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Abstract— Many traditional emergency control schemes in
power systems accompany with power interruption, yielding
severely economic damages to customers. Aiming at alleviat-
ing this remarkable drawback, this paper sketches the ideas
of a viable alternative for traditional remedial controls for
power grids with high penetration of renewables, in which the
renewables are integrated with synchronverters to mimic the
dynamics of conventional generators. In this novel emergency
control scheme, the power electronics resources are exploited
to control the inertia and damping of the imitated generators
in order to quickly compensate for the deviations caused by
fault and thereby bound the fault-on dynamics and stabilize the
power system under emergency situations. The control design
is based on solving convex optimization problems tractable for
large scale power grids. This emergency control not only saves
investments and operating costs for modern and future power
systems, but also helps to offer seamless electricity service
to customers. Simple numerical simulation will be used to
illustrate the concept of this paper.

I. INTRODUCTION

The aging US power grid is approaching its physical
limits with the high penetration of intermittent renewables,
large volume of power storage and EVs, and ubiquitous
presence of massive loads. As a result, the stressed system is
especially vulnerable to extreme events. As such, monitoring
and maintaining the grid stability are immensely important
tasks.

Currently, the grid under emergency situations mainly
relies on remedial actions [1]–[3], special protection systems
(SPS) [4], [5] and load shedding [6]–[8] to quickly rebalance
power and hopefully stabilize the system. However, many
of these emergency actions lead to interrupting electricity
service to customers. The unexpected load shedding are ex-
tremely harmful to customers since it may cause enormously
high economic damage. On the other hand, the protective
devices are usually only effective for individual elements,
but less effective in preventing the grid from collapse, and
in many cases may split the grid into islands or lead to
cascading failures [9]. The underlying reason is the lack
of coordination among protective devices and the difference
in their timescales, which together make them incapable to
maintain the grid stability at the system level.

These issues on economic efficiency and system stability
call for a new generation of emergency controls, which can
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maintain the system stability and reduce the damages to
customers. In this paper, we aim to bring the emergency
control problem to the attention of the control community,
and hence we sketch the ideas of a novel emergency control
scheme for renewable-integrated power grids by exploiting
the emerging power electronics resources. Remarkably, this
emergency control scheme can reduce the needs in power
interruptions due to load shedding, and maintain the transient
stability of power grids under emergency situations.

In particular, this paper brings in the following novelties:
• We model the power grids with high levels of renew-

able penetration, in which the renewable generators are
integrated with the synchronverters [10]. The synchron-
verters will control the renewable generators to imitate
the dynamics of the conventional generators, which is
described by the classical swing equations. Also, the
inertia and damping parameters of these generators can
be quickly adjusted in a wide range of values.

• Exploiting such electronics resources, we formulate the
emergency control problem in this renewable power
system, which aims to maintain the transient stability
of the system following a line tripping by appropriately
tune the inertia and damping of the imitated generators.

• We solve this emergency control by applying our re-
cently introduced quadratic Lyapunov function-based
transient stability certificate [11]. In particular, we
present sufficient conditions on the inertia and damping
of the imitated generator such that when applied to the
fault-on dynamics, the fault-cleared state after a fixed
clearing time still stays inside the region of attraction
of the post-fault equilibrium point. Note-worthily, the
sufficient conditions in many case can be formulated as
a set of linear matrix inequalities (LMIs), which can be
solved quickly by convex optimization enabling the fast
response of the remedial actions.

II. NETWORK MODEL AND EMERGENCY CONTROL
PROBLEM

A. Network Model

Consider a grid including conventional generators, renew-
able generators, loads, and transmission lines connecting
them. We assume that all the renewables are integrated with
synchronverter [10], which will control the renewables to
mimic the dynamics of conventional generator, and thus we
call both conventional and renewable generators as gen-
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erators. In this paper we consider the standard structure-
preserving model to describe components and dynamics in
the grid [12]. Also, we assume that the voltages in the
system are well supported, and we will only care about the
phasors dynamics. Mathematically, the grid is described by
an undirected graph G(N , E), where N = {1, 2, . . . , |N |} is
the set of buses and E ⊆ N ×N is the set of transmission
lines connecting those buses. Here, |A| denotes the number
of elements in the set A. The sets of conventional/renewable
generator buses and load buses are denoted by G = GC ∪GR
and L and labeled as {1, ..., |G|} and {|G| + 1, ..., |N |}.
We assume that the grid is lossless with constant voltage
magnitudes Vk, k ∈ N , and the reactive powers are ignored.

Conventional generator buses. The dynamics of conven-
tional generators are described by swing equations:

mk δ̈k + dk δ̇k + Pek − Pmk
= 0, k ∈ GC , (1)

where, mk > 0 is the dimensionless moment of inertia
of the generator, dk > 0 is the term representing primary
frequency controller action on the governor. Pmk

is the
effective dimensionless mechanical torque acting on the rotor
and Pek is the effective dimensionless electrical power output
of the kth generator.

Synchronverter-integrated renewable generator buses.
The dynamics of synchronverter-based renewable generators
are described by the same set of equations:

mk δ̈k + dk δ̇k + Pek − Pmk
= 0, k ∈ GR, (2)

where the inertia mk and damping dk are tunable.
Load buses. Let Pdk be the real power drawn by the load

at kth bus, k ∈ L. In general Pdk is a nonlinear function
of voltage and frequency. For constant voltages and small
frequency variations around the operating point P 0

dk
, it is

reasonable to assume that

Pdk = P 0
dk

+ dk δ̇k, k ∈ L, (3)

where dk > 0 is the constant frequency coefficient of load.
AC power flows. The active electrical power Pek injected

from the kth bus into the network, where k ∈ N , is given
by

Pek =
∑
j∈Nk

VkVjBkj sin(δk − δj), k ∈ N (4)

Here, the value Vk represents the voltage magnitude of
the kth bus which is assumed to be constant. Bkj are the
(normalized) susceptance of the transmission line {k, j}
connecting the kth bus and jth bus. Nk is the set of
neighboring buses of the kth bus. Let akj = VkVjBkj .

By power balancing we obtain the structure-preserving
model of power systems as:

mk δ̈k + dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =Pmk
, k ∈ G, (5a)

dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) =− P 0
dk
, k ∈ L,

(5b)

where, the equations (5a) represent the dynamics at generator
buses and the equations (5b) the dynamics at load buses.

The system described by equations (5) has many sta-
tionary points with at least one stable corresponding to the
desired operating point. Mathematically, the state of (5) is
presented by δ = [δ1, ..., δ|G|, δ̇1, ..., δ̇|G|, δ|G|+1, ..., δ|N |]

T ,
and the desired operating point is characterized by the
buses’ angles δ∗ = [δ∗1 , ..., δ

∗
|G|, 0, . . . , 0, δ

∗
|G|+1, ..., δ

∗
|N|]

T .
This point is not unique since any shift in the buses’ angles
[δ∗1+c, ..., δ∗|G|+c, 0, . . . , 0, δ

∗
|G|+1+c, ..., δ∗|N|+c]

T is also an
equilibrium. However, it is unambiguously characterized by
the angle differences δ∗kj = δ∗k − δ∗j that solve the following
system of power-flow like equations:∑

j∈Nk

akj sin(δ∗kj) = Pk, k ∈ N , (6)

where Pk = Pmk
, k ∈ G, and Pk = −P 0

dk
, k ∈ L.

Assumption 1: There is a solution δ∗ of equations (6)
such that |δ∗kj | ≤ γ < π/2 for all {k, j} ∈ E .

It is known that for almost all power systems this as-
sumption holds true if the system satisfies the following
synchronization condition:

||L†p||E,∞ ≤ sin γ. (7)

Here, L† is the pseudoinverse of the network Laplacian ma-
trix, p = [P1, ..., P|N |]

T , and ||x||E,∞ = max{i,j}∈E |x(i)−
x(j)|. We denote as ∆(γ) the set of equilibrium points δ∗

satisfying that |δ∗kj | ≤ γ < π/2,∀{k, j} ∈ E . Then, any
equilibrium point in this set is a stable operating point.

B. Electronics-based Emergency Control Problem

In normal conditions, a power grid operates at a stable
equilibrium point of the pre-fault dynamics. After the initial
disturbance (in this paper we consider the disturbance of a
line tripping) the system evolves according to the fault-on dy-
namics laws and moves away from the pre-fault equilibrium
point δ∗pre. At the clearing time τclearing, the fault self-clears,
the system is at the fault-cleared state δ0 = δF (τclearing),
and the tripped line is reclosed (note that we do not consider
the permanent faults). Hence, the system configuration is the
same as pre-fault one and the power system experiences the
post-fault transient dynamics. The transient stability of the
post-fault dynamics is certified if the post-fault dynamics
converges from the fault-cleared state to the post-fault stable
equilibrium point δ∗post, or more clearly, if the fault-cleared
state stays inside the region of attraction of the post-fault
stable equilibrium point.

In this paper, we assume that when a fault of line tripping
happens, then the system operator can immediately send
signals to synchronverters to simultaneously adjust the inertia
and damping of the imitated generator without any commu-
nication and regulation delays (possible ways to deal with the
issue of computation and regulation delays will be discussed
in Section IV.C). We also assume that the tuned values of
inertia and damping in these imitated generators can be kept
in at least a time period [0, τclearing]. Our emergency control
problem is how to appropriately tune the inertia and damping
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of the imitated generators to compensate for the disturbance
such that after the given clearing time τclearing, the fault-
cleared state is still inside the region of attraction of the
post-fault stable equilibrium point δ∗post.

If this objective can be obtained, then at the clearing time
τclearing, the fault self-clears, the inertia and damping of the
imitated generators are brought back to their initial values,
and the power system will evolve according to the post-fault
dynamics from the fault-cleared state to the stable post-fault
equilibrium point.

III. QUADRATIC LYAPUNOV FUNCTION-BASED
TRANSIENT STABILITY CERTIFICATE

In this section, we recall our recently introduced quadratic
Lyapunov function-based transient stability certificate for
power systems in [11]. For this end, we separate the non-
linear couplings and the linear terminal system in (5). For
brevity, we denote the stable post-fault equilibrium point
for which we want to certify stability as δ∗. Consider the
state vector x = [x1, x2, x3]T , which is composed of the
vector of generator’s angle deviations from equilibrium x1 =
[δ1 − δ∗1 , . . . , δ|G| − δ∗|G|]

T , their angular velocities x2 =

[δ̇1, . . . , δ̇|G|]
T , and vector of load buses’ angle deviation

from equilibrium x3 = [δ|G|+1 − δ∗|G|+1, . . . , δ|N | − δ
∗
|N|]

T .
Let E be the incidence matrix of the graph G(N , E), so that
E[δ1, . . . , δ|N |]

T = [(δk−δj){k,j}∈E ]T . Let the matrix C be
E[Im×m Om×n;O(n−m)×2m I(n−m)×(n−m)]. Then

Cx = E[δ1− δ∗1 , . . . , δ|N |− δ∗|N|]
T = [(δkj − δ∗kj){k,j}∈E ]T .

Consider the vector of nonlinear interactions F in the simple
trigonometric form: F (Cx) = [(sin δkj − sin δ∗kj){k,j}∈E ]

T .
Denote the matrices of moment of inertia, frequency con-
troller action on governor, and frequency coefficient of load
as M1 = diag(m1, . . . ,m|G|), D1 = diag(d1, . . . , d|G|)
and M = diag(m1, . . . ,m|G|, d|G|+1, . . . , d|N |). Let
S = diag(akj){k,j}∈E , S1 = [Im×m Om×n−m], S2 =
[On−m×m In−m×n−m], n = |N |,m = |G|.

In state space representation, the power system (5) can be
then expressed in the following compact form:

ẋ = Ax−BF (Cx), (8)

with the matrices A,B given by the following expression:

A =

 Om×m Im×m Om×n−m
Om×m −M−11 D1 Om×n−m
On−m×m On−m×m On−m×n−m

 ,
and B =

[
Om×|E|; S1M

−1ETS; S2M
−1ETS

]
.

The construction of quadratic Lyapunov function is based
on the bounding of the nonlinear term F by linear functions
of the angular differences. Particularly, we observe that for
all values of δkj = δk − δj staying inside the polytope P
defined by the inequalities |δkj | ≤ π/2, we have:

g(δkj − δ∗kj)2 ≤ (δkj − δ∗kj)(sin δkj − sin δ∗kj) ≤ (δkj − δ∗kj)2

where g = min{k,j}∈E(1− sin |δ∗kj |)/(π/2− |δ∗kj |).
For each transmission line {k, j} connecting generator

buses k and j, define the corresponding flow-in boundary

segment ∂Pinkj of the polytope P by equations/inequations
|δkj | = π/2 and δkj δ̇kj < 0, and the flow-out boundary
segment ∂Poutkj by |δkj | = π/2 and δkj δ̇kj ≥ 0. Consider
the qudratic Lyapunov function V (x) = xTPx and define
the following minimum value of the Lyapunov function V (x)
over the flow-out boundary ∂Pout as:

Vmin = min
x∈∂Pout

V (x), (9)

where ∂Pout is the union of ∂Poutkj over all the transmission
lines {k, j} ∈ E connecting generator buses. We have the
following result, which is a corollary of Theorem 1 in [11].
Hence, the proof is omitted.

Theorem 1: Consider a power system with the post-fault
equilibrium point δ∗ ∈ ∆(γ) and the fault-cleared state x0
staying in the polytope P. Assume that there exists a positive
definite matrix P such that ĀTP + PĀ+

(1− g)2

4
CTC PB

BTP −I

 ≤ 0 (10)

and V (x0) < Vmin, where Ā = A− 1

2
(1 + g)BC. Then, the

system trajectory of (5) will converge from the fault-cleared
state x0 to the stable equilibrium point δ∗.

Therefore, a sufficient condition for the transient stability
of the post-fault dynamics is the existence of a positive
definite matrix P satisfying the LMI (10) and the Lyapunov
function at the fault-cleared state is small than the critical
value Vmin defined as in (9). We will utilize this condition
to design the emergency control in the next section.

IV. SYNCHRONVERTER-BASED EMERGENCY CONTROL
DESIGN

A. Control design

In this section, we solve the problem of emergency control
described in Section II-B, in which we maintain the power
systems transient stability when a fault causes tripping of
a line {u, v}. In particular, we will tune the inertia and
damping of synchronverter-integrated generators such that
at the fixed clearing time τclearing, the fault-cleared state
x0 is still inside the region of attraction of the post-fault
equilibrium point δ∗. Assume that the tuned inertia and
damping can be kept during the time period [0, τcleating].
Applying Theorem 1, our objective is that: given a positive
definite matrix P satisfying the LMI (10), we will find the
intertia and damping of the imitated generators such that the
fault-cleared state x0 satisfies V (x0) < Vmin.

Indeed, in the grid with well-supported voltages, the fault-
on dynamics with the tuned inertia and damping is described
by

ẋF = A(m, d)xF −B(m, d)F (CxF )

+B(m, d)D{u,v} sin δFuv
, (11)

where D{u,v} is the vector to extract the {u, v} element from
the vector of nonlinear interactions F, while A(m, d) and
B(m, d) are the new system matrices A,B obtained after the
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inertia and damping are tuned. Note that the system matrix
C is invariant to the changes of inertia and damping.

We have the following center result of this paper:
Theorem 2: Assume that there exist a positive definite

matrix P of size (|N | + |G|) satisfying the LMI (10). Let
µ =

τclearing
Vmin

where Vmin is defined as in (9). If there exist

inertia and damping of the imitated generators such that

ĀTP + PĀ+
(1− g)2

4
CTC + PB(m, d)B(m, d)TP

+ µPB(m, d)D{u,v}D
T
{u,v}B(m, d)TP ≤ 0, (12)

where Ā(m, d) = A(m, d) − 1

2
(1 + g)B(m, d)C, then, the

fault-cleared state x0 = xF (τclearing) resulted from the
fault-on dynamics (11) is still inside the region of attraction
of the post-fault equilibrium point δ∗, and the post-fault
dynamics following the tripping and reclosing of the line
{u, v} will return to the original stable operating condition.

Proof: See Appendix VII.
Remark 1: The inequality (12) can be rewritten as

Ā(m, d)TP + PĀ(m, d) +
(1− g)2

4
CTC + PB̄B̄TP ≤ 0,

where B̄ = [B(m, d)
√
µB(m, d)D{u,v}]. By Schur

complement, this inequality is equivalent with Ā(m, d)TP + PĀ(m, d) +
(1− g)2

4
CTC PB̄

B̄TP −I

 ≤ 0.

(13)

When the inertia of synchronverter-integrated generators are
fixed, the damping of these generators enters linearly in the
system matrices A(m, d), B(m, d) and hence, the inequality
(13) is an LMI of these variables. Also, when the damping
is fixed, we obtain an LMI with variable as the inverse
of inertia. In both these cases, we can quickly solve (13)
by convex optimizations. Therefore, the inequality (13) can
be solved in polynomial time by a heuristic algorithm, in
which we fix the inertia or damping and then use the convex
optimizations to solve the corresponding LMI to obtain the
optimum value of the remaining variable.

B. Procedure for emergency control

Given the power system under a line tripping and the
clearing time τclearing, we have the following procedure
to tune the inertia and damping in the synchronverter-based
emergency control:

1) Find a matrix P > 0 satisfying the LMI (10).
2) Calculate the minimum value Vmin defined as in (9).
3) Let µ =

τclearing
Vmin

.

4) Find the inertia and damping of the synchronverter-
integrated generators such that the inequality (13) is
satisfied. One approach to quickly come up with the
solution is to use the heuristic algorithm described in
the previous section.

5) If there is no such inertia and damping, then repeat from
step 1).

6) If such values of inertia and damping exist, then the
synchronverters will be used to tune the inertia and
damping of the imitated generators and keep these val-
ues during the time period [0, τclearing]. At the clearing
time τclearing, the fault self-clears and the inertia and
damping of the imitated generators are tuned back to
their initial values.

C. Discussions on computation and regulation delays

Computation and regulation delays may make the pro-
posed emergency control scheme in this paper not yet ready
for industrial deployment. To overcome this obstacle, we
propose the following off-line computational tasks:

1) For each line tripping {u, v}, we off-line check if
there exists a positive definite matrix P satisfying the
LMI (10) and the inequality (13) where A(m, d) =
A,B(m, d) = B. If such matrix exists, then the line
tripping is safe without any emergency control. The
LMI (10) is only dependent on the system matrices
A,B,C, and thus is checkable before hand. The in-
equality (13) is also dependent on Vmin and thus on
the equilibrium point. However, we observe that the
equilibrium point in practice usually stays inside a small
region. As such, we can obtain some lower bound for
Vmin for all of these equilibrium points. By this way,
we can check the inequality (13) for a wide range of
post-fault equilibrium points. We believe that by this
way we can certify that most of the line trippings in
practice are safe.

2) For the remaining unsafe line trippings, we calculate
before hand if there exist optimum values of inertia
and damping of the imitated generators such that the
inequality (13) is satisfied. Again, we need to use some
bound for Vmin as above. If these values exist, then
we can apply the emergency control described in the
previous section right after the fault happens.

3) For some unsafe line tripping that there are no inertia
and damping satisfying the inequality (13), we may
apply traditional emergency control schemes such as
load shedding to quickly stabilize the system.

Another way is to allow for a time period of [0, τdelay]
to compensate for the time of computation and regulation.
In this period, the fault-on trajectory evolves according to
fault-on dynamics (11) where A(m, d) = A,B(m, d) =
B. Again, by finding the positive definite matrix P sat-
isfying both the LMI (10) and the inequality (13) where
A(m, d) = A,B(m, d) = B, we can bound the fault-on
dynamics during the delayed period [0, τdelay]. This bound
will help us to design the inertia and damping in the period
[τdelay, τclearing] such that the fault-cleared state at the
clearing time τclearing is still inside the region of attraction
of the post-fault equilibrium point.

D. Other way to design the emergency control

This section presents another way to determine the op-
timum value of the inertia and damping of the imitated
generators such that the fault-cleared state satisfies V (x0) <
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Vmin where V (x) = xTPx and Vmin is defined as in (9).
The reason is that there are possible situations where we fail
to find the inertia and damping by the procedure described in
Section IV-B because we require a common Lyapunov func-
tion P for both fault-on dynamics and post-fault dynamics.
Our observation is that it is easier to find different Lyapunov
functions for different dynamics. Therefore, we propose the
following procedure to find inertia and damping:

1) Find a matrix P > 0 satisfying the LMI (10).
2) Calculate the minimum value Vmin defined as in (9).
3) Let µ =

τclearing
Vmin

.

4) Vary the inertia and damping of the synchronverter-
integrated generators, and for each fixed value of inertia
and damping, find a matrix P̃ ≥ P such that Ā(m, d)T P̃ + P̃ Ā(m, d) +

(1− g)2

4
CTC P̃ B̄

B̄T P̃ −I

 ≤ 0.

(14)

5) If there is no such matrix P̃ , then repeat from step 1)
or step 4) with new values of inertia and damping.

6) If such values of inertia and damping exist, then the
synchronverters will be used to tune the inertia and
damping of the imitated generators and keep these val-
ues during the time period [0, τclearing]. At the clearing
time τclearing, the fault self-clears and the inertia and
damping of the imitated generators are tuned back to
their initial values.

Since the matrix P̃ satisfies the LMI (14), similar to
Theorem 2 we can prove that xT0 P̃ x0 < Vmin. This in-
equality, together with that P̃ ≥ P , leads to xT0 Px0 ≤
xT0 P̃ x0 < Vmin. Applying Theorem 1, we conclude that the
fault-cleared state stays inside the region of attraction and
therefore the post-fault dynamics is stable.

V. NUMERICAL VALIDATION

For illustrating the concept of this paper, we consider
the simple yet non-trivial system of three generators, one
of which is the renewable generator (generator 1) integrated
with the synchronverter. The susceptance of the transmission
lines are assumed at fixed values B12 = 0.739 p.u., B13 =
1.0958 p.u., and B23 = 1.245 p.u. Also, the inertia and
damping of all the conventional and imitated generator at
the normal working condition are mk = 2 p.u., dk = 1 p.u.
Assume that the line between generators 1 and 2 is tripped,
and then reclosed at the clearing time τclearing = 200ms,
and during the fault-on dynamic stage the time-invariant
terminal voltages and mechanical torques given by: V =
[1.0566 1.0502 1.0170]T , P = [−0.2464 0.2086 0.0378]T .
The pre-fault and post-fault equilibrium point is calculated
from (6): δ∗ = [−0.6634 − 0.5046 − 0.5640 0 0 0]T .
Hence, the equilibrium point stays in the polytope defined
by the inequality |δkj | < π/10. As such, we can take
g = (1−sin(π/10))/(π/2−π/10). Using CVX in MATLAB
to solve the LMI (10), we can obtain the Lyapunov function
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Fig. 1. Variations of the quadratic Lyapunov function V (x) = xTPx =
(δ − δ∗)TP (δ − δ∗) during the post-fault and fault-on dynamics with
different values of inertia and damping.

V (x) = xTPx, where P is
2.8401 1.9098 1.9812 4.5726 4.4349 4.4563
1.9098 2.7949 2.0263 4.4393 4.5628 4.4578
1.9812 2.0263 2.7235 4.4502 4.4644 4.5480
4.5726 4.4393 4.4502 18.4333 17.5302 17.6662
4.4349 4.5628 4.4644 17.5302 18.3632 17.7364
4.4563 4.4578 4.5480 17.6662 17.7364 18.2271


(15)

The minimum value: Vmin is Vmin = 0.8139 and µ =
τclearing/Vmin = 0.2457.

Here, we illustrate the effectiveness of the procedure
described in Section IV.D. We use the Lyapunov function
V (x) = xTPx for the post-fault dynamics, and then solve
the LMI (14) to find the Lyapunov function xT P̃ x for the
fault-on dynamics for each varied value of new inertia and
damping. We can see that there are many values of inertia and
damping such that the LMI (14) has positive definite solution.
This means that there are many values of inertia and damping
to compensate for the dynamics deviation caused by the
faulted line and thereby stabilize the power systems. We draw
in Fig. 1 the dynamics of Lyapunov function V (x) = xTPx
during the fault-on and post-fault dynamics, where the fault-
on dynamics is controlled by different feasible values of
inertia and damping. This confirms that there are many
suitable values of inertia and damping for the emergency
control.

VI. CONCLUSIONS AND PATH FORWARD

This paper was dedicated to bring into the attention of
the control community the problem of emergency control in
power systems. In particular, we discussed a novel emer-
gency control for power grids with high penetration of
renewables by exploiting the emerging power electronics
resources. For this end, we modeled the structure preserving
model of such systems where the renewables are integrated
with the synchronverters which will control the renewable
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generator to mimic the dynamics of the conventional gener-
ators but with tunable damping and inertia. On top of this
model, we formulated the emergency control to maintain
the transient stability of post-fault dynamics following a
given line tripping by intelligently adjusting the damping
and inertia of the imitated generators. Applying our recently
introduced quadratic Lyapunov function-based transient sta-
bility certificate, we showed that this problem can be solved
through a number of convex optimizations in the form of
linear matrix inequalities. The numerical simulations showed
that this emergency control is effective to recover transient
stability after critical line trippings.

We also discussed possible ways to make this novel emer-
gency scheme ready for industrial employment. Particularly,
we sketched ways to address the issues of computation and
regulations delays, either by offline scanning contingencies
and calculating the emergency actions before hand, or by
allowing specific delayed time for computation.

Future works would demonstrate the proposed emergency
control scheme on large IEEE prototype and large dynamic
realistic power systems with renewable generation at various
locations and with different levels of renewable penetration.
Critical faults when the fault-cleared state is driven out of
the π/2 polytope will be addressed by utilizing the Lyapunov
functions family approach [13], [14]. Also, we would inves-
tigate the potential values of transmission facilities, which
are ubiquitously equipped in the existing power grids such
as FACTS devices, to intelligently control the transmission
network as an alternative remedial action to emergency
situations.

VII. APPENDIX: PROOF OF THEOREM 2

We have the derivative of V (x) along the fault-on trajec-
tory (11) as follows:

V̇ (xF ) = W (xF )− STS + 2xTFPB(m, d)Duv sin δFuv

+ xTF
[
A(m, d)TP + PA(m, d)− CTKT

1 K2C +RTR
]
xF ,

where W (xF ) = (F − gCxF )T (F − CxF ),
R = B(m, d)TP − 1

2 (1 + g)C, and S =
F + (B(m, d)TP − 1

2 (1 + g)C)xF . On the other

hand, 2xTFPB(m, d)D{u,v} sin δFuv
≤ 1

µ
sin2 δFuv

+

µxTFPB(m, d)D{u,v}D
T
{u,v}B(m, d)TPxF . Therefore,

V̇ (xF ) ≤W (xF )− STS + xTF Q̃xF +
1

µ
sin2 δFuv

(16)

where Q̃ = A(m, d)TP+PA(m, d)−CTKT
1 K2C+RTR+

µPB(m, d)D{u,v}D
T
{u,v}B(m, d)TP . Note that W (xF ) ≤

0,∀xF ∈ P, and from (12), we have Q̃ ≤ 0. Hence,

V̇ (xF ) ≤ 1

µ
sin2 δFuv ≤

1

µ
,∀xF ∈ P. (17)

Assume that xF (τclearing) is not in the set R. Note that
the boundary of R is constituted of the segments on flow-in
boundary ∂Pin and the segments on the sublevel sets of the
Lyapunov function. It is easy to see that the flow-in boundary

∂Pin prevents the fault-on dynamics (11) from escaping R.
Therefore, the fault-on trajectory can only escape R through
the segments which belong to sublevel set of the Lyapunov
function V (x). Denote τ be the first time at which the fault-
on trajectory meets one of the boundary segments which
belong to sublevel set of the Lyapunov function V (x). Hence
xF (t) ∈ R,∀0 ≤ t ≤ τ. From (17) and R ⊂ P, we have

V (xF (τ))− V (xF (0)) =

∫ τ

0

V̇ (xF (t))dt ≤ τ

µ

<
τclearing

µ
= Vmin (18)

Note that xF (0) is the pre-fault equilibrium point, and thus
equals to post-fault equilibrium point. Hence V (xF (0)) =
0. By definition, we have V (xF (τ)) = Vmin, which is a
contradiction with (18). �
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