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Recent experiments by Kantsler et al. [Phys. Rev. Lett. 99, 178102 (2007)] have shown that the
relaxational dynamics of a vesicle in external elongation flow is accompanied by the formation of wrinkles
on a membrane. Motivated by these experiments we present a theory describing the dynamics of a
wrinkled membrane. The formation of wrinkles is related to the dynamical instability induced by negative
surface tension of the membrane. For quasispherical vesicles we perform analytical study of the wrinkle
structure dynamics. We derive the expression for the instability threshold and identify three stages of the
dynamics. The scaling laws for the temporal evolution of wrinkling wavelength and surface tension are
established, confirmed numerically, and compared to experimental results.
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Wrinkling of thin sheets is a well-known effect which
can be frequently observed in everyday life. Usually
wrinkle patterns appear due to the external tensions applied
to the material, or as a result of compression of inextensible
films. Main properties of steady and/or equilibrium wrin-
kling structures are now well understood [1]. However,
much less is known about the dynamics of wrinkle struc-
tures. In certain biologically motivated experiments on
membranes and vesicles [2,3], the wrinkles are formed
because of the instability induced by negative membrane
tension, which is closely related to a buckling instability.
These wrinkles exhibit nontrivial growth and relaxational
dynamics. Theoretical description of these essentially non-
equilibrium processes is a challenging problem which we
attempt to approach in this Letter. Although we focus on
the analysis of the recent experiments [2], some predictions
of our theory are universal and may be successfully applied
to other systems where the formation of wrinkles is caused
by negative tension.

Vesicles exhibit a variety of different regimes of motion
in stationary fluid flows. These regimes were extensively
studied during the last decade both experimentally and
theoretically (see, e.g., [4–11] and references therein). It
was shown that depending on the external parameters a
vesicle in external shear flow can experience several differ-
ent types of motions, such as tank treading, tumbling, and
others. Although these regimes of motion correspond to
quite nontrivial dynamics, the shape of a vesicle remains
smooth and can be effectively approximated by an ellip-
soid. Recently, experiments performed by Kantsler et al.
[2] revealed a qualitatively new effect observed in nonsta-
tionary elongation flows. It was shown that in strong flows
the relaxational dynamics of a vesicle is accompanied by
the excitement of high-order membrane deformation
modes called wrinkles. Such dynamics cannot be described
in a framework of low-dimensional models used for the
analysis of tank treading, tumbling, and trembling, where
the vesicle state was described by one or two degrees of

freedom. In this Letter we extend these models to include
the interaction between the vesicle shape and the wrinkle
structure.

Before proceeding further we would also like to mention
the experimental [12] and theoretical [13] investigations of
wrinkle formation on microcapsules in external shear
flows. Although this effect is similar to the one discussed
here the underlying physics and main properties of wrin-
kles are essentially different. For example, the wrinkles
which are observed on vesicles are not stationary and are
excited only for a limited amount of time.

This Letter is organized as follows: first we discuss the
main features of a vesicle and show that the negative
tension leads to instabilities of the flat membrane.
Second, we present a model of a quasispherical vesicle in
external flow. We derive the threshold of the instability and
analyze the dynamics of wrinkle formation in strong flows.
We show that one can distinguish three different stages of
the dynamics. We describe the dynamics during these
stages and find the scaling estimations for the wrinkle
wavelength and the surface tension and perform a com-
parison with the experiment. In the end of the letter we
compare our results to numerical simulations and
experiment.

Vesicles are closed lipid bilayers which are incompress-
ible and impermeable to the surrounding liquid. These two
properties result in the conservation of the vesicle volume
and the membrane area. Thus any vesicle is characterized
by its excess area � which is the measure of vesicle’s
‘‘nonsphericity’’: A � �4�� ��R2, where A is the mem-
brane area and R is the effective vesicle radius, defined by
the vesicle volume: V � 4�R3=3. Free energy of the
closed membrane is defined by the Helfrich functional
and consists of the contributions from the bending energy
and the surface tension � [14]:

 F �
Z
dA
�
�
2
H2 � �

�
: (1)

PRL 100, 028103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

0031-9007=08=100(2)=028103(4) 028103-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.028103


Here H is the local mean curvature and � is the bending
rigidity of a membrane. Note that for closed membrane
geometry, the surface tension � is a quantity adjusting to
other membrane parameters (similar to the pressure in an
incompressible fluid) to ensure a given value of the mem-
brane area A. It is useful to analyze the stability of a flat
membrane with a given value of� before proceeding to the
case of a closed membrane with a fixed area. Small per-
turbations of a flat membrane can be parametrized by a
height function z � h�x; y� which can be expanded in
Fourier harmonics: h�r� �

P
hk exp�ik � r�. The quadratic

part of the Helfrich energy has the following form:

 F � 1
2

X
k

��k4 � �k2�jhkj
2: (2)

For positive �, this function is minimized by u � 0, so the
flat membrane state is stable. However, for negative tension
�< 0, when the membrane is being shrunk, the modes
with k <

�������������
j�j=�

p
become unstable. As we will show, this

particular kind of instability is responsible for the forma-
tion of wrinkles in the experiment [2].

In order to study this effect quantitatively we use the
model of quasispherical (�� 1) vesicles which proved
itself to be very successful in analytical investigations of
vesicle dynamics in external flows [7,9–11]. The vesicle
shape is parametrized by the small displacement function
u��;��: r � R�1� u� which can be expanded in the series
of spherical harmonics:

 u�t; �; �� �
X
lm

�
�

�l� 1��l� 2�

�
1=2
ulm�t�Ylm��;��: (3)

The external velocity is assumed to be planar and to have a
linear elongational profile with the time-dependent strain:
nonzero velocity gradient components are @xVy � @yVx �
11

���
5
p
=�16

�������
6�
p

�S�t�
����
�
p

=�, where � � �R3=� is the char-
acteristic time scale associated with the membrane bending
forces. The numerical factor in this definition was included
to simplify the expressions below. Throughout the Letter
we will discuss the experimentally interesting situation
when S�t� is the Heaviside-like function S�t� � �Ssign�t�.

The dynamical equations describing the dynamics of a
quasispherical vesicle in external flow were first derived in
[7] in the leading order in the small parameter

����
�
p
� 1:

 � _ulm � S�t�flm � �Al�� �l�ulm � �lm�t�: (4)

Here flm � 	l;2�	m;2 � 	m;�2� and ��t� is the dimension-
less angularly averaged part of the surface tension which is
a Lagrangian multiplier associated with the excess area
conservation constraint

P
julmj

2 � 2. The numerical co-
efficients of (4) are given by: �l � �l� 1�l2�l� 1�2�l�
2�=�2l� 1��2l2 � 2l� 1�, and Al � l�l� 1��
�l2 � l� 2�=�2l� 1��2l2 � 2l� 1�. The statistical proper-
ties of thermal Langevin forces �lm�t� can be found in [7].
To keep the analysis simple we neglect the contribution
from thermal noise terms �lm�t� in the dynamical equation,

but assume that the initial conditions for ulm are deter-
mined by the stationary statistical distribution which is
produced by random thermal forces. We check the validity
of such an approximation by numerical simulations of
Eqs. (4) with finite temperature.

Stationary shape of a vesicle in an external elongational
flow is almost ellipsoidal. Most of the excess area is stored
in Y2;	2 harmonics. After the flow direction switching at
t � 0 the surface tension � becomes negative and high-
order harmonics are excited. The value of the surface
tension can be found from the conservation law
@t
P
julmj2 � 0 and the dynamical Eqs. (4). After substi-

tuting u�lm from (4) and neglecting the thermal noises we
obtain a linear equation for � whose solution is given by

 � �
S�t�Re
u2;2� � ��

�A
; (5)

where we introduced the average values �A �
P
lAl�l and

�� �
P
l�l�l and the spectral distribution of the excess area

�l �
P
mjulmj

2. Using the expression (5) one can easily
show that there will be an instability for large enough
values of S. Indeed, for constant positive S�t� � S at t <
0 the stationary shape of a vesicle corresponds to u2;2 � 1.
However, as S�t� changes sign this state becomes unstable
and the vesicle begins its rotation to the new stable point
which corresponds to u2;2 � �1. The stability of the mem-
brane is determined by the sign of � given by (5). The
surface tension instantly becomes negative after changing
the velocity field: ��t � �0� � ���2 � S�=A2. From (4)
we find that all harmonics of order up to l become unstable
if Al�� �l < 0, which yields S > Sl � A2�l=Al � �2.
For l� 1 one obtains Sl 
 A2l2 � 1. The most unstable
mode can be found by maximizing the growth increment
��l � Al� which yields l0 �

��������������
S=3A2

p
for strong flows

with S� 1. Third order harmonic becomes unstable for
S > S3 � 1:8.

Below the instability threshold for small values of S,
higher order harmonics are not excited and the dynamics of
a vesicle can be well described in terms of one complex
variable u2;2 � ju2;2je�2i�, where � is vesicle orientation
angle in xy plane. The conservation of excess area implies
that the dynamics is purely rotational, ju2;2j � 1, and the
evolution of ��t� is described by the equation � _� �
�S cos2�. The characteristic time scale associated with
the rotational dynamics is estimated as �=S.

Describing the dynamics of the vesicle above the insta-
bility threshold is a considerably more difficult problem
which requires an analysis of a nonlinear system (4) with
large number of degrees of freedom. Fortunately, it is
possible to approach this problem analytically for strong
flows which correspond to S� 1. In this case one can
distinguish between several different stages in the wrinkle
evolution. The formal solution of (4) is given by

 ulm�t� � ulm�0� exp���lt=�� Al
� (6)
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for high harmonics l � 3, where 
 � �
R
t
0 dt

0��t0�=� is
the solution of the equation � _
 � �� with � given by (5).
During the first stage of the dynamics most of the excess
area is stored in the second-order angular harmonics and
the surface tension is almost constant � � �2S=A2.
Unstable high-order harmonics grow exponentially fast
and the distribution of excess area �l �

P
mjulmj

2, l � 3,
becomes centered near the most unstable modes with l �
l0 


���
S
p

. One could naı̈vely expect that l0 would determine
the characteristic length of the wrinkles which are observed
in the experiments. This, however, is not the case. Rapid
exponential growth saturates when the total excess area,
stored in high-order harmonics, becomes large enough so
that their contribution to the surface tension (5) becomes
comparable to the contribution from the external flow.
After that moment the surface tension becomes a time-
dependent decreasing function and such becomes the cen-
ter of the excess area distribution. Formal condition can be
found from (5) and expression for l0: �1� ju2;2j

2� 


S�1=2 � 1. Note that at this moment most of the excess
area is still stored in the second-order harmonic. The
characteristic duration of the first stage can be estimated
from (4) assuming that the initial value ulm�0� has a char-
acteristic value which is determined by the stationary
distribution: hjulmj2i 
 2T=��l4 � Sl2=A2� [7]. This yields
the following estimation: �1 
 �S�3=2 ln
S1=4�=T�. Below
we assume that S1=4 � T=�. Note that the duration of the
first stage is much smaller than the characteristic relaxation
time of the second-order harmonics, which can be esti-
mated as �S�1.

Second stage starts at t * �1 after the exponential
growth has saturated. During this stage the surface tension
is determined by distribution of high-order harmonics ulm,
l � 3. Using (5) one can derive the following approxima-
tion: � � �� ��= �A�. The distribution of excess area �l is a
narrow function of l centered around some �l� 1 which is
determined as maximum of the exponent in Eq. (6): �l ��������������

�=3t

p
. The characteristic width of the distribution can be

estimated as 	l
 ��lt=���1=2. It is small compared to �l in
the case S1=4 � T=�. Narrowness of the �l distribution
allows one to find the exact expression for the surface
tension: � � � ��= �A � ��l2 � �
�=3t. Using the defini-
tion of 
 we obtain the following closed equation:

 _
 � 
=3t: (7)

One can find its solution using the initial condition for the
surface tension: �
 S at t
 �1. This yields 
 �
c�t=��1=3, where c
 log2=3��S1=4=T�. Similarly we obtain
� � ��c=3��t=���2=3 and �l �

��������
c=3

p
�t=���1=3. Therefore,

second stage of the dynamics is characterized by the
algebraic decay of the surface tension and by the narrow
spectral distribution �l of the wrinkling structure, whose
peak smoothly drifts towards small l. Physically this drift

corresponds to the broadening of the wrinkles. As the
absolute value of �l goes down, the external velocity con-
tribution S�t�Re
u2;2� to the surface tension in (5) becomes
important again. Comparing different contributions in (5)
one can estimate the duration of the second stage as �=S. In
the end of the second stage, when the wrinkles amplitude is
the highest, the peak of the �l distribution is centered near
l� 
 S

1=3. This scaling law relates wavelength of wrinkles
to the strain �
 RS�1=3 and is one of the main results of
this Letter. Note that this wavelength is much smaller
compared to the wavelength of the initially most unstable
mode which is of order RS�1=2. The exponent 1=3, which
characterizes the broadening dynamics of wrinkles, is uni-
versal: it does not depend on the details of the vesicle
dynamics. One can expect this exponent in any experiment
where the strong negative surface tension is produced
instantly.

During the third stage, which takes place at t * �=S the
surface tension is determined both by the external velocity
and the wrinkles. During this stage the vesicle approaches
its new stable state. Although this stage is not universal in
the sense explained above, one can derive some results to
compare them to experiments or simulations. For instance,
the dynamics of the second-order harmonics is driven
mainly by the external velocity term S�t�. Therefore, in
the leading order the evolution of u2;2�t� can be described
by the linear law: u2;2�t� � 1� St=�. One can see that the
time of relaxation to the new stable state is equal to 2�=S
and the characteristic amplitude of wrinkles has the fol-

lowing time dependence:
���������������������
1�ju2;2j

2
q

�
�������������������������������
�2�St=��St=�

p
.

The maximal amplitude can be observed at t � �=S.
We have tested our results by direct numerical simula-

tions of Eq. (4). The total number of harmonics in our
simulations was determined by lmax � 2

���
S
p

. We have used
different values of temperature, which determines the am-
plitude of �lm�t� terms in (4). The results of the simulations
were almost insensitive to the temperature for S� 1;
however, there was a noticeable difference for S � 1. In
Fig. 1 one can see the results of simulations for some
particular values of parameters. Three temporal stages
with qualitatively different dynamics are clearly distin-
guishable. The behavior of �2 is very close to quadratic
observed in experiments and predicted by our theory. The
dynamics of ��t� may be well fitted by the power law � /
t�2=3 during the second stage.

In Fig. 2 we present the behavior of the characteristic
wrinkle wavelength l� (calculated in the same way as k� in
[2] ) as a function of the strain rate S. The limiting slope of
the curve for S� 1 confirms our theoretical prediction
l� / S

1=3. It is also in a reasonable agreement with the
results of [2] where the slope l� / S

0:25 was observed.
For weak flows with S � 1–10 the value of l� is determined
by thermal fluctuations and one has l� � 5 similar to the
one observed experimentally. Note that the mean wave-
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length of dynamically excited wrinkles surpasses thermal
equilibrium value at the values of S � Sc which is much
larger than the instability threshold. Value Sc in Fig. 2
would correspond to the experimentally observed thresh-
old Sc � 18 if the real value of membrane rigidity would
be � � 1:8� 10�13 erg, which is about 6 times smaller
than the one used in the analysis of experiments in [2].
Note also that the dependence on S is not monotonic. There
exists a minimum for S � 10–30. In this range of S third
and fourth order harmonics are strongly excited, and they
provide the main contribution to the value of l�. Depth of
the minimum depends on the temperature: it almost van-
ishes for T=���� � 1.

In conclusion, we compile a list of main results pre-
sented in this Letter. Motivated by recent experiments [2],
we studied the relaxational dynamics of a vesicle in an
elongational flow. We have shown that high-order mem-
brane deformation modes are excited by the negative sur-
face tension induced by external flow. For quasispherical
vesicles we have found an analytical expression for the
instability threshold S3 � 1:8 and analyzed the evolution
of the wrinkle structure for strong flows. We identified
three stages of the dynamics. The first stage corresponds
to t & �1 � �S�3=2 log�S1=4��=T� and is characterized by
the exponential growth of unstable high-order harmonics
with the characteristic scales of order �
 RS�1=2. This
rapid growth quickly saturates and is followed by the
second stage. For �1 � t & �=S the surface tension decays
algebraically as ��t� / t�2=3 and the characteristic wave-
length of wrinkles grows as � / t1=3. Characteristic ampli-
tude of the wrinkles grows as

��
t
p

. During the third stage
which ends at t � 2�=S wrinkle amplitude behaves like

��������������������������������
�2� St=��St=�

p
and the characteristic wavelength can be

estimated as �
 RS�1=3.
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wrinkles wave number l� which is defined in the same way as k�
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