 0.4943,
is larger than the critical energy, which is about 0.196. Yet,
we can find a Lyapunov function based on the proposed
method that certifies the stability of contingency defined by
the initial state {J12(0) = 2.513,5,3(0) = 0.7854}, as can be
interpreted from the strict decrease of Lyapunov function in
Fig. 5(a). The convergence of the system from the initial state
{412(0) = 2.513, 513(0) = 0.7854} to the equilibrium point is
confirmed by simulation as in Fig. 5(b).

C. New England 39-Bus 10-Generator System

To illustrate the scalability of the proposed approach, we con-
sider the New England 39-bus 10-generator system, and eval-
uate the construction of Lyapunov function defined by (9). The
equilibrium point is obtained by solving the power-flow like (2).
The LMIs (8) are solved by the regular MATLAB software CVX
to find the symmetric, positive matrix ) of size 20 x 20 and di-
agonal matrices K, H of size 45 x 45. It takes about 2.5 s for a
normal laptop to solve these equations, by which the Lyapunov
function V{x) is achieved.

VI. DISCUSSION OF THE RESULTS

The Lyapunov Functions Family approach developed in
this work is essentially a generalization of the classical en-
ergy method. It is based on the observation that there are
many Lyapunov functions that can be proven to decay in the
neighborhood of the equilibrium point. Unlike the classical
energy function, the decay of these Lyapunov functions can
be certified only in finite region of the phase space corre-
sponding to bounded differences between the generator angles,
more specifically for the polytope P defined by inequalities
;5 + d7;1 < m. However, these conditions hold for practical
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Lyapunov function

Angular differences

Fig. 5. Post-fault dynamics of a 9 bus 3 generator system. (a) Decrease of the
Lyapunov function obtained by the identifying algorithm in Section I'V. (b) Con-
vergence of generators' angles from the initial state {512 (0) = 2.513, 813(0) =
0.7854} to the equilibrium {8}, = —0.1588, 45, = —0.1005}.

TABLE 11
REDUCED TRANSMISSION ADMITTANCE MATRIX
Node 1 2 3
1 1.181-j2.229 | 0.138+j0.726 | 0.191+j1.079
2 0.138+j0.726 | 0.389-j1.953 | 0.199+j1.229
3 0.191+4j1.079 | 0.199+j1.229 | 0.273-j2.342

purposes. Exceedingly large angle differences cause high cur-
rents on the lines and lead to activation of protective relays that
are not incorporated in the swing equation model.

The limited region of state space where the Lyapunov func-
tion is guaranteed to decay leads to additional conditions incor-
porated in the stability certificates. In order to guarantee the sta-
bility one needs to ensure that the system always stays inside the
polytope P. We have proposed several approaches that ensure
that this is indeed the case. The most straightforward approach
is to inscribe the largest level set that does not intersect the
flow-out boundary P°“* of the polytope P. This approach pro-
vides the least conservative criterion, however the problem of
inscription is generally NP-hard, similar to the problem of iden-
tification of closest unstable equilibria that needs to be solved
in the traditional energy method. This approach is not expected
to scale well for large scale systems. To address the problem
of scalability we have proposed two alternative techniques, one
based on convex optimization and another on purely algebraic
expression that provide conservative but computationally effi-
cient lower bounds on Vyi,. Both of the techniques have poly-
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nomial complexity and should be therefore applicable even to
large scale systems.

Our numerical experiments have shown that the LFF
approach establishes certificates that are generally less con-
servative in comparison to the closest UEP energy approach
and may be computationally tractable to large scale systems.
Furthermore, the large family of possible Lyapunov functions
allows efficient adaptation of the Lyapunov function to a given
set of initial conditions. Moreover, the computational efficiency
of the procedure allows its application to medium size system
models even on regular laptop computers.

VII. PATH FORWARD

Although the techniques developed in this work address
specific problem in transient stability assessment, the general
strategy proposed in this work offers opportunities for devel-
opment of computationally fast security assessment tools. We
envision that security assessment where a database of stability
and security of certificates is constructed off-line using similar
approaches that adopt the Lyapunov function for most common
sets of contingencies. Although the construction of the certifi-
cate may take some significant time, its application to given
system state can be done nearly instantaneously. So, a database
of such certificates applicable to most common contingencies
would allow the operator to certify security with respect to
most common events, and focus the available computational
resources on direct simulations of few contingencies that cannot
be certified this way. At the same time, an extension of this
approach similar to the one the authors have reported in [35]
allows to certify that certain regions in operating conditions
space are secure with respect to common contingencies. This
approach offers a path for stability constrained optimization,
as the operation in these safe regions may be enforced in
optimization and planning tools.

There are several ways how the algorithm should be im-
proved before it is ready for industrial deployment. First
practical issue is the extension of the approach to more real-
istic models of generators, loads, and transmission network.
Although this work demonstrated the approach on the simplest
possible model of transient dynamics, there are no technical
barriers that would prevent generalization of the approach.
Unlike energy methods, our Lyapunov function construction
does not require that the equations of motion are reproduced by
variations of energy function. Instead, the algorithm exploits
the structure of nonlinearity, which is confined to individual
components interacting via a linear network. This property
holds for all the more complicated models.

More specifically, incorporation of network losses can be
easily accomplished by a simple shift of the polytope P. Simple
first order dynamic load models can be easily incorporated
by extending the vector of nonlinear interaction function F'.
The most technically challenging task in extension of the
algorithm is to establish an analogue of the bound (6) for
higher-order models of generators and loads. This problem is
closely related to the construction of the Lyapunov function
that certifies the stability of individual generator models. The
models of individual generators although being nonlinear have
a relatively small order, that does not scale with the size of the
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system. Hence Sum-Of-Squares polynomial algebraic geom-
etry approaches similar to ones exploited in [28] provide an
efficient set of computational tools for bounding complicated
but algebraic nonlinearity. We plan to explore this subject in
the forthcoming works.

The next important question is the robustness of the algorithm
to the uncertainty in system parameters, and initial state. As our
algorithm is based on bound of the nonlinearity, it can naturally
be extended to certify the stability of whole subsets of equilib-
rium points and initial post-fault states. Although these certifi-
cates will likely be more conservative, they could be precom-
puted off-line and later applied to broader range of operating
conditions and contingencies.

Finally, we note that the proposed algorithms in this paper are
not applicable to give assessment for situations when the post-
fault state is unstable. The extension of LFF method to certify
the transient instability of power systems is a possible direction
in our future research.

APPENDIX

A. Proof of the Lyapunov Function Decay in the Polytope P
From (8), there exist matrices X|g|y 25, Y|g|x|g| such that
ATQ+ QA= -XTX,QB - CTH — (KCA)T = - XTY,
and —2H = —YTY. The derivative of V() along (3) is
. 1 1
Vix) = §i'TQ$ + §;vTQ¢
— Z K{k,j}(_ Sin(sk]‘ + sin 5,’;j)5kj
=0.527(ATQ + QA)z — T QBF + FTKCi
= - 052" X" Xz — 2" (C"H+ (KCA)" - X"Y)F
+ F'KC(Ax — BF). (17)

Noting that CB = 0 and Y7Y = 2H yields

Viz) = -05(Xz - YF)(Xa —YF) - (Coe— F)THF
= 05Xz - YF)" (Xa~YF) - > Huyjomy (18)

where ggr 1 = (0k; — 0f; — (sindy; — sindy;)) (sindg; —
sin 0 ;). From Fig. 1, we have gz ;3 > 0 for any 015 + 8] <
m. Hence, V(z) < 0, Yz € P, and thus the Lyapunov function
V(x) is decaying in P.

B. Proof of the System Convergence to the Stable Equilibrium

Consider an initial state g in the invariant set R € P. Then,
V(x(t)) < 0 for all t. By LaSalle's Invariance Principle, we
conclude that 2(¢) converges to the set {x : V() = 0}. From
(18),if V() = 0, then &,; = djj ordgj = +m—dj; forall pairs
{k,j}. Hence, in the set { : V(22) = 0}, the nonlinearity F'
= 0 and the system (3) becomes & = Az, from which it can be
proved that z(t) converges to some stationary points. Therefore,
from 2 the system converges to the stable equilibrium §* or to
some stationary point 2* lying on the boundary of P. Assume
that 2(¢) converges to some stationary point z* € 9P, then
x* € 0P (9P does not contain any stationary point since
Sk < 0, Yz € 67?,@?). By definition of Vi, and R, we
have V(zg) < Vinin < V(2*), which is a contradiction with
the fact that V(2(?)) is decaying in the invariant set R.
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C. Proof of the Lower Approximation of Viin

Let I,y = cosdy, + 0., 8ind;, — €OSdyy

then
>

{uv}£{k,j}

. *
— Oy sind’,,

min

Ky vy (cosdy, + 0,

: *
wo S0 511,@)

0.5:L’TQ£L‘ — K{k,,j} (COS Okj + O sin (5;;])

= min
wEOPYYt

o2

{uw}#{k.j}

K{u,v}j{u,v} (19)

Note, that I, ,3 > 0, Va € P, and the second term in the
right hand side of (19) is a constant on 873,%-“. Hence

V;{lﬁrf} + Z Ky vy (cosdy, + 0y, sindy, )
{uw}#{k,j}
: T * * *
> wé%%lkj(()ﬁm Qz) — K 41 (cos Or; + O s1n5kj)
= ( 7;]_)12 7 — K i) (cos 6r; + O, sin d,jj)
20 @ C{k,j}

with 0 ; = £ — 45, and thus we obtain (15).
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