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Abstract— We analyze a power distribution line with high
penetration of distributed generation and strong variations of
power consumption and generation levels. In the presence of
uncertainty the statistical description of the system is required to
assess the risks of power outages. In order to find the probability
of exceeding the constraints for voltage levels we introduce the
probability distribution of maximal voltage drop and propose
an algorithm for finding this distribution. The algorithm is
based on the assumption of random but statistically independent
distribution of loads on buses. Linear complexity in the number of
buses is achieved through the dynamic programming technique.
We illustrate the performance of the algorithm by analyzing a
simple 4-bus system with high variations of load levels.

I. INTRODUCTION

Ensuring the quality of delivered power is one of the
main challenges faced by utility companies. Rapid advent of
renewable generation and electric vehicle technologies will
inevitably result in a significant increase in the variations
of power consumption and/or generation Keeping the voltage
level within the industry constraints will become an even more
formidable task for the utilities. One of the most challenging
aspect of this problem is the uncertainty about the load
structure in the feeder line. Lack of information about the loads
makes the problem essentially probabilistic and thus requires
more sophisticated techniques for analysis and control.

Traditional methods of controling the voltage level on
distribution feeder lines include but are not limited to line
regulators and capacitor banks [1]. Whereas the line regulators
based transformer tap changes are employed for controlling
the voltage level in the beginning of the line, the switched
capacitors are usually distributed in the middle of the line, and
can be used for smoothing out the voltage drop curve via the
reactive power injections [2], [3]. Penetration of intermittent
renewable generators and increasing demand in power supply
will require novel approaches for controlling the voltage level.
One of the most promising ideas that has been proposed
recently in this field is the distributed control of reactive power
flows via the local inverters attached to renewable generators
[4], [5], [6].

In a recent work [7] we have shown that the simple control
techniques of distributed inverters can be efficient in reducing
the losses in radial distribution systems. However, the effect
of inverters on the overall power quality remained an open
question. One of the main obstacles to the proper assessment
of the power quality in the system was the lack of theoretical
methods of voltage drop analysis in the presence of high

variations of loads. In this paper we attempt first steps of
solving this problem by introducing a novel algorithm, that
allows fast prediction of the probability distribution function
of the maximal voltage drop in the feeder line. Specifically
the algorithm allows one to transform the distribution of loads
on individual buses into the distribution of maximal voltage
drop.

The structure of this paper is the following: in the section
II we introduce the power flow model based on classical
DistFlow equations. Then, we formally introduce the main
object this study: the maximal voltage drop. Extension of
the model to include the stochastic variations of power con-
sumption/generation are presented in the section III. We finish
by presenting the results of simulations and discussing the
remaining challenges.

II. POWER FLOW MODEL

The power flows in the linear distribution line with N buses
can be described with the DistFlow recurrence equations [2],
[3]:
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where Pk, Qk are real and reactive power flows from bus k−1
to k. Vk is the voltage level on bus k, and pk, qk are the values
of real and reactive power consumption on bus k. rk + jxk is
the complex impendance of the link between the nodes k and
k + 1. These equations have to be solved with two boundary
conditions: fixed base voltage level at the beginning of the line
V0 and zero power flux through the virtual link at the end of
the line: PN+1 = QN+1 = 0.

For a class of low voltage distribution lines considered
here the quadratic terms in the equations (1-3) are negligibly
small, so one can use the linearized power flow equations
where quadratic terms are dropped. Moreover, for the sake
of simplicity in this work we will restrict the analysis to the
homogeneous networks where the ratio xk/rk = α is the same
for all links. In this case one can combine the values of Pk and
Qk into a single variable Sk = Pk +αQk (and also introduce
sk = pk + αqk). Moreover, as long as the variations of the
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Fig. 1. Schematic representation of the linear feeder line. Each bus is
characterized by the voltage level Vk , consumption of real and reactive
powers: pk, qk . The power flows between the buses are denoted by Pk, Qk .

voltage are small compared to its base value, one can use
the approximation V 2

k = V 2
0 + 2V0(Vk − V0). Using these

approximations one can rewrite the DistFlow equations in the
following simple form:

Sk = Sk+1 + sk+1 (4)
Vk = Vk+1 + ρkSk. (5)

where we have introduced ρk = rk/V0.

A. Maximal voltage drop

The power quality in the line can be characterized by
the maximal voltage drop level - the difference between the
base voltage V0 and the minimal voltage in all buses: ∆0 =
V0 −mink Vk. In order to find the value of ∆0 we introduce
an intermediate object ∆n characterizing the maximal voltage
drop in the feeder line segment n . . .N :

∆n = Vn − min
n≤k≤N

Vk (6)

Note, that ∆n is essentially non-negative quantity. The re-
currence equation for ∆n can be easily derived from (5)
by noticing that there are two distinct scenarios. Whenever
Vk+1+ρkSk > 0 the voltage level on bus k will be larger than
the minimal one in the segment k . . . N : Vk = Vk+1+ρkSk >
Vk+1 − ∆k+1 = mink+1≤l≤N Vl. Therefore, according to
the definition (6) the value of ∆k will be given by ∆k =
∆k+1 + ρkSk. In the second case when ∆k+1 + ρkSk ≤ 0
the value of Vk will be smaller than mink+1≤l≤N Vl and thus
the minimal value of the voltage in the segment k . . . N is
achieved on bus k, and thus ∆k = 0. Formally one can express
these two scenarios with the following equation:

∆k =

{
∆k+1 + ρkSk if ∆k+1 + ρkSk > 0,
0 if ∆k+1 + ρkSk ≤ 0.

(7)

It is important to note, that although the equations (4,5) for
Sk and Uk are linear, the resulting equation (7) for ∆k is
essentially non-linear because of the second case where ∆k

is reset to zero. This second case is realized only if the total
power Sk flowing through the link is negative. This can happen
only in the presence of buses that inject power in the system.
As long as Sk variable incorporates both real and reactive
power, the injection of S flow can be associated either with
distributed generators that inject real power or with capacitor

banks that inject reactive power. In the absence of power
injection in the system, the voltage is a monotonous function,
and the problem of finding the maximal voltage drops reduces
to calculation of V0 − VN which is a linear function of the
loads sk. This problem can be solved analytically without any
sophisticated algorithms, proposed in this paper. Here we focus
on the nontrivial situation, and assume that there are buses that
inject power in the line.

By solving the recurrence relations (4) and (7) backwards
in k with the intial conditions SN+1 = 0,∆N+1 = 0 one
can easily find the value of maximal voltage drop ∆0 in the
whole network. These equations form a basis for the statistical
analysis of voltage drop in presence of uncertainties about load
levels in the system.

III. STATISTICAL DESCRIPTION OF POWER FLOW

Whenever the precise values of pk, qk are not known, it is
not possible to find the precise value of the maximal voltage
drop ∆0. Instead one has to develop a statistical approach
to the problem. The traditional way of characterizing the
uncertainties in the system is to study the probability density
functions (PDF) of system state. Assuming that the loads
on different buses change independently one can define the
probability of observing pk + αqk = s via the PDF πk(s)
1. The origin of these distributions is not important for our
analysis: they could be either prior “Bayesian” distributions
based on the measurement history, or distributions derived
from some statistical model of the load on bus k. The statistical
independce assumption implies that the joint probability of
observing p1 + αq1 = s′1, . . . pN + αqN = s′N is given by the
product π(s′1 . . . s

′
N ) =

∏
k πk(s′k).

The goal of the statistical analysis is to transform the PDF of
loads into the PDF of the maximal voltage drop ∆0 i.e. into the
probability of observing the given value of maximal voltage
drop. One can easily write the formal integral expression for
the probability of having ∆0 < ∆. This can be done by noting
that ∆0 < ∆ if and only if Vk > V0 −∆ for all 0 ≤ k ≤ N .
Given the formal solution Vk = Vk(s1 . . . sN ) of (4,5) one can
formally write:

Prob(∆0 < ∆) =

∫ ∏
k

dskπ(sk)θ(Vk(s1 . . . sN )− V0 + ∆)

(8)
where θ(x) is the Heaviside (Unit step) function. Here and
throughout the text we assume that intergration is taken
over the domain (−∞,∞), unless the integration domain is
specified explicitly. On practical level, this solution is unusable
for large systems with N � 1, as long as there are no
fast “black-box” algorithms to evaluate this multidimensional
integral in case N � 1. Even in the simplest case of uniform
distributions πk(sk) the problem is reduced to calculation of
the volume of a highly dimensional polytope, for which state
of the art algorithms require at least O(N4) operations [8].

1Throughout the paper we use the term probability distribution to refer to
the probability density function: by definition the probability of observing
sk ∈ [s− δ/2, s+ δ/2] is equal to πk(s)δ in the limit of δ → 0



It is therefore important to develop alternative approaches
to computing the PDF of ∆0 that would require only linear
in N number of operations and would be applicable even for
large systems. We propose a specific algorithm of the kind
that exploits the radial structure of the network and statistical
independence of load levels on different buses. The main idea
behind the algorithm is to transform the recurrence relations
(4,7) into the corresponding relations for the joint probability
functions of ∆k, Sk and solve them in an iterative way.
This general strategy of reusing the previous computations
via decomposing the problem in recurrence type relations is
usually referred as dynamic programming [9].

Existence of recurrence relations (4,7) for the pair of
variables Sk,∆k which expresses the PDF Πk(S,∆) of the
values of Sk,∆k via the PDF Πk+1(S,∆) of the values of
Sk+1,∆k+1. This Chapman-Kolmogorov type relation can be
written in a most compact way with the use of Dirac Delta
Functions δ(x):

Πk(S,∆) =

∫
dS′d∆′πk+1(S − S′)Πk+1(S′,∆′)×

[θ(∆′ + ρkS)δ(∆−∆′ − ρkS) + θ(−∆′ − ρkS)δ(∆)] (9)

where we have used S′,∆′ to denote the values of Sk+1,∆k+1

respectively. This recurrence relation has to be solved with
the initial condition ΠN+1(S,∆) = δ(S)δ(∆). Formally
this equation completes the construction of the algorithm, as
one can iterate it N times to obtain the PDF of maximal
voltage drop in the system ∆0. For a given target precision,
the complexity of performing single iteration depends only
on the numerical discretization of Πk(S,∆) and does not
depend on the total number of buses in the system. Therefore
the total number of iterations grows like O(N). However,
implementation of a single iteration (9) can be obstructed by
a non-analytic nature of the resulting joint PDF Πk(S,∆).
Performing the first few iterations analytically, one can show
that for continous distributions πk(s) the general expression
for Πk(S,∆) can be decomposed in three parts:

Πk(S,∆) = Πc
k(S,∆) + Π

(1)
k (S)δ(∆) + Π

(2)
k (S)δ(∆−2rkS)

(10)
where Πc

k(S,∆) is analytic part of the PDF, and Π
(1,2)
k are

the prefactors in front of the non-analytic ones. Substituting
this decomposition in (9) one obtains the coupled system of
equations for Πc

k(S,∆) and Π
(1,2)
k :

Πc
k(S,∆) = θ(∆)

∫
dS′πk+1(S − S′)Πc

k+1(S′,∆− 2rkS) +

θ(∆)θ(∆− S)

2rk+1
πk+1

(
S − ∆− 2rkS

2rk+1

)
Π

(2)
k+1

(
∆− 2rkS

2rk+1

)
Π

(1)
k (S) = θ(−S)

∫
dS′πk+1(S − S′)Π(1)

k+1(S′) +

θ(−S)
∫
dS′πk+1(S − S′)

∫ −2rkS
−∞ d∆′Πc

k+1(S′,∆′) +

θ(−S)
∫ −rkS/rk+1

0
dS′πk+1(S − S′)θ(S′)Π(2)

k+1(S′)

Π
(2)
k (S) = θ(S)

∫
dS′πk+1(S − S′)Π(1)

k+1(S′) (11)
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Fig. 2. Probability distribution function of the maximal voltage drop ∆0.

This system of equations has to be solved backwards in n with
the initial condition Πc

N+1(S,∆) = 0,Π
(1)
N+1(S) = δ(S) and

Π
(2)
N+1(S) = 0. In the next section we will describe the results

of solving this system for a sample 4 bus system.

IV. RESULTS

Efficient implementation of the proposed algorithm suit-
able for large heterogeneous systems is a challenging task
that requires a thoughtful selection of suitable discretization
technique for the PDFs, that would allow fast evaluation of
convolution integrals in (11) and adaptation of the discretiza-
tion domain to the width of the distribution functions that will
grow with each iteration. Analysis of possible approaches to
these problems is beyond the scope of this paper. Instead, here
we report our results of a “proof of concept” study of toy
feeder line system consisting of N = 4 buses where for the
sake of simplicity we have set all ρk to ρk = 10−3p.u./kW
and the load distribution functions to

πk(s) = 0.25

{
exp(−s/3.0) if s > 0,
exp(1.0s) if s ≤ 0.

(12)

Note, that this distribution function implies that flux of real
and reactive power can have an arbitrary sign. Although the
probability of power consumption (s > 0) is higher, there is
also a finite probability of a given bus injecting the power
in the line. The average value of power consumption was
set to s̄ = 2.0kW whereas the standard deviation of power
consumption is equal to σs ≈ 3.16kW , so the fluctuations of
power consumption/generation are indeed strong in the system.

In order to avoid technical difficulties associated with dis-
cretization of the probability distribution functions, we have
solved the equations (11) analytically using the Wolfram
Mathematica computer algebra system. On each step the
functions Πc

k(S,∆),Π
(1,2)
k (S) were represented as a piecewise

analytical functions, and the convolutions (11) were performed
rigorously without any numerical approximations. Although
the number of terms in the analytical expressions was growing
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Fig. 3. Contour plot of the joint probability distribution Πc
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total load S0 and maximal voltage drop ∆0.

quite rapidly, it was possible to find the expressions for
Πc

0(S,∆) and Π
(1,2)
0 (S) for a system with N = 4 buses.

These expressions were used to calculate several statistical
characteristics of the system.

The probability of exceeding the voltage level constraints
can be calculated from the analytical part of the probability
distribution of the real voltage drop ∆0 or equivalently the
probability density in the region of positive voltage drops:

P (∆0|∆0 > 0) = Π
(2)
0 (∆0) +

∫
dS′Πc

0(S′,∆0) (13)

This corresponding result is presented on the figure 2. As one
can see the distribution is centered around characteristic value
of ∆̄0 ≈ 4.1p.u., however the variations of the typical voltage
drop are very high, for instance the probability of exceeding
twice the average value ∆0 > 2∆̄0 is about 13%. This result
confirms the central thesis of the study: variations in load
levels result in large variations of the voltage drop along the
line and thus significantly increase the probability of exceeding
the limits set by regulators.

Another interesting object is the joint distribution of the total
power consumption in the system S0 and the maximal voltage
drop ∆0. The corresponding distribution Πc

0(S0,∆0) is shown
on the figure 3. As one can see there is a strong correlation
between S0 and ∆0. This correlation can be potentially used
for designing the voltage control techniques that respond to
the total load S0 and adjust the voltage V0 to suppress the
risk of exceeding the allowev voltage drop limits. Statistical
analysis of various control techniques is an interesting problem
that can be approached with the techniques introduced in this
article.

V. DISCUSSION

Algorithm presented in this paper is a first step on a
long path of development a new generation of tools that
would allow the power system designers and controllers to
assess the risks associated with fluctuations of load levels
and uncertainties in the system. Fast ways of calculating
the probabilities of high voltage drops can be utilized in
system design optimization packages or stochastic control
processes. One of the specific applications of this algorithm
could be the analysis of the effect of distributed renewable
generation on the power quality in the distribution system. The
probability distribution functions of voltage drop can be used
for determination of the critical penetration levels of renewable
generators that can be sustained by the current lines. It can be
also used for comparison of different techniques of voltage
control with reactive power generators: capacitor banks [2] or
small-scale inverters attached to photovoltaic elements [7].

However, there are still several issues that have to be
dealt with before the algorithm can be put to use. The most
important of them is the choice of suitable discretization
technique, that would allow efficient evaluation of integrals
(11). The main obstacle here is the piecewise-analytic struc-
ture of the convolution kernels that will result in piecewise
continous structure of the distribution functions. This structure
suggests that the probability distributions should be discretized
with finite element partitioning of the domain. However, the
composition of domains will have to be adaptable, as the
structure of the distribution function will change with each
iteration. For practical problems it is also important to extend
the current algorithm to analyze the joint statistics not only
of the minimal but also the maximal levels of voltage along
the line. Although on formal mathematical level this extension
is straightforward, the numerical realization will become more
complicated, as the distribution functions will depend on three
variables: power flow S and maximal and minimal voltage
drops.

VI. CONCLUSION

We have presented a dynamic programming algorithm for
calculating the probability distribution function of the maximal
voltage drop in the linear feeder line. The complexity of
the algorithm scales linear with the number of buses in the
system, which makes it superior in comparison to the standard
black-box type algorithm for solving similar problems. The
proposed algorithm requires iterative application of integral
operators that relate the probability distributions of local
voltage drops on neighboring nodes. Efficient implementation
of this convolution is a difficult problem that will be hopefully
solved in forthcoming works. In this paper we have tested the
algorithm on a toy 4-bus homogeneous system. The resulting
distribution functions show that the variations in load lead to
variations in voltage drop. Moreover they also show strong
correlation between the voltage drop and total load of the
system.
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