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The modern information theory was developed mostly
for channels in which conditional probability of signal
input-to-output transformation can be described in a sim-
ple treatable manner, such as, e.g., in the classical linear
additive noise channel [1]. The information capacity of a
linear channel with additive white Gaussian noise
(AWGN) is often called the Shannon limit, stressing
the fact that it is the maximum error-free data rate
achievable in such channel [1] and in any channels sub
optimal to AWGN. The optical fiber channel character-
ized by additive amplifier noise demonstrates nonlinear
properties for realistic signal powers as a result of the
intensity-dependent refractive index (Kerr effect). Re-
cent studies have shown that spectral efficiency of opti-
cal systems is limited by fiber nonlinearity [2–8]. As a
result, the capacity of fiber channels as a function of
signal-to-noise-ratio (SNR) is commonly considered as
upper-bounded by the Shannon capacity for linear
AWGN and limited by nonlinear effects at high SNR
values.
There is a widely spread misconception that non-

linearity can only limit the capacity of communication
channels. As a matter of fact, nonlinearity in transmission
may be both destructive, leading to nonlinear impair-
ments, and constructive, e.g., assisting nonlinear control
of signal transmission and providing an effective sup-
pression of noise. It is important to stress that there is no
single universal “nonlinear fiber channel” because any
new arrangement of a power distribution along the com-
munication link or introduction of control elements
would correspond to a different interplay between non-
linear effects and noise and, thus, to different nonlinear
fiber channels.
The destructive role of nonlinearity is much more

broadly known among engineers and it contributes to
a common perception in the optical communications
community that the effect of nonlinearity is “always to
limit the capacity and quality of a communications chan-
nel.” Although it may sound counterintuitive, the nonli-
nearity, however, might improve system performance
beyond the limitations of linear channels. Mastering
the nonlinear effects can translate into a significant in-
crease in capacity of communications systems.
In this work, we aim to change the common percep-

tion and show the optical community the potential of

specially designed nonlinear channels to unlock the
capacity of future communications systems. We will
demonstrate that channels using nonlinear filters can
have a capacity exceeding the seminal Shannon limit
for an AWGN channel. Before we present strict mathema-
tical results, we explain in simple terms the key physical
idea. The logarithmic dependence of capacity C on SNR
S ∕N in the limit of large SNR in the Shannon formula can
be understood as an estimate of the entropy of the max-
imal space-filling packing of the area characterized by
the scale S (signal power) with objects of the sizeN (con-
stellation points diffused by the noise power). The space
filling corresponds to a number of nonoverlapping areas
of size N qualitatively having meaning of a maximum
number of constellation points that can be transmitted
error-free. The number of bits corresponding to S ∕N
of constellations levels is log2 �S ∕N�.

Although this relation is strict only for uniformly dis-
tributed noise, it also is correct for AWGN channels
through a more accurate analysis using soft (probabilis-
tic) sphere packing [1]. The idea of exceeding the
Shannon limit via nonlinear filtering can be explained
using the same intuition. Whenever the nonlinear filter
transformation has multiple fixed points, consequent
interleaving the noise with nonlinear filter will produce
effective suppression of the noise N improving perfor-
mance compared to linear channel.

The Shannon capacity C (per unit of bandwidth B) of
arbitrary communication channel P�Y jX� (including non-
linear ones) is defined as a maximum of the functional
(called mutual information) with respect to the statistics
P�X� of an input signal X [1]:

C � max
P�X�

ZZ
DXDYP�X; Y �log2

P�X; Y�
P�X�P�Y� : (1)

Here, P�X; Y� � P�Y jX�P�X� is the joint distribution
function of input X and output Y ; the specific properties
of a communication channel are given by the conditional
probability P�Y jX�. We would like to stress once more
that the capacity C is defined as a maximum over all
possible signal distributions P�X� (e.g., constellations).
The optimal distribution P�X� determines the signal mod-
ulation and coding that lead to the highest achievable
transmission rate over given channel P�Y jX�. Therefore,
results based on analysis of particular classes of signal
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modulation should be understood only as an estimate of
capacity from below and can even be misleading in some
situations.
Recent studies [2–8] have shown that, in numerous

practical situations, nonlinearity degrades the spectral
efficiency of transmission. The current common percep-
tion is that, at a certain SNR level, nonlinear effects in-
evitably degrade fiber channel capacity. However, in
terms of the Shannon capacity (as defined above), sub-
optimal considerations can give only a lower bound of
capacity. The capacity is defined as a maximum over
P�X�, therefore, even when all tested signal constella-
tions show a decline in transmission rate with growing
SNR, it does not prove that capacity decreases. More-
over, information theory analysis [9] (see also [10]) proves
that the capacity cannot decrease with SNR.
To simply illustrate for optical community the very

possibility of exceeding the Shannon capacity limit (ca-
pacity of AWGN channel) in nonlinear channels, we con-
sider as a proof of principle the chain of nonlinear filters
that transform the signal X to the closest element of some
finite alphabet: Xk. Each of the elements of the alphabet
is associated with “region of attraction” Sk such that
whenever X ∈ Sk the result of transformation is simply
Xk. Formally, this nonlinear transformation can be ex-
pressed as Y � F�X� � P

XkISk
�X�, where Ik�X� is an

indicator function for the set Sk: Ik�X� � 1 if X ∈ Sk
and Ik�X� � 0 otherwise.
In the following, we assume that the union of the sets

Sk completely covers the space of possible signals X .
Whenever the set Sk is chosen to be the set of points that
are closer in some norm to Xk in comparison to any other
point in alphabet, the corresponding decomposition is a
so-called Voronoi diagram. For simplicity, in this Letter
we focus on the analysis of the alphabets in a complex
plane that are direct products of equally spaced, one-
dimensional alphabets. In this case, the problem of find-
ing the capacity and spectral efficiency of the channel
can be reduced to a one-dimensional one. However, the
general procedure can be straightforwardly applied to
any alphabet and two-dimensional (2D) transformation
F�X�. The example of such decomposition (correspond-
ing to quadrature amplitude modulation) is shown in
Fig. 1. In this case the alphabet consists ofK2 � 25 points
in the complex plane.
Here we consider a model transmission system that

consists ofM spans with linear additive noise interleaved
with nonlinear regenerator. For simplicity, we assume
that all the regenerators are the same, and all the trans-
mission line segments are the same. Given the condi-
tional probability of the individual channel segment
PC�Y jX� one can straightforwardly find the probability
distribution corresponding to a serial composition of
the channel C and regenerator R. The probability of hav-
ing Y at the output of the generator R given the signal X
at the input of channel C is

P�Y jX� �
Z

dX 0δ�Y − F�X 0��PC�X 0jX�: (2)

For the ideal regenerator introduced above, the distribu-
tion of Y becomes discrete, with Y taking values only in
Xk and the expression (2) simplifies to

P�Y � XkjX� �
Z
Sk

dX 0PC�X 0jX�: (3)

Note that the nonlinear filter does not suppress the errors
completely because there is generally a finite probability
that the initial signal Xk will result in the output Y lying
outside of the domain Sk. However, the suppression of all
small errors that kept the signal X 0 within the domain Sk
can lead to the increased capacity of the channel. To il-
lustrate this point, we consider a simple systemwhere we
represent each segment of the original system as an
AWGN channel Y � X � ξ� iη with ξ, η being indepen-
dently and identically distributed Gaussian variables
each with zero mean and the variance given by N ∕M .
In the absence of the regenerators, this channel corre-
sponds to the classical one introduced by Shannon in
[1]. In what follows, we present calculations only for
one of two independent channels denoting x � ReX
and y � ReY . The output yn of the nth regenerator can
be found using the following recurrence relation: yn�1 �
f �yn � ξn�, y0 � x. Here f �x� is the one-dimensional
projection of the transformation F , and ξn is the ran-
dom noise added in the original line segment n. In our
system, both the initial signal x and all intermediate
values yn are parts of the alphabet, so the conditional
probability is fully characterized by the matrix Wkl≡

P�yn�xkjyn−1�xl� that according to (3) is found as

Wkl �
1
2
�erf�x�kl� − erf�x−kl��; (4)

where x�kl � �xk � xk�1 − 2xl� ∕
��������������
8N ∕M

p
; here we assume

that the values of xk are sorted in increasing fashion:
x1 < x2 < … < xK and we define x0 � −∞, xK�1 � �∞.
The expression for the conditional probability for M
regenerators can be found by taking the Mth power of
the matrixW∶ P�yM � xkjx � xl� � �WM�kl. One can see
that for the single segment the probability of error
1 −Wkk can be estimated as ∼ exp�−M�δx�2 ∕N �, where
δx is the characteristic spacing between the alphabet
elements. Assuming the single segment error probability

Fig. 1. (Color online) Schematic depiction of the modulation
format and nonlinear transformation for K � 5. Dashed lines
represent the Voronoi diagram of the system, and also are
the boundaries of the regions of attraction of ideal nonlinear
filters.
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to be small, the aggregated error rate for the M segment
line can be estimated as 1 − �WM�kk ∼M exp�−M�δx�2 ∕N �.
This function decays very rapidly with the number of
segments and quantifies the effect of the regenerators
on the error rate improvement.
To demonstrate the beyond-Shannon performance of

the system with nonlinear filters, we have calculated
the mutual information of the several sample schemes
(K � 2 and K � 5) for P�x� satisfying the power con-
straint

R
dxP�x�x2 � S. The resulting value of mutual in-

formation has dimension of spectral efficiency and
provides the lower bound on the actual capacity of the
channel. We use as a trial function the maximum entropy
distribution that is given by P�x� � P

k wkδ�x − xk� with
wk � α exp�−βx2k�where the constants α and β were cho-
sen to satisfy the normalization and power constraints
and optimization was carried out over the spacing be-
tween the points of the alphabet. The results of these
simulations for alphabets with K � 2 and K � 5 are
presented in Fig. 2.
Figure 2 shows that the capacity of a system with re-

generative nonlinear filters can exceed the Shannon limit
for AWGN (shown by the solid blue line) without any op-
timization of P�X�. Exceeding the Shannon capacity for
AWGN channel is possible for a broad class of nonlinear

filters that satisfy the following properties: (i) it should
have a large number of stable fixed points (alphabet) that
guarantees there is enough entropy to transmit informa-
tion using only these points as the alphabet and (ii) the
region of attraction of each of the fixed point should be
larger than the characteristic noise amplitude on the seg-
ment (

������������
N ∕M

p
) to guarantee that the probability of mov-

ing Y to a different fixed point is very low.
Optical regeneration [11,12] and active nonlinear con-

trol providing for separation of the signal from noise can
dramatically change the way optical noise is accumu-
lated along the fiber link leading to capacity above the
linear Shannon limit for AWGN channel. To simplify, ca-
pacity depends on the SNR and continuous regeneration
of signal means an effective removal of optical noise
from the system—an effective nonlinear filtering. As a
result, the overall noise is smaller compared to
corresponding linear system with the same number of
amplifiers.

In conclusion, we have demonstrated that the capacity
of an optical communication channel with regenerating
in-line elements under certain conditions can be higher
than the Shannon capacity for linear AWGN channel.
We hope that our result will stimulate further research
on the practical implementation of optical channels with
capacity above the linear Shannon limit.
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Fig. 2. Mutual information is shown as a function of SNR: the
solid red (K � 2) and green (K � 5) lines are capacities of the
linear discrete memoryless channels withK2 elements. The cor-
responding dashed lines depict the mutual information in the
system with 10 regenerative nonlinear filters with the same
alphabets of 4 and 25 elements. The solid blue line shows
for comparison the classical Shannon capacity of the linear
2D AWGN channel.
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