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Abstract
We present a novel selection algorithm for N−2 contingency
analysis problem. The algorithm is based on the iterative
bounding of line outage distribution factors and successive
pruning of the set of contingency pair candidates. The
selection procedure is non-heuristic, and is certified to
identify all events that lead to thermal constraints violations
in DC approximation. The complexity of the algorithm is
O(N2) comparable to the complexity of N − 1 contingency
problem. We validate and test the algorithm on the Polish
grid network with around 3000 lines. For this test case two
iterations of the pruning procedure reduce the total number
of candidate pairs by a factor of almost 1000 from 5 millions
line pairs to only 6128.

1. INTRODUCTION

Maintaining reliable operation operation of the power

system is of paramount importance for the power grid

operators and society as a whole. This task will likely

become even more challenging due to combination of multi-

ple factors, that include shift toward intermittent renewable

generation, electric transportation systems, deregulation of

energy markets. The standards developed by North American

Electric Reliability Corporation [1] necessitate the operators

to ensure the system performance in the events of multiple

outage contingencies. However, the problem of contingency

identification remains computationally challenging due to

combinatorial explosion of the total number of possible

initiating events. This number grows approximately as Nk

where N is the number of components (typically branches

of the network) and k is the number of outaged elements.

Large number of algorithms have been developed to

address the problem of computational complexity. The

classical approaches towards contingency identification are

based on ranking and selection approaches [2–7]. Within

the ranking framework the candidate outage configurations

are ranked according to heuristic performance index based

on the line flow, capacity as well as the total number of

lines in the network. Multiple variations of the method exist

differing in the functional form of the performance index.

The selection approach [3, 7] is based on the analysis of

power flow solutions and provide more accurate ranking at

the expense of additional computational burden. A number

of modifications to both methods have been proposed in the

recent years that have significantly improved the efficiency

of the ranking procedure. These include the approaches

based on the network topology analysis [8–10], nonlinear

optimization heuristics [11–13] and others. Our work is most

closely related to the approaches based on the Line Outage

Distribution Factors that have been recently explored in [14,

15].

In this paper we develop a new approach towards

contingency selection problem that is based on iterative

pruning of the contingency candidate set. Starting with a set

of all possible 2 line outage pairs we exclude the pairs that

are guaranteed to be “safe” from the contingency perspective.

The corresponding guarantees can be shown using the

analytic bounds for the line overload expression based on

the Line Outage Distribution Factors computed within the

stage of N −1 contingency analysis. For realistic cases with

small number of contingencies this pruning procedure allows

one to filter out most of the line combinations leaving only

few potentially dangerous ones. If the number of the final

candidates is O(N) or lee they can be analyzed directly with

negligible computational overhead. Unlike most of the other

approaches, our algorithm is not based on any uncontrolable

heuristics. It is guaranteed to capture all the dangerous

events without missing any pairs leading to violations. In this

manuscript we describe the algorithm for N−2 contingency

analysis, its extensions to more general N − k problem

will be reported elsewhere. The overall complexity of the

algorithm depends on the efficiency of the power flow

solution procedure and on the total amount of contingencies

violating thermal constraints. In the relatively unstressed

situations when the total number of contingencies is small

the complexity can be estimates as O(RN) where R is the

number of operations required to solve the linear power flow

equations. The overall complexity is therefore comparable

to the N − 1 contingency problem that is routinely solved

by system operators.

The structure of this paper is the following. In section 2

we formally define the problem and derive the key relations

necessary for the constuction of the algorithm. In section 3
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we describe the actual algorithm and discuss the issues of

complexity, implementation and possible optimizations. Next,

in section 4 we present the results of algorithm validation

and various tests on the 3000 bus Polish grid model. Finally,

the overview of the approach as well as possible extensions

and research directions are presented in section 5.

2. PROBLEM SETTING

In this work we limit ourselves to DC approximation

which is also used in most of the other N − k contingency

studies. Although it’s accuracy can be limited in some

situations it is a reasonable model for an already challenging

N − k contingency problem. Within this approximation the

state of the power system is described by the vector of

voltage phases θk defined on every of the M buses in the

system. The power flows are described by the linear dc

power flow equations:

Bθ = p (1)

where B̂ is the M ×M nodal DC susceptance matrix and

p is the vector of active power injections. The nodal DC

susceptance matrix can be represented as B = MYMT ,

where Y is the diagonal N × N matrix of branch sus-

ceptances, and M is the M × N connection matrix with

1s indicating the beginning bus of every branch, and −1
its end. The vector of power flows can be represented as

f = YMT θ = YMTB−1p.

Linear DC power flow admit a very simple and elegant

analysis of the single and multiple line contingencies. There

is conservation of total power flowing through the system,

so whenever one or multiple line outage, the power that was

flowing through them is distributed between the other lines

in the system. Linear structure of the equations allows one

to describe this distribution via linear mapping. The effect

of the outage can be described by the matrix of so called

Line Outage Distribution Factors (LODF) denoted as Lyx

that relates the change of flow in a monitored line y that

follows after the tripping of line x with original flow fx.

Formally one can write:

Lyx =
f ′y − fy

fx
(2)

relates the change of the flow through line y from fy to

f ′y with the flow fx through line x before the outage. The

LODFs are extensively used for the N − 1 contingency

analysis. They can be computed in O(NK) operations,

which is an acceptable overhead on top of the amount of

calculations required to solve power flow equations. In the

following discussion we assume that the matrix Lxy has

been precomputed. As we will show, it is possible to express

the overload effect of the double outage in terms of the

expression for single outage LODF. This relation forms the

basis of our algorithm that efficiently utilizes the information

available from N−1 contingency analysis to identify a tight

set of double outage contingency candidates.

In order to find the relation between single and two line

contingency LODFs we use the well-known expression for

the LODF in general k-line contingency situation (see e.g.

[6]):

L = YMTB−1M̃(1− ỸM̃TB−1M̃)−1, (3)

where M̃ is the M × k submatrix of M corresponding to

the outaged lines and similarly Ỹ is the k × k outaged

line submatrix of Y. This expression is applicable both to

single (n = 1) and double n = 2 line outage events. Direct

comparison of these expressions allows us to relate the two.

LODF matrices. After straightforward but bulky calculations

we arrive at the following expression for the effect of double

outage:

f ′z − fz =
Lzx(fx + Lxyfy)

1− LyxLxy
+

Lzy(fy + Lyxfx)

1− LyxLxy
. (4)

In this relation we denote the outage lines by x, y and

consider the change of the flow on some arbitrary line z.

The expressions Lxy correspond to the single line outage

as defined in (2). Similar expression, although written in a

different form has been recently derived in [15]. For some

combinations of intially tripped lines x, y the denominator

1 − LxyLyx can be zero. It was shown in [16] that such

situations correspond to the islanding of the grid. After

the grid is islanded the rank of the matrix B in (1) is

increased and it may not have a solution. This corresponds

to the situation when individual islands do not have balanced

generation and consumption. The restoration of the balance

depends on the system operator policies and is not considered

in this work. In our algorithm we substitute the corresponding

elements of the matrix Axy with zeros which automatically

removes them from consideration. There are only few of

such cases in the model of Polish Grid studied in this work.

All of them correspond to islanding of single buses. The

important property of (4) that is extensively exploited in

our algorithm is the factorization of individual terms in (4).

After introduction of Axy = (1+Lxyfy/fx)/(1−LyxLxy)
the expression (4) can be rewritten as

f ′z − fz = AxyLzxfx +AyxLzyfy (5)

The contingency occurs whenever the absolute value of the

flow at line z exceeds a critical value, i.e. f ′z > f crit
z or

f ′z < −f crit
z . Both of these conditions can be rewritten in

the form

AxyBxc +AyxByc > 1 (6)

where the c indicates one of the flow constraints, and there

are two values of c associated with each line z with the

matrix values given by Bxc = fxLzx/(f
crit
z ± fz), where

the +,− signs correspond to the conditions f ′z < −f crit
z

and f ′z > f crit
z respectively. The form (6) is rather general,
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and can be used for other types of linear constraints, such

as voltage bus ones. Although these constraints are not

discussed in this work, in the following we will assume

that the sets of constraints and lines are separate and the

elements of the matrix Bxc are not necessarily associated

with individual line overloads. We denote the set of possible

constraints c by C and the set of all lines by E . In these

notations the problem is reduced to selection of all tuples

(x, y) with x, y ∈ E such that 1 − LxyLyx �= 0 for which

there exists at least one constraint c ∈ C that satisfies the

condition of line overload:

Γxyc + Γyxc > 1 (7)

where Γxyc = AxyBxc. Brute force search of all such tuples

requires in the worst case scenario requires at least O(N2K)
operations where N = |E| is the number of branches and

K = |C| is the total number of constraints. If the only

constraints are associated with line overloads K = 2N . The

iterative pruning approach described dramatically lowers

this estimate in practical situation when the total number of

tuples is small. In this case the complexity of the algorithm

can be estimated as O(NK) +O(N2).

3. ALGORITHM

Our algorithm is based on the simple idea of iterative

pruning of the set of initiating line candidates. The algorithm

exploits the algebraic structure of the overload condition

(7). Although both of the terms Γxyc and Γyxc depend

on three indices x, y, c, these dependence has a factorized

form Γxyc = AxyBxc. This form admits a fast bounding

procedure that results in an upper bound that depends only

on two indices, for instance Γxyc ≤ Γmax
xy� . This bound can be

produced by finding the minimal Bmin
x� and maximal Bmax

x�

values of Bxc for every value of z: Bmin
x� ≤ Bxc ≤ Bmax

x�

and can be found by direct iteration over the matrix Bxc

in only O(|E| · |C|) operations. The expression for Γmax
xy� is

given by

Γmax
xy� =

{
AxyB

max
x� , Axy ≥ 0

AxyB
min
x� , Axy < 0

(8)

that can be compactly written as Γmax
xy� =

max{AxyB
max
x� , AxyB

min
x� }. As the bound Γmax

xy� depends

only on two indices, it can be used for fast pruning of the

set A of possible (x, y) ∈ A tuple candidates. Whenever

Γmax
xy� + Γmax

yx� ≤ 1, the condition (7) can not be satisfied

for any possible choice of z. Thus, the pruning of set A
can be accomplished in only O(|A|) operations which is at

most O(N2). Analogous upper bounds can be constructed

for Γmax
x�c and Γmax

�yc to prune the set of pairs x, z that can

be part of the triple satisfying (7). The detailed algorithm

is presented in three listings below. The main function

findTuples takes the set E of possible initiating lines

and set C of all the relevant constraints as an input and

returns the set of possible candidate tuples A as the output.

The pruning happens in iterative fashion as each reduction

of one set produces better bounds on the matrices A,B
and allows extra pruning of the second set. In the step 3

Algorithm 1 findTuples(E , C)
1: A ← {(x, y) : x, y ∈ E}
2: B ← {(x, c) : x ∈ E , c ∈ C}
3: repeat
4: Calculate Bmax

�c , Bmin
�c � Prune B

5: Calculate Amax
x� , Amin

x� , Amax
�y , Amin

�y

6: for (x, c) ∈ B do
7: Γmax

x�c ← max{Amax
x� Bxc, A

min
x� Bxc}

8: Γmax
�yc ← max{Amax

�y Bmax
�c , Amin

�y Bmin
�c }

9: end for
10: B ← {(x, c) ∈ B : Γmax

x�c + Γmax
�xc > 1}

11: Calculate Bmin
x� , Bmax

x� � Prune A
12: for (x, y) ∈ A do
13: Γmax

xy� ← max{AxyB
max
x� , AxyB

min
x� }

14: end for
15: A ← {(x, y) ∈ A : Γmax

xy� + Γmax
yx� > 1}

16: until A stops changing

17: return A

we have omitted the definition of Bmin
x� = min(x,c)∈B Bxc

and its obvious counterparts for the sake of presentation

simplicity. The sets A,B can be implemented via different

data structures. The simplest, although not the most efficient

choice is to simply use boolean masks for the matrices

Axy, Bxc. In this case both the iteration over the sets A,B
in lines 6, 12 and the filtering operations in lines 10, 15 can

be implemented as a direct loop over all possible values. In

this implementation the total complexity of the algorithm

will be given by O(INK)+O(IN2) where I is the number

of outer loop iterations. More sophisticated implementations

of the sets can significantly reduce the number of inner

loop iterations for small set cardinalities and thus improve

the overall complexity. In general, we expect that the total

number of outer loop iterations necessary for the algorithm

to converge will be of order 2− 4 for the realistic situations

with small number of contingencies. This observation is

supported by our numerical experiments, but its formal

proof is far beyond the scope of our work.
Apart from various implementation possibilities there

is also an additional degree of freedom related to the

definition of the matrices Axy and Bxc. The expression

Γxyc = AxyBxc is invariant under the transformation

Axy → sxAxy, Bxc → s−1
x Bxc for any non-zero values of

sx. This transformation affects the value of the bound Γmax
�xc

on line 8 and can be used for improving the efficiency of the

pruning process. Our preliminary results indicate that it is

possible to reduce the size of the final set A by a factor of 2
via careful choice of sx. However, this reduction comes at the

expense of substantial computational overhead. Nevertheless,

this optimization may become important in situations where
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the unoptimized pruning procedure is inefficient for some

reasons.

It is also possible to improve the efficiency of the pruning

procedure by appropriate subdivision of the constraint set C.

As the bounds Bmax
x� and others are based on the analysis

of the whole set of branches, few outliers in this set can

significantly affect the value of the bounds. For example, a

single line z with flow fz very close to the capacity f crit
z

can inflate the values of Bmax
x� for all initiating lines x

and thus affect the efficiency of pruning. It is possible to

mitigate this problem by subdivision of the constraint set C
and separate analysis of the outlier and all the other lines.

We are currently exploring these possibilities and will report

our findings in future publications.

4. RESULTS

In order to validate and test the proposed algorithm we

have used the Polish grid model available in MATPOWER

package [17]. This grid consists of 3269 lines and 2737 buses.

Our simulations have started with the base state found via

solution of OPF problem. The results of N − 1 contingency

analysis for the base state indicate that there are 27 single

line outage events that cause violations of one or more

constraints with overall total of 37 (x, c) event-overload

pairs. In order to separate these contingencies we remove

the corresponding (x, c) pairs from the original B set after

step 2 of the algorithm. In order to validate the pruning

algorithm we have performed an exhaustive analysis of all

possible 2 line contingencies and found 524 pairs of lines

that result in overloads. Note, that this number is significantly

less than the total number of N(N − 1)/2 ≈ 5.3∗106 pairs

and N(N − 1)(N − 2)/6 ≈ 5.8 ∗ 109 (x, y, c) triples that

need to be analyzed with brute force approach.

ITERATION |A| |B|
0 5,341,546 10,683,092
1 17,928 322,365
2 6,128 188,761
3 5,816 163,788
4 5,750 156,807
5 5,750 155,813
6 5,750 155,813

Table I
CANDIDATE SET A,B SIZES EVOLUTION WITH ALGORITHM

PROGRESSION.

Our algorithm has managed to reduce the number of (x, y)
pair candidates from 5.3∗106 to 6128 (that of course contain

all 524 pairs that actually lead to overload) in only two steps.

The subsequent outer loop iterations had marginal effect on

the total number of pairs. Table I shows the evolution of the

set A,B sizes with each iteration. Note, that although the

there are a lot of elements in B set, they don’t affect the

overall effectiveness of the approach, as the output of the

algorithm consists only of the initiating pairs (x, y) from

the set A. As one can see from the table, the algorithm

converges after 6 iterations, but only the first two iterations

lead to strong reductions in the A set size, whereas the

consequent iterations have diminishing returns.
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Figure 1. Histogram of A matrix elements distributions for the first two
iterations.

In order to better understand the reason for the algorithm

efficiency we have analyzed the distributions of the elements

in the matrices Axy and Bxy. As one can see from the

figure 1 in the original system most of the elements of the

matrix A are close to 1. This is because most of the lines

do not affect each other after outages, so Lxy, Lyx 
 1.

Typically the flow from line x is distributed amongst its

closest neighbors, whereas most of the lines y are not close

in neither geographical nor electrical metrics. There are only

about 104 pairs in the original network with value of Axy

larger than 1. As expected, the pruning operations have

more significant effect on the left part of the distribution,

as the corresponding pairs have lower chance of producing

strong overflows. The third iteration of the algorithm has a

seemingly minor effect on the distribution, but this is largely

an artifact of the logarithmic scale of y axis, as the overall

effect on the total number elements is quite significant as

seen from the Table I.

The histogram 2 of the matrix B element has very different

structure because the element Bxc is proportional to the line

outage distribution factor Lzx that, as discussed previously, is

very small for most of the pairs (x, z). It is rather interesting

that the distribution of Bxz and Lxy values (not shown) has

an almost flat distribution in the log-scale, that points out

to some self criticality in the network. We are not aware of

any simple interpretations of this property. However, this

property if shown to be universal for large scale power grids

could be possibly linked to the power law distribution of
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Figure 2. Histogram of B matrix elements distributions for first two
algorithm iterations.

large blackout sizes [18–20] and potentially exploited for

construction of fast contingency selection algorithms.

5. CONCLUSIONS

In conclusion, we have presented a novel algorithm for the

N − 2 contingency problem. The algorithm is based on the

idea of iterative pruning of the possible candidate sets. Given

the matrix of single line outage distribution factors only a

small number of candidates can be identified in only O(N2)
operations, much smaller than the naive exhaustive search

analysis that would require O(N3) operations, therefore our

algorithm decreases computational time by a factor of O(N)
and and its complexity is comparable with the complexity

of usual N − 1 contingency analysis Unlike many other

approaches our algorithm is not heuristic, and is certified to

return all the double outage with violations. The algorithm

has been validated and tested on the Polish grid example

where the total number of double outage with violations

was shown to be 524 via exhaustive search analysis. Our

algorithm has reduced the set of all possible candidates from

approximately 5000000 to about 6000 in just two iterations.

Although the effectiveness of the approach is impressive,

there are several directions one can pursue to improve it

even further. First, a number of additional optimizations are

possible. Apart from the optimizations and implementation

discussed briefly in the end of the section 3, there are a

number of opportunities how this approach can be extended

to more challenging settings. First, it is possible to apply the

approach directly to N−k problems with k ≥ 2. This would

require accurate analysis of the expression (3) and derivation

of relations similar to (4). Whenever only a small subset of

possible k-line contingencies leads to violations, the proper

bounding procedure should be able to filter out the safe

candidates. Another direction is associated with extension

of out approach to AC power flows. As the approach is

based on bounding various contributions to the line outage

distribution factors, it might be feasible to extend to nonlinear

systems without having to solve them in closed form. This

is certainly a much more formidable task that necessitates a

rather advanced nonlinear analysis approaches.

Another exciting opportunity lies in applying the proposed

algorithm to the problem of analysis and mitigation of cascad-

ing failures in power grids [18, 21, 22]. The pruning approach

can be used both for the development of efficient algorithms

of assessing the probabilities of cascading outages, and for

finding optimal decision choices for cascade prevention.
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