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Abstract— We introduce and analyze Markov Decision Pro-
cess (MDP) machines to model individual devices which are ex-
pected to participate in future demand-response markets on dis-
tribution grids. We differentiate devices into the following four
types: (a) optional loads that can be shed, e.g. light dimming;
(b) deferrable loads that can be delayed, e.g. dishwashers; (c)
controllable loads with inertia, e.g. thermostatically-controlled
loads, whose task is to maintain an auxiliary characteristic
(temperature) within pre-defined margins; and (d) storage
devices that can alternate between charging and generating.
Our analysis of the devices seeks to find their optimal price-
taking control strategy under a given stochastic model of the
distribution market.

I. INTRODUCTION

Automated demand response is often used to manage
electrical load during critical system peaks[1], [2]. During a
typical event as the system approaches peak load, signaling
from the utility results in automated customer load curtail-
ment for a given period of time to avoid overstressing the
grid. Although this type of load control is useful for main-
taining system security, automated demand response must
evolve further to meet the coming challenge of integrating
time-intermittent renewables such as wind or photovoltaic
generation. When these resources achieve high penetration
and their temporal fluctuations exceed a level that can be
economically mitigated by the remaining flexible traditional
generation (e.g. combustion gas turbines), automated demand
response will play a large role in maintaining the balance
between generation and load. To fill this role, automated
demand response must go beyond today’s peak-shaving
capability

To follow intermittent generation, automated demand re-
sponse must be bi-directional control, i.e. it should provide
for controlled increases and decreases in load. The response
must also be predictable and preferably non-hysteretic, oth-
erwise the load-generation imbalance may actually be ex-
acerbated. Predictability would be highly valued by third
party companies that aggregate loads into a pool of demand
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response resources. Finally, whatever control methodology is
implemented, it must also be stable and not exhibit temporal
oscillations. There are several factors that make achieving
these demand response goals challenging: the different op-
tions for demand response signal, the uncertainty of the
aggregate response to that signal, and the inhomogeneity of
the underlying ensemble of loads.

The demand response control signal could take several
forms: direct load control where some number of loads
could be disabled via a utility-controlled switch[3], [4];
end-use parameter control where an ensemble of loads can
be controlled by modifying the set point of the end-use
controller, e.g. a thermostat temperature set point[5], [6], [7];
or indirect control via energy pricing in either a price taking
(open loop) or auction (closed loop) setting [8], [?]. Today’s
automated demand response for peak-shaving is a form of
direct load control which could be adapted and refined for the
type of operation we desire, however, it is difficult to assess
the impact of demand response on the end user because loads
are simply disabled and re-enabled with little concern for the
current state of the end use. Direct control is feasible for a
relatively small number of large loads because the communi-
cation overhead is not extreme. Individual direct control of a
large number of small loads would potentially overburden a
communication system, however, “ensemble” control using a
single parameter for control has been proposed, e.g. set point
control for thermostatic loads[5], [6], [7] and connection
rate control for electric vehicle charging[9]. However, in
these control models, the underlying loads are assumed to be
homogeneous (all of the same type), which is advantageous
because it allows for a quantifiable measure of the end use
impacts and customer discomfort, e.g. increasing all cooling
thermostat set points by 1°F will generate a decrease in load
with a known end-use impact.

To control a large ensemble of inhomogenous loads with a
single demand response signal requires a quantity that applies
to all loads, i.e. energy pricing [10]. When given access to
energy prices, consumers (or automated controllers acting
on their behalf) can make their own local decisions about
whether to consume or not. These local decisions open up
new possibilities and also create problems. The customer is
now enabled to automatically modify and perhaps optimize
his consumption of energy to maximize his own welfare,
which is a combination of his total energy costs and the
completion of the load’s end use function. However, with-
out an understanding of how consumers respond to energy
prices, the fidelity of the control allowed by the direct or
ensemble control schemes described above is lost. Retail-



level double auction markets[8], [11], [12] are an effective
way of making demand response via pricing a closed-loop
control system, however, a logical outcome of these markets
would be locational prices potentially driven distribution
system constraints making the regulatory implementation
troublesome. In contrast, a model where retail customers are
price takers may avoid some regulatory issues, however, price
taking is in essence a form of open loop control which then
requires an understanding of how the aggregate load on the
system will respond to price.

Our goal in this initial work is to layout the computational
framework for discovering the end-use response to these
price-taking “open-loop” control systems. We develop state
models for several different loads and subject them to a
stochastic price signal that represents how energy prices
might behave in an grid with a large amount of time-
intermittent generation. We analyze the response of these
smart loads using a Markov Decision Process (MDP) to
optimize the welfare of the end user. Human owners of the
devices have the ability to program the devices in accordance
to their strategies and preferences, for instance by adjusting
their willingness to sacrifice comfort in exchange for sav-
ings on electricity costs. Otherwise, most of the time we
assume that the devices operate automatically in accordance
to some optimal algorithm that was either preprogrammed
by their owners, discovered via adaptive learning[13], or
programmed by a third-party aggregator. The resulting load
end-use policies can then be turned around to predict the
effect of a change in prices on electrical load. Our long
term strategic intention is to analyze the aggregated network
effect on power flows of many independent customers and
design optimal strategies for both consumers and the power
operator. However, the prime focus of our first publication on
the subject is less ambitious. We focus here on description
of different load models and analyze the optimal behavior of
individual consumers.

The material in the manuscript is organized as follows. We
formulate our main assumptions and introduce the general
MDP framework in Section II. Models of four different
devices (optional, deferable and control loads and storage
devices) are introduced in Section III. Our enabling simula-
tion example of a control load (smart thermostat) is presented
in Section IV. We summarize our main results and discuss
a path forward in Section V.

II. SETTING THE PROBLEMS
A. Basic Assumptions

Future distribution networks are expected to show com-
plex, collective behavior originating from competitive inter-
action of individual players of the following three types:

o Market operator, having full or partial control over the
signals sent to devices/customers. The most direct signal
is energy price. The operator may also provide subsidies
and incentives or impose penalties, however in this
manuscript, we will mainly focus on direct price control.

o Human customers/owners, who are able to reprogram
smart-devices or override their actions.

« Smart devices, capable of making decisions about their
operations. The devices are semi-automatic, i.e. pre-
programmed to respond to the signal on a short time
scale (measured in seconds-to-minutes) in a specific
way, however the owner of the device may also choose
to change the strategy on a longer time-scale (days
or weeks). We model the smart devices as finite state
machines using a Markov Decision Process (MDP)
framework. At the beginning of each interval, a device
decides how to change its state based on the current
price. Each change comes with a reward expressing
actual transactions between the provider and the con-
sumer and the level of consumer satisfaction with the
decision. We assume that smart devices are selfish and
not collaborative, each optimizing its own reward.

In this manuscript we restrict our attention to a simple price-
taking strategy of consumer behavior, deferring analysis
of more elaborate game-theoretic interactions between the
operator and the individual customers to further publications.

We model the external states (that include electricity price,
weather, and human behavior) as a stochastic, Markov Chain
process, {s()()}. At the beginning of the time interval,
t, the variable describing these factors is set to s,(e) and
changes during the next time step to st(i)l with the transition
probability T(s[(i>1|s,(e>). The transition probabilities are as-
sumed to be known to the device and statistically stationary,
i.e. independent of ¢. (The later assumption can be easily
relaxed to account for natural cycles and various external
factors.) The probability, p(s(“>;t), to observe the external
state, s(¢) (t)= 5(©)  at the time 7, follows the standard Markov
chain equation

p(s @i +1) = Y T, 57 p(s! o). (1)
(e)

N

We also assume that the Markov chain (1) is ergodic and
converges after a finite transient to the statistically stationary
distribution: p(s'®);1+1) = p(s\);1) = p(s(©)). In the simula-
tion tests that follow we will restrict ourselves to s(¢) drawn
from a finite set ().

B. General Markov Decision Process Framework

Here we adopt the standard (Markov Decision Process)
MDP approach [14], [15], [16] to the problem of interest:
description of smart devices responding to the external
(exogenous) Markov process {s()(r)}. MDPs provide a
mathematical framework for modeling decision-making in
situations where outcomes are partly random and partly
under the control of a decision maker. Formally, the MDP is
a 4-tuple, (S,A,P(-,-),R(-,-)), where
« § is the finite set of states, in our case a direct product
of the machine states set S(m), and the externality state
set S, § =850 @5,

« A is a finite set of actions. Ay is the finite set of actions
available from state s € S. Within our framework we
model only the decisions made by the machine, so



the set A consists only of actions associated with the
machine, A = A,

o P(s,5') =Pr(s;11 =5 | s, =s,a, = a) is the probability
that action a chosen while in state s = (s s(©) at
time ¢ will lead to state s” at time ¢+ 1. The probabilis-
tic description of the transition allows to account for
stochastic nature of the price fluctuations as well as for
the randomness in the dynamics of the smart devices.

o R4(s,s’) is the reward associated with the transition s —
s' if the action a was chosen. In our models, the reward
will reflect the price paid for electricity consumption
associated with the transition as well as the level of
discomfort related to the event.

In the most simple setting analyzed in this work, the behavior
of the device is modeled via the policy function ©t(s) : S — A
that determines the action chosen by the device for a given
state: @, = m(s;). More general formulations that include
randomized decision making process, are not considered in
this paper. Our smart device models seek to operate with
the policy, ©(s), that maximizes over actions the expectation
value of the total discounted reward, Y';* oY Ry, (s;,5/+1) over
the Markov process, P,(+,-), where 0 <Y< 1, is the discount
rate. There are numerous algorithms used for optimizing the
policies. In our work we use the algorithms implemented in
MDP Matlab toolbox [16].

III. MODELS OF DEVICES

The specifics of our MDP setting are to be described
below for four examples of loads. Note that these examples
are meant to illustrate the power of the framework and its
applicability to ”smart grid” problems. In this first paper, we
do not aim to make the examples realistic. Instead, we focus
on the qualitative features of the loads.The states and actions
associated with the devices are illustrated in the diagrams
shown in Figs. 1-4. For simplicity, we ignore the external
part of the state s(¢) in these diagrams. Full diagrams can
be produced by taking the Kronecker product of transition
graphs associated with the device and the external factors. In
our diagrams, the states are marked by squares and actions
are marked by dashed circles. Transitions from states to
actions and actions to states are marked by dashed and solid
arrows, respectively.

A. Optional Loads

A smart device described by an “optional load” pattern
can operate in two regimes, at full and limited capacity. An
example of such load is a light that can be automatically
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Fig. 1.  MDP diagram for the model of optional load. See text for
explanations.

dimmed if the electricity price becomes too high (see Fig. 1).
To simplify the mathematical notations, we denote the states
of the machine s by x. The machine can be in either of the
two states: x =0 and x = 1, shown as Idle and Active in the
diagram (1) respectively. In the x = O state the machine does
not operate (the lights are off). In the x = 1 state, the machine
is active and the lights are shining at the full brightness, or
are dimmed. Actions of the device are ag = pass, a; = full or
ap = shed. The ag action represents the process of waiting for
the external signal of switching on the device. If no external
external signal (requesting switching on) appears, the system
returns to the x = O state, otherwise it moves to the x = 1
state. When the device is active (in the x = 1 state), it has two
options: operate at full capacity, corresponding to the action
ay, or shed the load (dim the lights), corresponding to action
ap. Turning the device on or off is an externality dependent
on a human. We assume that the external/human action is
random, with the probability of turning the device ON and
turning the device OFF being poy and porr respectively.
(For simplicity, we assume that the OFF signal may arrive
only by the end of the time interval.) Assuming additionally
that the transition probabilities do not not depend on the
device actions, we arrive to the following expression for the
transition kernel:

Ppass(sasl) = T(C/|C) [pONSx’J + (1 - pON)Sx’,O} ;@
Ppuit shea(s,s") = T(c'|c) [porFdy o+ (1= porr)dy 1] ,(3)

where le x, 18 the Kronecker symbol: it is unity if x; = x;
and zero otherwise.

There is no reward associated with either outcome of the
ap = pass action, however, the other two actions (a; and ay)
result in a reward consisting of two contributions. First is the
price paid to the electricity provider, E, sheac, Where c(t)
is the cost of electricity (considered as a component of s@))
and E, sheq 1s the amount of energy consumed during the
time interval which depends on whether the lights are fully
on or dimmed. ( Here, Ef,;; > Egpeq > 0 and both values do
not depend on the resulting state of the device). Second, the
reward function accounts for a subjective level of comfort
associated with the a » actions: Cy sheq. The discomfort of
the light dimming is accounted by choosing Cy,; > Copea-
Summarizing, the cumulative reward function in this model
of the optional load becomes

Rpusx(s,sl) = 07 (4)
Ry (s,8") = Crur — Efunc, (5
Rshed(s>s/) = Cshea — Egpeac. 6)

Obviously, our model of optional loads is an oversimplifi-
cation because there are a variety of additional effects which
may also be important in practice, however, all these can be
readily expressed within the MDP framework. For example,
one may need to limit the wear and tear on the device,
thus encouraging (via a proper reward) minimization of
switching. (To account for this effect would require splitting
the Active state in the model explained above into two states
Active — Full and Active — Shed.)
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Fig. 2. MDP diagram for the model of deferable load. See text for
explanations.

B. Deferable Loads

Our second example model is a deferable load, i.e.
a load whose operation can be delayed without causing
a major consumer discomfort. Practical examples include
dishwashing machines or some maintenance jobs like disk
defragmentation on a computer. A simple model of such a
device, shown in Fig. 2, has two states: x =0 (Id/e) when no
work is required and x = 1 (Waiting) when a job has been
requested and the machine is waiting for the right moment
(optimal in terms of the cost) to execute it. As in the previous
model, the only action of the machine in the /dle state is ag
(Pass), however, in the Waiting state, there are two possible
actions: a; = Wait results in waiting for possible drop of
the electricity price and a, = Work results in immediate
execution of the job. The transition kernel for the model is

Ppass(s,5') =T (c'|c) [pondy 1 + (1= pon)By o], (7
Pyair(s,8") = T(c'|c)dy 1, )
PW{)rk(sas/) = T(C/|C)8x’,0a (9)

where poy is the probability of an exogeneous job request.
In this model, there is no reward for choosing the ay = Pass
action. The reward for the a, = Work action is equal to minus
the price paid for the electricity, Ry, (s,s’) = —E *c, and
the reward for the a; = Wait action represents the level of
discomfort associated with the delay, Rwair = Cyeray < 0. As
in the model of optional loads, E and Cy.qy are constants
parameters. The obvious drawback of the presented model is
its inability to ensure that the upper bounds on the waiting
time. This shortcoming can be fixed by introducing more
complicated rules on choosing the actions in the Waiting
states.

C. Control Loads

A very important class of devices that will likely play
a key role in future demand response technologies are
machines tasked to maintain a prescribed level of physical
characteristics of some system. For example, thermostats are
tasked with keeping the temperature in a building within
acceptable bounds. Other examples of the control devices
are water heaters, electric ovens, ventilation systems, CPU
coolers etc.

In our enabling, proof-of-principle model of the control
load, we consider a thermostat responsible for temperature
control in a residential home. The state of the device is fully
characterized by temperature which can take three possible
values: x =0, 1,2 corresponding to Low, Medium,High tem-
peratures, respectively. Each temperature is assumed to be
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Fig. 3. MDP diagram for the model of controllable load. See text for
explanations.

operationally acceptable. For simplicity, we assume that the
thermostat uses an electric heater to modify the temperature
(i.e. the outside temperature is low). The device can choose
between the following three actions. ay = Cool leaves the
heater idle for the forthcoming interval. Since there is some
base consumption associated with the thermostat operation
we assume that Ec,,; > 0. The next action, a; = Keep,
maintains the temperature at the current level and requires
some energy for heater operation: Ekeep > Ecoo; > 0. Finally,
ar = Heat corresponds to intensive heating that raises the
temperature and requires the largest amount of energy Epeqr,
and Epear > Egeep > Ecoot = 0. Our thermostat state dia-
gram, shown in Fig. (3), assumes that the dynamics of the
thermostat are deterministic, and the resulting state depends
only on the action chosen. The transition probabilities of the
thermostat MDP is

PHeat(S S) ( | ) x x+15 (10)
PKeep( S) ( /|C)8x’,xa (11)
PC()()I(S S) ( |C)8x'x 1- (12)

Assuming that all levels of temperature are equally com-
fortable, the reward function depends only on the price and
energy consumption associated with the action,

/
RCool,Keep,Heat (Sas ) = _CECoal,Keep,Heat- (13)

For more realistic simulations our basic model should be
generalized to account for different comfort levels of differ-
ent states, the possibility for the owner to override an action,
variations of the outside temperature, etc.

D. Storage loads

The number of devices with rechargeable batteries is
expected to increase dramatically in the coming years.
Currently, these are mostly laptops, uninterruptable power
supplies, etc. In addition, a significant number of large-
scale batteries will be added to the grid most likely via
the anticipated Plug-in Hybrid Electric Vehicles (PHEV)
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Fig. 4. MDP diagram for the model of storage. See text for explanations.

potentially enabled with Vehicle-to-Grid (V2G) capability.
Storage devices, illustrated with the MDP in Fig. (4), share
some similarity with the controlled loads discussed in the
previous Subsection, but they are also different in two
aspects. First, users/owners wants their devices to be charged
which leads to a level of discomfort if the devices are
not fully charged. Second, and probably most significantly,
storage devices such as PHEVs are disconnected from the
grid when in use. Having PHEVs in mind, we propose the
following model of (mobile) storage. The system can be in
either of the three states, the x =0 = Unplugged state (which
is similar to the Idle state in the models of Optional and
Deferable loads discussed above), the x = 1 = Partially state
where the storage is partially charged, and the x =2 = Full
state where the device is fully charged.

The four available actions are: ay = Pass when the device
is in the unplugged state, the a; = Keep action possible
when the initial state is x = 1 = Partially or x =2 = Full,
the ay = Charge action available from the x = 1 = Partially
state which transitions to the x = 2 = Full state, and, finally,
the asz = Discharge action, that is an inverse of the ap
one, available from the x =2 = Full state resulting in the
x =1 = State. Except for ayg = Pass, all these actions can be
interrupted by transitioning at the end of the time interval
to the x = 0 = Unplugged state. As in previous sections,
we assume that the unplugging happens at the end of a

time interval. Assuming the device can be unplugged with
the probability porr and that it can be reconnected to the
grid with the probability poy, we arrive at the following
expressions for the transition probability:

Prass(5,8") = T(c'|c) [pondy,1 + (1 = pon)Bu o], (14)
Pieep(s,s') =T (c'|c) [porrdy o+ (1 —porr)dycrv], (15)
Peharge(s,s") =T (c'|c) [Porrdy o+ (1 —porr)dy 2] (16)
Ppischarge(5,8") = T(c|c) [PorF8v 0+ (1—porF)8y1](17)

The reward function accounts for the following effects.
First, the a; = Keep action has the cost associated with
keeping the battery charged, Ekc.p(x), naturally dependent
on the state, Exeep(2) > Egeep(l) > Ekeep(0) = 0. Second,
the a; = Charge action requires Ecpqrge Of energy while
the a3 = Discharge action generates the Epjscharge < 0 of
energy, both nonzero only if the resulting state is not the
x = 0 = Unplugged. Therefore, all the “active” actions,
Keep,Charge, Discharge, contribute the reward function in
accordance with the energy price, ¢'E_. Finally, we also
assign an additional negative reward, Cy,piue < 0, accounting
for the discomfort (to the human) associated with being in
the x =0 = Unplugged state. The resulting reward function
is

Rpyss(s,s') =0, (18)

Rieep(s,5") = CunplugOy 00x,1 — CEgeep(X), (19)
Rcharge($,5") = —CEcharge (20)
Rpischarge(5,8") = Cunpiug®y 0 — CEpischarge- 21

IV. SIMULATIONS

In order to illustrate the capabilities of the proposed
framework, we consider a simple model of the control load,
describing a smart thermostat, characterized by Ny = 10
levels of the temperature parameter 7. At every moment
of time the thermostat can choose to raise, lower or keep
the same temperature. The raise and lower options are not
available at the highest and lowest possible temperatures,
respectively. The energy consumption associated with the
actions is given by Ege.p = 1.0, Ecoo = 0.1 and Epeq =
2.1, respectively, in some normalized energy units. This
choice of energies discourages the system from switching
the heater too often: although the combinations Heat + Cool
and Keep + Keep lead to the same temperature levels, the
latter action is preferable as it consumes less energy.

Variations in price are modeled by a Markov chain of
Np =5 equidistant levels with the minimum and maximum
corresponding to 1.0 and 2.0 price units, respectively. At
each time interval, the price either increases with probability
T(c+1|c) = 0.5 by 1 level, decreases with probability
T(c—1|c) =0.3 by 1 level, or stays the same. The resulting
stationary probability distribution p(c) is shown in the Figure
5. It is skewed towards the higher price, mimicking the
effect of intermittent renewable generators that occasionally
provide excess power to the grid, thus leading to rapid dips
in the price. The reward function (13) is fully determined by
the total cost of energy consumed by the thermostat within
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the given time-interval. Our MDP model imposes upper and
lower bounds on the temperature, and we assume that there
is no additional discomfort associated with the variations
of temperature between these bounds, i.e. all of the Nr
temperature levels are equally comfortable for the consumer.

This system was analyzed with the Matlab MDP package
[16] where we used different algorithms to verify the stability
of the results. The resulting optimal policy (for the range
of parameters tested) is illustrated in 6. As expected, the
thermostat chooses the Heat action when the price is low and
decides to Cool when the price is high; a set of actions that
lead to the skewed probability distribution of temperatures
shown in Figure 7. One finds that the thermostat spends most
of the time performing Keep in the low temperature state
waiting for the price to drop.

Perhaps, the most interesting feature of the MDP model is
the relation between consumption and price. We define the
expected demand as the average energy demand for a given
price

<E|C> _ ZxEn(x,c)PSl(xvc)
Zx Pst (X,C) 7
where Py (x,c) is the stationary joint distribution function of
the temperature and price at the optimal strategy. Dependence
of the consumption on the price for our choice of the param-
eters is shown in Figure 8, thus illustrating that variations
in price indeed produce demand response. An interesting
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feature is that the demand curve is not monotonic. At low
temperatures, the energy consumption shows a slight increase
with the price; a surprising behavior related to saturation of
the demand. When the electricity price decreases gradually
from high to low levels, there is a high probability that the
thermostat will reach the highest level of temperature before
the price reaches the lowest level. In this case, the demand
will be lower at the smallest price levels as there will be
no unsatisfied demand left in the system to capitalize on the
lowest price. From the economic viewpoint, it is important to
note that this non-monotonicity of the demand curve reflects
the adaptive nature of the MDP algorithm: the smart devices
adjust to fluctuations in price, thus making it more difficult
for the electricity providers to exploit the non-monotonic
demand curve for making profit.

Remarkably, a non-trivial strategy was observed in our
simulations despite the condition Egesr > Ekeep > Ecool =
0 that naively suggests that the “cool” action is always
optimal whenever the temperature is not at the minimal level.
The reason for the existence of non-trivial solutions lies in
temporal correlations of the dynamics of price. Whenever the
price falls below the average level it becomes advantageous
for the device to rise the temperature to higher levels, to avoid
overpaying for the “Keep” action during the forthcoming
period of high price values.

Another interesting result found in our simulations is



an increase in average consumption of the smart (policy
optimized) thermostat when compared to its non-smart coun-
terpart, where the latter is defined as the one ignoring price
fluctuations and sticking to the Keep action. For the set of
parameters chosen in the test case, we observed that the
average level of consumption in the optimal case is 1.03, i.e.
it is 3% higher than in the naive strategy, an effect associated
with the additional penalty (in energy) imposed on the Heat
and Cool actions.

It is also instructive to evaluate savings of the consumer.
The average value of the reward associated with the optimal
policy is equal to —1.67, which should be compared with
the reward of —1.73 generated by its non-smart counterpart.
Since the reward reflects the customer’s cost of electricity, we
conclude that the customer saves about 3% on the electricity
costs associated with the thermostat. The lower total energy
costs for higher energy consumption was also seen in a
related “smart-device” demonstration project[8].

V. DI1SCUSSIONS, CONCLUSIONS AND PATH FORWARD

To conclude, we have presented a novel modeling frame-
work to analyze future demand response technologies. The
main novel aspect of our approach lies in the capability of the
framework to describe behavior of the smart devices under
varying/fluctuating electricity prices. To achieve this goal,
we modeled the devices as rational agents which seek to
maximize a predefined reward function associated with its
actions. In general, the reward function includes the price
paid for the electricity consumption and the level of owner
discomfort associated with the choices made by the device.
At the mathematical level, the system can be described
via Markov Decision Processes that have been extensively
studied over the last 50 years. Utilizing the MDP approach,
we showed that a great variety of practical devices can be
described within the same framework by simply changing
the set of device states, actions and reward functions. Specifi-
cally, we identified four main device categories and proposed
simple MDP models for each of them. These four categories
include optional loads (like light dimming), deferrable loads
(like dishwashing), control loads (thermostats and ventilation
systems), and finally storage loads (charging of batteries).

To illustrate the approach we experimented with a simple
model of a smart heating thermostat. The MDP-optimized
policy of the thermostat followed the expected pattern: it
chooses to not heat or keep the temperature stationary at high
prices and prefers to heat when the price is low. This policy
resulted in 3% of savings in the price paid for electricity,
but at the same time led to the total of 3% increase in the
consumption level due to the energy costs associated with
the thermostat actions. The resulting demand curve showed
a noticeable amount of elasticity, thus meeting the main
objective of the demand response technology.

There are many relevant aspects of the model that we did
not discuss in the manuscript. We briefly list some of these
and future research challenges and direction.

o Learning algorithms. In our model we assumed that
smart devices have an accurate model of stochastic

dynamics for external factors (such as price for elec-
tricity), and use this model to find the optimal policy.
In reality, however, this model is not known ab initio
and has to be learned from the observations. Moreover,
one can expect that the dynamics of external factors
will be highly non-stationary (i.e. the transition matrix
T(st(i)1 |st(i>1) will have an explicit dependence on time).
Therefore, the optimal policy has to be constantly
adapted to the varying dynamics of the external factors.
Of a special practical interest is the generalization of
the framework to almost periodic processes, reflecting
natural daily/weekly/yearly cycles in the electricity con-
sumption.

e Price-setting policies. We did not discuss the price
setting policies above, assuming that the policies are
given/pre-defined. However, the electricity providers
might adjust their policies to consumer response. As
the electricity providers pursue their own goals, this
setting essentially becomes game-theoretic and as such
it requires more sophisticated approaches for analysis.
Another extension of the model is to introduce auction-
based price-setting schemes, such as in the Olympic
Peninsula project [8]. This setting can be naturally
incorporated in the same framework, although the mod-
ification may require simultaneous modeling of multiple
(ensemble of) devices.

o Time delays. Another aspect of the real world not
incorporated in our analysis concerns the separation
of the time scales associated with operations of the
device and intervals of the price variations. Multiple
time-scale can be naturally incorporated in the frame-
work by introducing additional states of the device.
These modifications will certainly affect final answer
for the optimal policy, and the resulting demand curve.
However, accurate characterization of the multi-scale
behavior will be a challenging task, requiring analysis of
nonlinear response functions and dynamical description
of the underlying non-Markovian processes.
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