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The disconnection of an underwater bubble illustrates how slight initial asymmetries can prevent the

formation of a finite-time singularity. Creating a singularity by focusing a finite amount of energy

dynamically into a vanishingly small amount of material requires that the initial condition be perfectly

symmetric. In reality, imperfections are always present. We show a slight azimuthal asymmetry in the

initial shape of the bubble neck excites vibrations that persist over time. As a result, the focusing

singularity is generically preempted by a smooth contact.
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Whenever a diver plunges into a swimming pool or a
waterfall hits a river, air is entrained, often as large cavities
that subsequently breakup into many pieces [1]. Here, we
focus on a simple version of this disintegration process: the
disconnection of an air bubble from a nozzle while it is
submerged under water [Fig. 1(a)]. Previously, it was
believed that the bubble neck disconnects at a single point
via an axisymmetric implosion that ends in a focusing
singularity [2–9]. In this scenario, water outside the bubble
rushes inwards to constrict the neck of air, a motion con-
verting the potential energy at the initial instant into kinetic
energy. Since the amount of water rushing inwards de-
creases to 0 as the neck radius goes to 0, all the kinetic
energy is concentrated into a vanishingly small mass at the
moment of breakup [10]. Analogous focusing singularities
arise in models of sonoluminescence [11], supernova, and
shock-wave implosion [12].

Nearly all the previous studies analyzed the implosion
by assuming that the focusing singularity controls the final
dynamics. However, Keim et al. found in experiments that
a slight azimuthal asymmetry in the shape of the bubble
neck completely transforms the dynamics [6]. An example
of the different outcome is given in Fig. 1(b). Recently,
Schmidt et al. [10] showed that the initial asymmetry
transforms the final disconnection by exciting vibrations
in the cross-section shape of the bubble neck. Once ex-
cited, the vibrations persist with the same amplitudes.
Since the average radius of the bubble neck is decreasing
to 0, the interface always becomes strongly distorted as
breakup approaches. These constant-amplitude vibrations
encode a detailed memory of the initial state. Such a
detailed memory is surprising and important because the
severely nonlinear evolution towards a singularity is com-
monly thought to be governed by convergence onto a
universal dynamics, one independent of boundary and
initial conditions and thus having little memory of the
initial state [13–15]. More generally, there are evidences
supporting the view that such memory-encoding vibrations
is a common feature of focusing singularities [10,16–22]

Here, we focus on consequences of memory which
cannot be addressed within the assumption of weak dis-
tortion employed by Schmidt et al. [10]. We simulate the
interface evolution in the final moment of breakup, when
the surface is strongly distorted. We find that the bubble
neck generically evolves towards a finite-time contact.
Initially distant portions of the interface osculate, touching
each other at a point and having a common tangent at the
point of contact [Fig. 2(b)]. We also show that the finite-
time contact can be viewed as a natural consequence of the
vibrational amplitudes persisting with the same size while
the average radius decreases to 0.
Our analysis starts from the simplest situation: the

breakup of a long and slender bubble neck. Previous works
have shown that, in this asymptotic limit, every cross
section of the bubble neck contracts solely due to the influx
of water in the same horizontal plane, with no influence
from the dynamics at other heights [2,3,9]. We therefore
focus on the cross section at the height where the breakup
will first occur. The evolution of the cross section at a

FIG. 1 (color online). Bubble disconnection dynamics.
(a) Experiment: an air bubble (dark area) is submerged under
water and released from a nozzle. Bright spots are optical
artifacts. (b) When the bubble is released by a sudden burst of
gas pressure from a slot, the initial ribbonlike neck disconnects
via a ‘‘puncture,’’ instead of breaking at a point. There is a
circular ‘‘hole’’ of water (light area) inside the ribbon-shaped
bubble neck (dark area). A satellite bubble (dark dot) is visible in
the water-filled hole. See [6] for details. (c) Model: A cross
section of the neck (bubble region) contracts inwards due to a
radially symmetric influx of water from the far field in the
exterior.
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fixed vertical height corresponds to a two-dimensional
(2D) version of the classic Rayleigh-Plesset collapse [23]
[Fig. 1(c)]. Stacking the 2D evolutions at the different
heights vertically then generates the time evolution of the
entire neck. We also neglect the effects of air flow within
the bubble neck and surface tension at the interface. Both
effects can modify but do not change the essential features
of our results. Schmidt et al. have shown that the 2D model
described above quantitatively reproduces the measured
cylindrically symmetric dynamics until the neck is a few
microns across [10].

We use a polar coordinate system whose origin coin-
cides with the center of the neck cross section. The air-
water interface is given by r ¼ Sð�; tÞ. Since viscous ef-
fects are negligible, the exterior velocity field is irrota-
tional, i.e., uðx; tÞ ¼ r� where � is a velocity potential.
Since the exterior flow is also incompressible r � u ¼ 0,
the velocity potential � satisfies Laplace’s equation
r2� ¼ 0. At t ¼ 0, a distorted bubble neck, modeled as
a region of constant and uniform pressure, is immersed in
water. To simplify the analysis, we choose the reference
pressure level such that the bubble pressure p is 0. To drive
the breakup of the bubble, we require that the exterior flow
far from the bubble approaches the form ð�Q=rÞer as r !
1. To simplify the calculations, we require that, 2�Q, the
volume flux of the far-field inflow, remains constant over
time. This is equivalent to requiring that �RðtÞ, the average
radius of the bubble cross section, decreases as

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� � tÞ=t�
p

, where R0 is the initial value and t� ¼
R2
0=2Q is the time when the average size of the bubble

goes to 0. This square-root decrease reproduces the
leading-order behavior of the measured breakup dynamics

[5–10]. Schmidt has shown that the higher-order, slow
variation in Q does not affect behavior of the vibrations
at leading order [22]. Two boundary conditions dictate the
time evolution of the velocity potential �ðr; �; tÞ and the
interface Sð�; tÞ. First, at the rapidly accelerating surface,
the normal stress exerted by the exterior flow must equal
the bubble pressure. This unsteady version of the Bernoulli
condition has the form

½@�=@tþ ð1=2Þjr�j2�jS ¼ 0: (1)

Second, the position x of a material point on the surface is
advected by the exterior flow,

dx

dt
¼

�
@

@t
þr� � r

�
x ¼ r�jS: (2)

We use an approach developed by Dyachenko et al. to
solve for the interface evolution [24,25]. First, the solution
of r2� ¼ 0 in the exterior is simplified by mapping the
exterior of Sð�; tÞ conformally onto the exterior of a unit
circle in the complex plane w (see, e.g., [26]). A point on
the w plane is related to the location (r, �) on the 2D plane
by zðw; tÞ ¼ rei�. The velocity potential in the physical
plane is then given by the real part of a complex velocity
potential �. Second, instead of solving directly for the
interface z ¼ Sð�; tÞei� and the complex potential �, we
work with the new variables

R ðw; tÞ ¼ 1=ðw@wzÞ V ðw; tÞ ¼ ð@w�Þ=ð@wzÞ: (3)

The variable V corresponds to the speed of the fluid
motion on the interface. The variable R does not have a
straightforward physical interpretation, though it clearly is
a measure of how distorted the void shape in the real space
has become relative to the unit circle on the w-plane.
Equations (1) and (2) now assume the form

@tR ¼ wð@wRÞAfRe½RV ��g � wR@wAfRe½RV ��g
(4)

@tV ¼ wð@wV ÞAfRe½RV ��g � wR@wAfjV j2g=2
(5)

where the � symbol denotes complex conjugation. The
integral operator A is the Cauchy integral (see, e.g.,
[26,27]): In the simulation, we represent the initial state,
i.e., the surface shape S and the velocity potential �, in
terms of R and V , as an expansion with N total modes,
R ¼ P

N
n¼0 cn=w

nþ1 and V ¼ P
N
n¼0 dn=w

nþ1. The coef-

ficients cn and dn are computed from � and S. We then
update the values of R and V using (4) and (5). The new
neck shape S and velocity potential� are in turn computed
by numerically integrating (3). This formulation speeds up
the numerical computation because the right hand side of
Eqs. (4) and (5) can be computed in N logN steps using the
Fast Fourier Transform. Results presented below have been
obtained with N ¼ 256. Using N ¼ 1024 or more points
yields no significant changes.

FIG. 2 (color online). Time evolution of a slightly asymmetric
neck cross section. The initial distortion is a single n ¼ 2
vibrational mode (A2=R0 ¼ 0:004, �2 ¼ �=4). (a) The average
radius �R, rescaled by the initial average radius R0, as a function
of ðt� � tÞ=t�, the amount of time remaining until the point
implosion singularity at t�. (b) Neck cross section at successive
times. Shapes rescaled by the average radius �RðtÞ. (c) Shape
evolution when n ¼ 2 linear stability dynamics is extrapolated
as a series expansion in R, V variables down to contact
[Eqn. (8)].
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Figures 2(a) and 2(b) give the outcome of a typical
simulation. The average radius �R decreases asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� � tÞ=t�
p

[Fig. 2(a)]. As the bubble region shrinks, an
initially slight distortion becomes more and more notice-
able. To illustrate how the distortion develops, we have
chosen 6 moments [ labeled in Fig. 2(a)] and rescaled them
by �RðtÞ. At t ¼ 0, the void shape is a nearly circular oval,
given by Sð�; t ¼ 0Þ ¼ R0 þ A2 cos�2 cosð2�Þ where R0

is the initial value of �R, A2 the size of the azimuthal
distortion, and �2 the initial phase. During the early mo-
ments, A2 � �RðtÞ, so the cross section vibrates, in quanti-
tative agreement with linear stability results [10],

Sð�; tÞ ¼ �RðtÞ þ A2 cos½�2ð �RÞ� cosð2�Þ (6)

�2ð �RÞ ¼ ln½R0= �RðtÞ� þ�2: (7)

The amplitude of the vibration A2 remains constant. The
shape of the cross section, Sð�; tÞ, oscillates in time. In
Fig. 2(b), the cross section is initially elongated along the x
axis, then along the y axis, and later is elongated along the
x axis again. As the breakup proceeds, the interface be-
comes strongly distorted (A2 � �RðtÞ), evolving out of the
linear stability regime. The cross section deforms into a
dumbbell shape. As time goes on, the waist of the dumbbell
narrows and its lateral extent broadens. Finally, the oppo-
site sides of the surface touch, with a common tangent at
the point of contact, thus severing itself into two side-by-
side lobes. This is the typical outcome when an azimuthal
asymmetry is present. It is also qualitatively consistent
with the ‘‘puncture’’ type breakup [Fig. 1(b)] observed in
the experiment by Keim et al. [6] if one assumes that the
satellite bubble at the center of the ‘‘puncture’’ is created
by viscous drag created by the drainage of air from the thin
gap in the final instants of contact. More complicated, but
less frequent, types of self-intersection will be analyzed in
a future study.

Figure 3 shows how Uc=ðd �RðtÞ=dtÞ, the rescaled veloc-
ity at the contact location, varies as the dimensionless gap
width d=R0 goes to 0. Initially, while d is large, the inter-
face accelerates inwards faster than the average radius
decreases, or Uc=½d �RðtÞ=dt�> 1. As d decreases, this re-
scaled velocity reaches a maximum and then slows.
Eventually, the rescaled contact speed settles to a constant
value as d goes to 0. In Fig. 3, the simulation curves starting
from three different initial conditions clearly terminate
with different contact speeds, showing that Uc is chosen
by the initial state. Note also that the simulation typically
yields Uc=½d �RðtÞ=dt� � Oð1Þ; i.e., the cross section
shrinks about as fast as the two sides of the interface
collides.

It is possible to give a simple interpretation of the
qualitative features found in these simulations. The contact
dynamics found in a typical run can be thought of as an
‘‘extrapolation’’ of the amplitude-preserving vibration dy-
namics excited in the linear stability regime. Specifically,
we can rewrite the linear stability results for n ¼ 2 vibra-

tion [Eqns. (6) and (7)] as a Taylor series expansion in R,
V [Eqns. (8) and (9)].

R ðw; tÞ ¼ 1

w �RðtÞ
�
1þ

�
A2 cos½�2ð �RÞ�

�RðtÞ
�
1

w2

�
(8)

V ðw; tÞ ¼ �1

w �RðtÞ
�
1þ

�
A2 sin½�2ð �RÞ�

�RðtÞ
�
1

w2

�
: (9)

As A2 becomes comparable with �RðtÞ, Eqns. (8) and (9)
represent a particular scheme for approximating how
the vibrations transform when nonlinearity is significant.
For our problem, this scheme successfully reproduces all
the qualitative features found from the full simulation. This
is evident in Fig. 2(c), where the hypothetical shape evo-
lution [Eqns. (8)] predicts that the cross section osculate
and reproduces the successive shape changes. Similarly,
the time evolution of the speed at the contact location
predicted by Eqn. (9) shows the same qualitative trend
as the full simulation (circles), though the prediction
does overestimate the value of the final contact speed.
Mathematically, this agreement says thatR,V are ‘‘natu-
ral’’ variables for tracking the breakup dynamics, since the
time evolution assumes such a simple form in R, V .
Physically, this supports a simple scenario for how the
initial distortion controls the final contact dynamics:
when the initial distortion is dominated by a single vibra-
tional mode, the final contact is dominated by the same
mode. Although the nonlinear interactions can and do
generate new modes and crosslink different modes, in a
typical situation, neither mechanism gets enough time to
cause qualitative changes.
Figure 4 plots �Rc, the average radius of the cross section

at the moment of contact, as a function of the initial shape
asymmetry A2=R0. The prediction from Eqns. (8) and (9)
(line) reproduce both the contact orientation and, roughly,

FIG. 3 (color online). Velocity at the contact location, Uc=
ðd �R=dtÞ, as a function of the gap width d=R0. Simulation results
for A2=R0 ¼ 0:004 (circles), 0.011 (crosses), and 0.067 (tri-
angles) with the same �2 ¼ �=4 display the same qualitative
behavior but terminate with different Uc values. The dot-dashed
line is prediction from Eqn. (9) with A2=R0 ¼ 0:004 (circles).
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the values of �Rc found from the simulations. Overall, �Rc

decreases with A2, since smaller initial asymmetry allows
the axisymmetric implosion to proceed further. The step-
like structure associated with successive changes in the
contact orientation reflects the fact that the final dynamics
is dominated by the initial n ¼ 2 distortion. Since a contact
due to an n ¼ 2 vibration alone can only occur along two
distinct orientations.

It is worth noting that the finite-time contact is neither a
physical singularity, a divergence in the velocity or the
pressure, nor a mathematical singularity, corresponding to
one or more singularities of the mapping function crossing
the unit circle on the complex plane [26,28,29]. Instead,
contact is a point where the mapping function becomes
multivalued. Mathematically, the bubble breakup problem
occurs within a phase space which has a natural boundary,
a ‘‘wall’’ separating singly connected shapes from the
multiply connected ones. A contact corresponds to a time
evolution that intersects a point on the ‘‘wall’’ in a finite
amount of time. Because the time evolution involves vi-
brations in the cross section shape, both the speed and the
average radius at contact has an intricate variation with
respect to the initial amplitude and phase.

In conclusion, we have conducted a numerical study of
asymmetric bubble disconnection. The simulations show
that an initial distortion excites vibrations which persist
with essentially the same amplitude. The generic outcome
is a finite-time contact. The distorted interface osculates
with itself, forming a contact at a finite speed whose value
depends on the initial condition.
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