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Abstract— Direct energy methods have been extensively de-
veloped for the transient stability analysis and contingency
screening of power grids. However, there is no analytical energy
functions proposed for power grids with losses, which are
normal in practice. This paper applies the recently introduced
Lyapunov Functions Family approach to the certification of
synchronization stability for lossy power grids. This technique
does not rely on the global decreasing of the Lyapunov function
as in the direct energy methods, and thus is possible to deal
with the lossy power grids. We show that this approach is
also applicable to uncertain power grids where the stable
equilibrium is unknown due to possible uncertainties in sys-
tem parameters. We formulate this new control problem and
introduce techniques to certify the robust stability of a given
initial state with respect to a set of equilibria.

I. INTRODUCTION

A large number of agents in natural world can reach a
common group objective through simply local interactions.
Examples include flocking of birds, schooling of fish, and
herding of animals. Such striking collective behaviors have
blown a great research interest in many disciplines such as
biology [1], social sciences [2], physics [3], computer science
[4], and engineering [5].

This paper analyzes a collective property of power grids
where a large number of generators reach a common angular
velocity through their local interactions. This problem is
known as frequency stability or synchronization stability.
Formally, the multimachine power grids are characterized by
the weighted graph G(V, E ,A) with nodes V = {1, ..., n}
representing generators, edges E ⊂ V × V , and positive
weight matrix A including akj = ajk > 0 which denotes the
strength of interaction between generators in each undirected
edge {k, j} ∈ E . The post-fault dynamics of each generator
is characterized by the rotor angle δk and its angular velocity
δ̇k, and described by the so-called lossy swing model:

mk δ̈k + dk δ̇k = Pk −
∑
{k,j}∈E

akj sin(δk − δj + αkj) (1)

The synchronization stability problem in this network of
generators formally concerns the convergence of generators’
angular velocities δ̇k to a synchronous velocity, while the
generators’ rotor angles δk converge to a stable equilibrium
{δ∗1 , ..., δ∗n} representing the desired operating condition. In
the dynamics (1), the synchrony is enforced by the diffusive
couplings sin(δk−δj+αkj) between each generator with its
neighbors, yet it is weakened by the heterogeneous toques Pk
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that drive the generators away from the synchronous velocity.
Also, the nonlinear sinusoid couplings result in a system
with multiple equilibria. As such, the synchrony can only
obtained locally, instead of globally as in systems with linear
couplings [6]–[9]. These rich dynamic properties make the
synchronization problem of power grids challenging.

For multimachine power grids without losses, i.e. αkj = 0
for all pair {k, j} ∈ E , direct energy methods have been
investigated to certify the synchronization stability of the
system [10]–[14]. Exploiting the antisymmetric property of
the couplings, i.e., akj sin(δk − δj) = −ajk sin(δj − δk),
the energy function is proven to be always decreasing in
the whole state space. As such, the system is guaranteed to
converge to the stable equilibrium point from any initial state
lying in the energy function level sets that do not contain
any other equilibrium point. Much effort is then spent in
determining the stability region as the largest energy level set
by specifying the closest unstable equilibrium point (UEP)
[15]–[17].

In the presence of losses there is, however, no analytical
energy function proposed to guarantee the synchronization
stability of the systems. The asymmetric property of the
couplings, i.e., akj sin(δk − δj +αkj) 6= ±ajk sin(δj − δk +
αjk), causes the natural energy function to not decrease, and
thus, the energy methods inapplicable [18], [14] (Chapter
VI).

In this work we extend the recently introduced Lyapunov
Functions Family method [19] to certifying the synchroniza-
tion stability of lossy power grids. The principle of this
method is to provide stability certificates by constructing
a family of Lyapunov functions, which are generalizations
of the classical energy function, and then find the best
suited function in the family for each initial state. Since the
nonlinear couplings among generators can be bounded by
linear functions in a region around the equilibrium point,
we can apply the well-known Popov stability methods to
construct Lyapunov functions for the system [20], [21].
This nonlinearity separation method can be traced back to
the pioneering work of Lur’e and Postnikov in 1944 [22].
Though the constructed Lyapunov functions are decreasing
only in a finite neighborhood of the equilibrium point,
instead of decreasing in the whole state space as the energy
function, they can generally certify stability for a broader
set of initial states compared to the energy function in the
closest-UEP method [19]. Also, the LFF stability certificate
is constructed via optimization-based techniques, rather than
by identifying the UEPs as in the energy method which is
known as an NP hard problem. In addition, the large family
of possible Lyapunov functions allows efficient adaptation
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of the Lyapunov function to a given set of initial conditions.
This adaptation can be seen as a counterpart of the problem
of searching for the suitable controlling UEP in the energy
method [23].

More interestingly, in this paper we show that the LFF
approach is applicable to uncertain power grids, in which the
equilibrium is unknown due to the uncertainty in mechanical
torques. Such uncertainty makes classical analysis and con-
trol approaches inapplicable, since these methods implicitly
assume that the equilibrium is perfectly known. We explicitly
formulate this new control problem of robust stability of
systems with unknown equilibrium and present optimization-
based techniques to construct the robust stability certificate
of a given initial state with respect to a family of equilibria.

Among other works on lossy power systems, we note a
recent study [24] that proposes to utilize network decomposi-
tion for transient stability analysis of lossy power grids based
on Sum of Square programming. Also addressing the related
problems in our work is the recent study on the stabilization
of lossy power systems, in which excitation controllers are
designed such that the closed system including the lossy
power system and the control system is stable [25]. Our work
is different from this work on that we certify the stability of
lossy power systems without reliance on the controllers.

II. LOSSY MULTIMACHINE POWER SYSTEMS

In normal conditions, power grids operate at a stable equi-
librium point. Under some fault or contingency scenarios,
the system moves away from the pre-fault equilibrium point
to some post-fault conditions. After the fault is cleared, the
system experiences the transient dynamics. This work fo-
cuses on the transient post-fault dynamics of the power grids,
and aims to develop computationally tractable certificates of
transient stability of the system, i.e. guaranteeing that the
system will converge to the post-fault equilibrium. In order
to address this question we use a traditional swing equation
dynamic model of a power system, where the loads are
represented by the static impedances and the n generators
have perfect voltage control and are characterized each by
the rotor angle δk and its angular velocity δ̇k. The dynamics
of generators are described by a set of the so-called swing
equations:

mk δ̈k + dk δ̇k + Pek − Pmk = 0, k = 1, .., n, (2)

where, mk is the dimensionless moment of inertia of the
generator, dk is the term representing primary frequency
controller action on the governor. Pmk is the effective
dimensionless mechanical torque acting on the rotor and Pek
is the effective dimensionless electrical power output of the
kth generator. In the power grids with losses, the electrical
power output is given by

Pek = V 2
k Gk +

∑
j∈Nk

VkVjYkj sin(δk − δj + αkj). (3)

Here, Ykj =
√
G2
kj +B2

kj , where Gkj and Bkj are the
(normalized) conductance and susceptance of the generator

obtained by Kron-reduction with the loads removed from
consideration. αkj = arctan(Gkj/Bkj) = αjk represents
the lines with losses. Normally, |αkj | is small but not
negligible. The value Vk represents the voltage magnitude
at the terminal of the kth generator which is assumed to be
constant. Nk is the set of neighboring generators of the kth

generator.
Substituting (3) into (2), we obtain the lossy model of the

multimachine power systems in the form (1):

mk δ̈k + dk δ̇k = Pk −
∑
j∈Nk

akj sin(δk − δj + αkj) (4)

where Pk = Pmk − V 2
k Gk and akj = VkVjYkj . The desired

operating point of this is unambiguously characterized by
the angle differences δ∗kj = δ∗k − δ∗j that solve the following
system of power-flow like equations:∑

j∈Nk

VkVjYkj sin(δ∗kj + αkj) = Pk (5)

Then, the set of swing equations (4) is equivalent with

mk δ̈k + dk δ̇k = −
∑
j∈Nk

akj
(

sin(δkj + αkj)− sin(δ∗kj + αkj)
)

(6)

Formally, we consider the following problem.
Synchronization stability: Estimate the region of
attraction of the stable equilibrium point δ∗ =
[δ∗1 , ..., δ

∗
n, 0, ..., 0]T , i.e. the set of initial conditions

{δk(0), δ̇k(0)}nk=1 starting from which the system (6)
converges to the equilibrium δ∗.

To address this problem we use a sequence of tech-
niques originating from nonlinear control theory that are
most naturally applied in the state space representation
of the system. Hence, we view the multimachine power
systems (6) as a system with the state space vector x =
[xT1 , x

T
2 ]T , in which x1 is the vector of angle deviations

from equilibrium, x1 = [δ1 − δ∗1 , ..., δn − δ∗n]T , and x2

is the vector of angular velocities, x2 = [δ̇1, ..., δ̇n]T . Let
Mn×n = diag(m1, ...,mn), Dn×n = diag(d1, ..., dn). We
define the block diagonal matrix Z of size n × 2|E| as
Z = diag(Z1, ..., Zn), where Zk = [(akj)j∈Nk

]. Let the
matrix E be the 2|E| × n matrix such that E[δ1, ..., δn]T =
[(δ1 − δj)j∈N1

, ..., (δn − δj)j∈Nn
]T . Define the vector of

nonlinearity F of size 2|E| as F (Ex1) = [(sin(δ1j +
α1j)− sin(δ∗1j +α1j))j∈N1 , ..., (sin(δnj +αnj)− sin(δ∗nj +
αnj))j∈Nn ].

With these notations, the set of equations (6) can be
rewritten in a compact form as follows:

ẋ = Ax−BF (Cx), (7)

where

A =

[
On×n In×n
On×n −M−1D

]
,

B = [On×2|E| M
−1Z]T , C = [E O2|E|×n].

Here, O represents the zero matrix and In×n the identity
matrix of size n × n. The key advantage of this state
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Fig. 1. Bounding of nonlinear sinusoidal interaction by two linear functions
as described in (8)

space representation of the system is the clear separation of
nonlinear terms that are represented as a “diagonal” vector
function composed of simple univariate functions applied to
individual vector components. This simplified representation
of nonlinear interactions allows us to naturally bound the
nonlinearity of the system by linear functions, as will be
shown in the next section.

III. LYAPUNOV FUNCTIONS FAMILY APPROACH

This paper proposes a family of Lyapunov functions to
certify the synchronization stability for the system (7). The
construction of this Lyapunov functions family is based on
the linear bounds of the nonlinear couplings which are clearly
separated in the state space representation (7). From Fig. 1,
we observe that

0 ≤ (δkj − δ∗kj)(sin(δkj + αkj)− sin(δ∗kj + αkj))

≤ (δkj − δ∗kj)2, (8)

for any −π− 2αkj ≤ δkj + δ∗kj ≤ π− 2αkj . Hence, for any
|δkj + δ∗kj | ≤ π − 2αkj , we have the nonlinear bounds (8)
for both nonlinear couplings corresponding to δkj and δjk.

Exploiting this nonlinearity bounding, we propose to use
the convex cone of Lyapunov functions defined by the
following system of Linear Matrix Inequalities for positive,
diagonal matrices K,H of size 2|E| × 2|E| and symmetric,
positive matrix Q of size 2n× 2n :[

ATQ+QA R
RT −2H

]
≤ 0, (9)

where R = QB − CTH − (KCA)T . For every pair Q,K
satisfying (9) the corresponding Lyapunov function is:

V (x) =
1

2
xTQx−

∑
K{k,j} cos(δkj + αkj)

−
∑

K{k,j}δkj sin(δ∗kj + αkj). (10)

Here, the summation goes over all the pair {k, j} ∈ E ,
with differentiating between {k, j} and {j, k}. Note, the
Lyapunov functions defined by (10) have the same structure
as the energy function, and the energy function is a member
of this Lyapunov functions family. However, in this paper
to establish the synchronization stability certificate for the
system (6) we only exploit the property that these Lyapunov
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Fig. 2. Estimations of stability region of lossy power system by the LFF
method. Stability region estimates are intersection of the Lyapunov function
sublevel sets (green solid lines) and the flow-in boundary of the polytope
P defined by inequalities −π + 2α− δ∗ ≤ δ ≤ π − 2α− δ∗.

functions are decreasing in a neighborhood of the equilibrium
point, instead of decreasing in the whole state space as in
the energy method. This makes our method different from
the energy method.

By similar proof as in [19], we have the following theorem
stating the decay of Lyapunov function in the polytope P
defined by the inequalities |δkj + δ∗kj | ≤ π − 2αkj .

Theorem 3.1: In the polytope P, the Lyapunov function
defined by (10) is decaying along the trajectory of (7), i.e.,
V (x(t)) is decaying whenever x(t) evolves inside P .

A. Constructions of Invariant Sets

In this section, we propose two techniques to construct the
invariant sets of the system (7) inside P. The first approach to
construct an invariant set of the system (7) in the polytope
P is based on the minimization of the Lyapunov function
V (x). We divide the boundary ∂Pkj corresponding with the
equality |δkj +δ∗kj | = π−2αkj into two segments ∂Pinkj and
∂Poutkj where the system trajectory goes in and goes out P .
The flow-in boundary segment ∂Pinkj is defined, as in Fig. 2,
by |δkj+δ∗kj | = π−2αkj and δkj δ̇kj < 0, while the flow-out
boundary segment ∂Poutkj is defined by |δkj+δ∗kj | = π−2αkj
and δkj δ̇kj ≥ 0.

Now we define the minimization of the function V (x) over
the union ∂Pout of the flow-out boundary segments ∂Poutkj :

Vmin = min
x∈∂Pout

V (x), (11)

The corresponding invariant set is defined as:

R = {x ∈ P : V (x) < Vmin}. (12)

The decay property of Lyapunov function in the polytope P
ensures that the system trajectory cannot meet the boundary
segments {x : V (x) = Vmin} and ∂Poutkj of the set R. By
definition, once the system trajectory meets the boundary
segment ∂Pinkj , it can only go in the polytope P. Hence,
the system (7) cannot escape R. We have the following
theorem for the convergence property of the system to the
stable equilibrium point (similar proof as in [19]).

Theorem 3.2: From any initial state x0 in the invariant
set R defined by (12), the system trajectory will converge to
the stable equilibrium point δ∗.
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The second approach to certification of stability does not
involve finding the value of Vmin at all. We consider a
scenario when the initial state x0 is inside the polytope
P, but too far away from the equilibrium δ∗ such that the
approaches described above fail to find a Lyapunov function
certifying V (x0) < Vmin. In this case, it is still possible to
certify that the trajectory x(t) only evolves inside P. Indeed,
let λ > 0 be a small constant, for example λ = 0.01.
Consider the polytope Q ⊂ P, which is defined by the
inequalities |δkj + δ∗kj | ≤ π − 2αkj − λ. Let Φ±kj be the
boundary of Q corresponding to the equality δkj + δ∗kj =
±(π − 2αkj − λ). In order to enforce the system to evolve
inside Q, we consider the following optimizations:

cmax
kj = maxC{k,j}Ax (13)

subject to:V (x) ≤ a, x ∈ Φ+
kj ,

dmin
kj = minC{k,j}Ax

subject to:V (x) ≤ a, x ∈ Φ−kj ,

where a > 0 is a constant and V (x) is a member of LFF. In
Appendix VII-A, we prove the following theorem.

Theorem 3.3: Assume that cmax
kj < 0 and dmin

kj > 0 for all
pairs {k, j} ∈ E . Then, from any x0 in the set

R∗ = {x ∈ Q : V (x) ≤ a}, (14)

the system trajectory x(t) will only evolve in R∗ and
converge to the equilibrium point δ∗.

We note that the conditions in Theorem 3.3 hold when a
equals the minimum value of V (x) taken over the boundary
of the polytope P. To enlarge the stability region R∗ we
may utilize some heuristic algorithms in which we increase
the value of a from Vmin with a small amount ε in each step
until the conditions in Theorem 3.3 are not satisfied.

Remark 3.1: So far, we have presented two stability cer-
tificates to verify if the multimachine power system (2)
converges from the initial state x0 to the stable equilibrium
point [θ∗1 , ..., θ

∗
n, 0, ..., 0]T . According to the first certificate

given by Theorem 3.2, we need to check if the initial
state x0 is in the stability region R, i.e., if x0 ∈ P and
V (x0) < Vmin. By the second certificate given by Theorem
3.3, we need to check if x0 ∈ Q and cmax

kj < 0 and dmin
kj > 0

for all pairs {k, j} ∈ E , in which cmax
kj and dmin

kj are defined
by (13) with a replaced by V (x0).

Remark 3.2: Solutions (Q,K) of the LMIs (9) provide
us with a family of Lyapunov functions V (x) and the
corresponding estimations of stability regionRS(Q,K). The
best estimation can be obtained as the union of RS(Q,K)
over all the solutions (Q,K) of the LMIs (9) and all the
formulations described.

Remark 3.3: The inscription of the union of stability
region R(Q,K) over all the solutions (Q,K) of the LMIs
(9) is computationally difficult since there are usually infinite
solutions of the LMIs (9). However, the large cone of
possible Lyapunov functions allow us to find a Lyapunov
function that is best suited for a given initial state x0 ∈ P or
family of initial states. We can apply the stability certificate
in Theorem 3.2 and use the same algorithm in [19] for the
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adaptation of Lyapunov functions to a given initial state x0.
For the simple case of 2-bus system, we can see in Fig.
3 that this algorithm allows us to quickly find the suitable
Lyapunov function in the family for each initial state.

IV. ROBUST STABILITY OF UNCERTAIN POWER GRIDS

For practical applications it is desirable to construct Lya-
punov functions that certify the stability of the system even if
the vector of mechanical torques Pk is not known in advance.
As such, the equilibrium calculated by (5) is also unknown.
This makes the stability certification in the previous section
difficult to verify since the Lyapunov function (10) is de-
pendent on the equilibrium. In this section, we extend the
stability certificates in Theorems 3.2 and 3.3 and present
techniques to certify the synchronization stability for a set
of unknown equilibria. The main motivation to consider this
problem is that, in practice Pk is changing in time, and thus
the robust stability certificate for a set of equilibria may
be utilized to “off-line” certify the stability of the system
without repeating the stability assessment in each time step.

We also note that in practice, when the system parameters
change, then the bus angles at the stable operating point are
usually still close to each other, i.e, the angular differences
at the stable operating point are small regardless of the
parameter changes. As such, we consider robust stability for
the set of equilibria whose angular differences are small.
Formally, we consider the following problem:

Robust stability: Certify the stability of the system
(4), in which the mechanical torques Pk are un-
known such that the stable equilibrium point δ∗ =
[δ∗1 , ..., δ

∗
n, 0, ..., 0]T is in the polytope Θ defined by the

inequalities |δ∗kj | ≤ ∆kj , where ∆kj > 0 is a constant.
First, we construct a polytope in which the Lyapunov

function is decreasing for any equilibrium point in the set
Θ. This polytope is actually the common set of the polytope
P(δ∗) corresponding to each equilibrium δ∗. Note, that the
matrices A,B,C in (7) are independent on the mechanical
torques Pk. Hence, the matrices Q,K obtained by solving
(9) are also independent on Pk. The Lyapunov function (10)
is now a function of two variables x̄ = [δ1, ..., δn, δ̇1, ..., δ̇n]
and δ∗. By Theorem 3.1 we have V̇ (x̄, δ∗) ≤ 0 for all x̄
in the polytope P(δ∗) defined by the inequalities |δkj +
δ∗kj | ≤ π − 2αkj . Hence, V̇ (x̄, δ∗) ≤ 0 for all δ∗ in the

5059



set Θ and x̄ in the polytope P defined by the inequalities
|δkj | ≤ π − 2αkj − ∆kj . We note that in practice αkj is
small and |δ∗kj | < π/2, i.e. ∆kj < π/2,∀{k, j}. Hence,
π − 2αkj − ∆kj is around π/2, and thus the polytope P
cover most contingency scenarios in practice, where δkj is
kept to be less than π/2 by actions of protective relays.

We now present the robust stability certificates based on
the stability certificate given in Theorem 3.2. The proof of
this lemma is provided in Appendix VII-B.

Lemma 4.1: Consider the system (4) whose the stable
equilibrium point δ∗ is unknown, but is in the polytope Θ.
Consider an initial state x̄0 in the polytope P. Suppose that
there exist matrices Q,K satisfying (9) and

min
x̄∈∂P

[1

2

(
x̄TQx̄− x̄T0 Qx̄0

)
−
∑

K{k,j}(cos(δkj + αkj)− cos(δkj0 + αkj))
]

> max
x̄∈∂P,δ∗∈∆

[
δ∗TQ(x̄− x̄0)

+
∑

K{k,j}(δkj − δkj0) sin(δ∗kj + αkj)
]
. (15)

Then, the system will converge from the initial state x̄0 to
the equilibrium point δ∗ for any δ∗ ∈ ∆.

Also, we have the robust stability certificate based on
Theorem 3.3. Let λ > 0 be a small constant. Consider
the polytope Q ⊂ P, which is defined by the inequalities
|δkj | ≤ π − 2αkj − ∆kj − λ. Let Ψ±kj be the boundary
of the polytope Q corresponding to the equality δkj =
±(π−2αkj−∆kj−λ). For the initial state x̄0 in the polytope
Q, we consider the following optimizations:

cmax
kj = maxC{k,j}Ax̄ (16)

subject to:V (x̄, δ∗) ≤ V (x̄0, δ
∗), x̄ ∈ Ψ+

kj , δ
∗ ∈ ∆,

dmin
kj = minC{k,j}Ax̄

subject to:V (x̄, δ∗) ≤ V (x̄0, δ
∗), x̄ ∈ Ψ−kj , δ

∗ ∈ ∆.

Here, V (x, δ∗) is a member of LFF with the corresponding
matrices Q,K obtained by solving the LMIs (9). We have
the following theorem for the robust stability of the system
(4), the proof of which is similar to Theorem 3.3 and omitted.

Lemma 4.2: Consider the system (4) whose the stable
equilibrium point δ∗ is unknown, but is in the polytope Θ.
Consider an initial state x̄0 in the polytope Q. Assume that
the optimum values defined in (16) satisfy that cmax

kj < 0 and
dmin
kj > 0 for all pairs {k, j} ∈ E . Then, the system trajectory
x(t) will only evolve in the polytope Q and converge to the
equilibrium point δ∗ for any δ∗ ∈ ∆.

V. SIMULATION RESULTS

The effectiveness of the LFF approach can be most natu-
rally illustrated on a classical 2-bus with easily visualizable
state-space regions. This system is described by a single 2-
nd order differential equation: mδ̈+dδ̇+a sin(δ+α)−P =
0. For this system, δ∗ = arcsin(P/a) − α is the only
stable equilibrium point (SEP). For numerical simulations,
we choose m = 1 p.u., d = 1 p.u., a = 0.8 p.u., P = 0.4
p.u., α = 0.05 and thus δ∗ = π/6 − 0.05. Figure 2 shows
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Fig. 4. Robust stability of the contingency scenario {δ0 = −2, δ̇0 = 2}
when the SEP is unknown and in the set −π/6−0.05 ≤ δ∗ ≤ π/6−0.05.

the stability regions estimated by the LFF approach. It can
be seen that the proposed method can certify stability of the
lossy power system for a broad set of contingency scenarios.
Figure 3 shows the adaptation of the Lyapunov function to
the contingency scenario defined by the initial state x0. It
can be seen that the algorithm results in Lyapunov functions
providing increasingly large stability regions until we obtain
one stability region containing x0.

Consider the case when the mechanical input P is un-
known and in the set −0.4 ≤ P ≤ 0.4. The equilibrium
δ∗ then belongs to the set −π/6 − α ≤ δ∗ ≤ π/6 − α.
By the robust stability certificate in Lemma 4.1, it can be
checked that the contingency defined by the initial state
{δ0 = −2, δ̇0 = 2} is stable with respect to any equilibrium
point in the set −π/6−α ≤ δ∗ ≤ π/6−α. Figure 4 confirms
this anticipation.

VI. CONCLUSIONS

This paper applied the LFF method to certify the syn-
chronization stability of lossy power grids, which is im-
possible by the standard energy methods. The proposed
method was based on constructing a family of generalized
classical energy functions and adapting these functions to the
initial states. Unlike energy function and its variations, these
Lyapunov functions are only decreasing in a finite polytope
around the stable equilibrium point, but can still certify a
broad set of fault and contingency scenarios. We presented
optimization-based techniques to explicitly construct the sta-
bility certificates. We also showed that the proposed method
is well applicable for uncertain power grids with unknown
equilibrium points. We solved this problem by providing
robust stability certificates for a set of equilibrium points.
Such certificates are however conservative, and improvement
of the method should be made in the future.

VII. APPENDIX

A. Proof of Theorem 3.3

Consider an initial state x0 in the set R∗. We note that
the set R∗ = Q ∩ {x : V (x) ≤ a}. Hence, the boundary
of the set R∗ includes the segment {x ∈ R∗ : V (x) = a}
and the segments {x ∈ R∗ ∩ Φ±}. Since V̇ (x) ≤ 0 for all
x ∈ Q ⊂ P, the system trajectory cannot escape the set R∗
through the segment {x ∈ R∗ : V (x) = a}.
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Consider the segments {x ∈ R∗ ∩Φ±}. On Φ±, we have
δkj + δ∗kj = ±(π − 2αkj − λ). Note that

δ̇kj = C{k,j}(Ax−BF (Cx)) = C{k,j}Ax (17)

Since cmax
kj < 0, dmin

kj > 0 for all pairs {k, j} ∈ E , we
conclude that δ̇kj < 0 for all x in the segment {x ∈ R∗∩Φ+}
and δ̇kj > 0 for all x in the segment {x ∈ R∗∩Φ−}. Hence,
the system trajectory x(t) cannot escape the set R∗ through
the boundary {x ∈ R∗ ∩ Φ±}. This means that once the
system trajectory meets the boundary {x ∈ R∗ ∩ Φ±}, it
will go back R∗. Therefore, x(t) only evolves within R∗.

From Theorem 3.1 and that R∗ ⊂ Q ⊂ P , we have
V̇ (x(t)) ≤ 0 for all t. By LaSalle’s Invariance Principle, we
conclude that x(t) will converge to the set {x : V̇ (x) = 0},
which means that the system trajectory will converge to the
stable equilibrium point δ∗ or to some point x∗ lying on
the boundary of P. But x(t) only evolves in the polytope
Q, which is strictly inside the polytope P. Therefore, the
system will converge to the stable equilibrium point δ∗.

B. Proof of Lemma 4.1

Since V̇ (x̄, δ∗) ≤ 0 for all x̄ ∈ P and δ∗ ∈ ∆, Theorem
3.2 ensures that the system will converge from the initial state
x̄0 to the equilibrium point δ∗ if min

x̄∈∂P
V (x̄, δ∗) > V (x̄0, δ

∗)

for all δ∗ ∈ ∆. Note, the Lyapunov function (10) is expressed
as a function of x̄ and δ∗:

V (x̄, δ∗) = 0.5(x̄− δ∗)TQ(x̄− δ∗)

−
∑

K{k,j}(cos(δkj + αkj) + δkj sin(δ∗kj + αkj))

= 0.5x̄TQx̄+ 0.5δ∗TQδ∗ − δ∗TQx̄

−
∑

K{k,j}(cos(δkj + αkj) + δkj sin(δ∗kj + αkj)) (18)

As such

min
x̄∈∂P

V (x̄, δ∗)− V (x̄0, δ
∗) = min

x̄∈∂P

[
0.5(x̄TQx̄− x̄T0 Qx̄0)

−
∑

K{k,j}(cos(δkj + αkj)− cos(δkj0 + αkj))−{
δ∗TQ(x̄− x̄0) +

∑
K{k,j}(δkj − δkj0) sin(δ∗kj + αkj)

}]
≥ min
x̄∈∂P

[
0.5(x̄TQx̄− x̄T0 Qx̄0)

−
∑

K{k,j}(cos(δkj + αkj)− cos(δkj0 + αkj))
]
−

max
x̄∈∂P

[
δ∗TQ(x̄− x̄0) +

∑
K{k,j}(δkj − δkj0) sin(δ∗kj + αkj)

]
Hence, if (15) holds, then we have min

x̄∈∂P
V (x̄, δ∗) >

V (x̄0, δ
∗) for all δ∗ ∈ ∆, and the system is robustly stable.
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