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Abstract—We consider the dynamics of a polymer molecule injected into a chaotic flow with a strong mean
shear component. The polymer experiences aperiodic tumbling in such flows. We consider a simplified model
of the chaotic velocity field given by the superposition of a steady shear flow and a large-scale isotropic short-
correlated random component. In the framework of this model, we present a detailed study of the statistical
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mer orientation, find the distribution of time periods between consequent events of tumbling, and find the tails

of the polymer size distribution.
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1. INTRODUCTION

Hydrodynamics and rheology of dilute polymer
solutions have recently attracted much theoretical and
experimental attention. Adding a small amount of poly-
mers to an ordinary liquid leads to radical changes in
liquid properties. One of the most famous effects of this
type is the phenomenon of drag reduction. The addition
of a few parts per million (ppm) of long-chain polymer
molecules produces a dramatic reduction in the friction
drag. Although this effect was first observed in 1949
[1], there is still no rigorous theory explaining the phe-
nomenon. A qualitative description was proposed in [2,
3], but no quantitative theory is available. Another spec-
tacular phenomenon observed in dilute polymer solu-
tions is the effect of elastic turbulence, discovered
recently in [4, 5]. In this experiment, a chaotic fluid
motion was observed in that system with a small Rey-
nolds number, Re < 1. Obviously, such behavior can-
not be observed in Newtonian liquids, where the flow is
laminar. Therefore, the chaotic flow is generated by
elastic instabilities of the polymer solution. The
dynamics of polymers and possible mechanisms
explaining the chaotic state were studied in recent the-
oretical works [6-8]. It was proposed that elastic insta-
bilities occur because of the back-reaction of dissolved
polymers on the flow. It is therefore important to under-
stand the dynamics of single polymers in external cha-
otic flows. The theoretical investigation of this problem
has a long history. It was shown in the early 1970s [3,
9] that a polymer molecule in a random flow experi-
ences a coil-stretch transition. In relatively weak flows,
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the molecule spends most of the time in the coiled state.
However, when the Lyapunov exponent of the flow
exceeds the inverse polymer relaxation time, the mole-
cules become substantially elongated. With the devel-
opment of novel optical methods, a number of high-
quality experimental observations focusing on resolv-
ing dynamics of individual polymers (DNA molecules)
placed into an inhomogeneous flow have been reported
[10-13]. This has allowed direct observation of the
coil-stretch transition [14].

Another important case corresponds to shearlike
flows. The dynamics of polymer molecules in such
flows have been extensively studied because of its
importance in applications. For example, such a flow
occurs whenever a polymer passes near a wall. Rheo-
logical properties of dilute polymer solutions are usu-
ally studied in shear geometries [15]. Direct observa-
tion of the polymer dynamics in a regular shear flow
showed that the polymer experiences aperiodic tum-
blings [12]. This behavior is a combined effect of the
shear flow and thermal fluctuations of a molecule. The
statistical properties of such dynamics have been the
subject of great attention both experimentally and the-
oretically [12, 13, 16-19].

The next important problem is the behavior of poly-
mer molecules in flows where both the shear and cha-
otic flow components are important. Such flows occur
in many experimental situations, such as drag reduction
or elastic turbulence. Precisely this situation occurs
when a chaotic or turbulent flow is generated on top of
a shearlike velocity. The dynamics of polymers in such
flows have much in common with the dynamics of
polymers placed in statistically isotropic chaotic flows
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or, conversely, in regular shear flows. However, there
are some details that are unique to the discussed situa-
tion. A general qualitative analysis of such dynamics
was presented in [20]. In that paper, the authors did not
use any specific model of the turbulent flow but formu-
lated some general predictions concerning this prob-
lem. In the present paper, we justify most of these pre-
dictions ab initio in some particular model flow and
also present derivations of some general results,
skipped in [20].

In the shear-flow geometry with a superimposed
chaotic component, as in the case of isotropic random
flows, the polymer experiences the coil-stretch transi-
tion. Below this transition, the polymer spends most of
the time in the coiled state, and the effect of the flow
results in algebraic tails of the probability distribution
function (PDF) of the polymer size [6]. In the presence
of a strong shear component, these tails become signif-
icantly broadened in comparison to isotropic flows
without mean shear. More generally, it is shown that the
Lyapunov exponent associated with the flow becomes
parametrically large in the presence of mean shear. The
effect of the Lyapunov exponent being increased by
shear flow is rather surprising, because a simple shear
flow cannot lead to exponential growth in polymer size.
Therefore, such an increase is a combined effect of
shear and chaotic components. This effect is discussed
in detail in the last section of this article.

Above the coil-stretch transition, the polymer
spends most of its time in a strongly elongated state.
The thermal forces are then less important than the
effect of velocity gradient, and the orientational dynam-
ics is decoupled from the evolution of the polymer size
[20]. In this case, the equation describing the polymer
orientation dynamics formally coincides with the equa-
tion derived in [21] for thermal fluctuations of thin solid
rods in a shear flow. The authors of [21] studied the sta-
tionary PDFs of the orientational angles of the solid rod
direction vector. Although the statistical properties of
thermal forces can be very different from the statistics
of chaotic velocity gradients, most of the properties
related to the stationary angular distribution remain the
same. An interesting effect specific to the chaotic-flow
problem is the nonuniversal algebraic tail of the PDF of
the off-plane angle 0. This effect was briefly mentioned
in [20] and is explained in detail in the present paper.
Another extension of [21] presented in this paper is
related to the statistics of tumbling time, i.e., the time
between consequent flips of a polymer molecule. Obvi-
ously, this distribution cannot be expressed through the
stationary distribution functions and requires additional
analysis.

The statistical properties of real turbulent flows or
flows observed in elastic turbulence experiments are
not known in full detail. Furthermore, there exist no
universal analytical tools for studying the problem in its
full scale. To make any predictions regarding the poly-
mer dynamics in such flows, one has to make some sim-
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plifications. In [20], the problem was studied under
general assumptions regarding the velocity statistics.
This allowed the authors to obtain some mostly qualita-
tive predictions, which are universal (i.e., valid for a
very wide range of systems) but lack precision. In this
article, we follow another path by studying in detail a
simplified, but reasonable model of chaotic flow. These
rigorous results, derived ab initio, are certainly in full
agreement with the general predictions in [20]. Recent
computer simulations [17] also confirm and extend the
results of the current paper.

In this paper, the external flow is modeled by the
superposition of a constant shear component and a ran-
dom component corresponding to a chaotic velocity
field. We assume the random component to be rela-
tively small. In the spirit of classical works [22, 23], we
model the chaotic velocity part with a Gaussian delta-
correlated stochastic field. Although such models are a
great simplification of real flows, recent developments
[24] showed that they can be successfully applied for
analysis of advection in turbulent flows. As long as sta-
tistical properties of real flows are unknown, our
approach is one possible way to model single polymers
in chaotic flows. In the framework of this approach, we
are able to derive most of the results analytically. The
results in the present paper can form a basis for future
studies of more complicated problems, such as the sta-
tistics of polymer conformation in chaotic flows.

We list the main results in this paper. First, we
obtain an exact expression for the probability distribu-
tion of the polymer orientation vector. We show that the
body of the angular distribution function is located in
the region of small angles, which correspond to the
polymer stretched in the shear direction. However, the
tails of the PDF are algebraic, and hence the fluctua-
tions of the polymer direction are anomalously strong.
Second, we study the statistics of time periods between
consequent events of polymer tumbling. We show that
this PDF has an exponential tail at large tumbling times,
and two different asymptotic regimes in the region of
very small times. Finally, for polymers below the coil—
stretch transition, we obtain the asymptotic form of the
polymer size distribution function, which is also alge-
braic. We also show that the mean shear component
leads to a significant broadening of the polymer size
distribution in comparison to the pure chaotic flow. This
effect is surprising at first sight, because the shear com-
ponent itself does not lead to an exponential polymer
growth, and cannot therefore lead to algebraic tails of
the polymer size distribution.

The plan of this paper is as follows. We first detail
the model that is used to study the polymer dynamics
and discuss its underlying assumptions and its validity.
In the next sections, we first analyze the stationary
angular distribution of strongly elongated polymers,
and then obtain the probability distributions of the tum-
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bling time. In Section 4, we analyze the size distribu-
tion of the polymer molecules below the coil-stretch
transition. The main results in this paper are listed in the
Conclusions.

2. POLYMERS AND THE CHAOTIC-FLOW
MODEL

A polymer molecule injected into an external flow
interacts with the fluid in two ways: it is advected as a
whole, and the velocity gradient stretches and rotates it
in different ways, thus affecting its internal dynamics.
If we assume the shear flow to be stationary and spa-
tially homogeneous, the advection of the polymer is not
important. Furthermore, the inertial effects can be
neglected for typical polymers, and we can assume that
the monomers simply follow the Lagrangian trajecto-
ries of the velocity field. The effect of the flow can then
be described in terms of the dynamic equation for the
polymer end-to-end vector. We do not consider differ-
ent conformations of a polymer here and instead use the
simple dumb-bell model, where the end-to-end separa-
tion vector R satisfies the equation [25, 26]

oR; = ij_jvi_Y(R)Ri+Ci’ (1)

where the relaxation rate 7y is a function of the absolute
value R of R and the velocity gradient V,v; is taken at
the molecule center of mass. The term (; is the thermal
Langevin force with the power k. Real velocity fields
are large-scale: their correlation length is much larger
than the polymer length. Therefore, this field can be
treated as smooth on the polymer size scale. This
assumption justifies the linear approximation for the
velocity field used in Eq. (1). We discuss two different
situations. When the Lyapunov exponent associated
with the velocity field is larger than the polymer relax-
ation rate, which corresponds to the state above the
coil-stretch transition, the nonlinearity of the polymer
becomes important, preventing an unbounded polymer
stretching. In this case, the polymer length is much
larger than in the coiled state, and thermal forces {; can
be neglected in comparison to the velocity gradient
stretching. The polymer direction vector n; = R/R can
then be introduced. Its dynamics are governed by the
equation

azni =

We see that the direction evolution is completely
decoupled from the dynamics of the polymer size R. In
the state below the coil-stretch transition, the dynamics
of the polymer are purely linear. Thermal forces cannot
be neglected in this regime, and hence the orientation
vector dynamics do not decouple from the evolution of
the polymer size. We restrict our analysis in this case to
the study of the polymer length distribution. For small
enough polymer molecules, we can assume the relax-
ation Y(R) to be constant, in which case Eq. (1) becomes
linear and can be studied analytically in full detail.

nj(sik_nink)vjvk- ()
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Schematic picture of the polymer orientation geometry.

It is important to discuss how the chaotic velocity
component is modeled. The statistical properties of the
velocity field observed in the elastic turbulence experi-
ments are not well known from either the experimental
or the theoretical standpoint. The simplest model of the
velocity field studied in this paper consists of a strong
stationary shear component and of a weak short-corre-
lated chaotic component G;;. Under these assumptions,
the velocity gradient matrix has the following statistical
properties:

Vj v = SSixaiy +Gy ©)

(0,;(1)oy(t"))

4
= DO(1—1')(48,8;,— 8,8, — 8,8, @
where D is the “power” of the chaotic component and s
is the shear rate. We assume that the shear flow gradi-
ents are in the xy plane. We also assume the shear com-
ponent to be relatively strong, s > D. The exact form of
correlation function (4) assumes the isotropy of the
velocity component, but this assumption is not impor-
tant, as we see in what follows, because for a strong
shear component s > D, the polymer spends most of the
time stretched in the x direction. Its angular dynamics
are determined only by the y component of the chaotic
velocity field.

To simplify the equations describing the polymer
direction evolution, we parameterize the vector n by the
angles as shown in the figure. Then Eq. (2) acquires the
form

9,0 = —ssin’ ¢ + &, 5)
0,0 = —ssindcosdsinBcosO + &, (6)

where &, and &, are zero-mean random variables related
to the chaotic components of the velocity gradient. The
Vol. 105
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statistics of both &, and g can be obtained from corre-
lation function (4):

(Eo(DEG(1)) = 4DB(1 1), ™)
(Eo(NES(1)) = —2-5(1-1"). ®)
cos 0

3. POLYMER DIRECTION STATISTICS
3.1. ¢-Angle Distribution

In this section, we study the stationary distribution
of polymer orientation angles. Equation (2) governing
the dynamics of the polymer orientation vector for-
mally coincides with the equation describing the
dynamics of thin rigid rods. Some of the results
described in this section can be found in [21]. Unlike
polymer molecules, these thin rods have a fixed size
and are driven solely by thermal forces. However, their
dynamics are similar to the dynamics analyzed in this
paper. In what follows, we first rederive the expression
for the stationary ¢-angle distribution and then present
several new results, which have not been discussed in
the literature to our knowledge. We first analyze the
nontrivial contribution to the 0-angle distribution that
comes from the stochastic dynamics and that can be
observed in real experiments by inspecting the poly-
mers in the stochastic region. This contribution also has
an algebraic tail, but its exponent is nonuniversal and
depends on the statistics of the random velocity field.
For a Gaussian delta-correlated field, numerical analy-
sis showed that this tail behaves as 673 [17] and there-
fore its contribution is subleading. Second, we study
the statistical properties of the tumbling time. Obvi-
ously, the distribution of such quantities cannot be cal-
culated from stationary angular distributions. But it can
be easily measured experimentally [5, 18] or studied
numerically [16, 17]. We obtain some rigorous results
concerning the tumbling time distribution, which per-
fectly confirm the qualitative predictions in [20].

As noted above, the angular dynamics of stretched
polymers are decoupled from the dynamics of the poly-
mer length and can therefore be analyzed separately.
There are two different terms in the right-hand side of
Eq. (5) that contribute to the polymer orientation
dynamics. In the limit s > D, the first term is relatively
large, but the effect of the second term cannot be
neglected, as we see in what follows. For the vanishing
chaotic component (D — 0), the deterministic poly-
mer dynamics can easily be analyzed: there are two
semistable equilibrium states ¢, , =0, 7, with 0, , =0,
and the polymer direction vector nm asymptotically
approaches one of these points depending on its initial
orientation. However, as the angle between the polymer
and the equilibrium directions becomes sufficiently
small, the chaotic components &, cannot be neglected
and the polymer dynamics become stochastic. After
some time, the chaotic component pushes the polymer
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into an unstable region, and the regular velocity rapidly
(on times of the order of s~!) transfers it to the opposite
equilibrium direction. Due to the stochastic nature of
the chaotic velocity component, random aperiodic tum-
bling of the polymer should be observed. This phenom-
enon was qualitatively analyzed in [20] for the general
velocity statistics. In this paper, we focus on the situa-
tion where the chaotic flow is short-correlated, such
that its characteristic correlation time T, is small com-
pared with the time scale T, associated with the tum-
bling effect, which can be estimated as T, = (Ds?)"'* >
s71. This time scale separation allows obtaining some
explicit expressions for the stationary and dynamical
statistics of the polymer orientation evolution.

In the case where D < s, the polymer spends most
of the time in the stochastic regime, close to the equi-
librium point, and hence its orientation angles are
small, 6, ¢ < 1 (we analyze only one equilibrium point,
because of the symmetry n — —n). In this case, we
can set 0 = 0 in correlation function (8). The dynamics
of angle ¢ become decoupled from everything else, and
we can write the corresponding Fokker—Planck equa-
tion

[9,— 59,sin’ ¢ — 2D 1P(1, 9) = 0, )

where P is the PDF of the ¢ angle, i.e., the function that
represents the probability of finding the polymer in a
state with the inplane angle equal to the value of ¢. We
use the usual normalization conditions for the PDF:

}dq)P = 1.
0

An important question that must be discussed here
is the boundary conditions to be used for this equation.
The equation is invariant under the transformations
¢ — ¢ = 7. It is therefore natural to use the periodic
boundary conditions P(t, —1/2) = P(t, /2). There then
exists an asymptotic stationary solution Pgy(¢) of
Eq. (9). Obviously, all angles differing by an integer
multiple of  are identical to each other in this solution.
Another possibility is to use nonperiodic boundary con-
ditions

P(t,00) = P(t,—) =0

with the normalization condition

}dq)@ = 1.

In this case, the angles ¢ and ¢ + 7k are not equiva-
lent and the absolute value of the angle contains the
information about the total number of polymer rota-
tions. The main disadvantage of working with these
boundary conditions is that there is no stationary solu-
tion of the Fokker—Planck equation, because the PDF is
widening and drifting constantly. However, both
Vol. 105
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approaches lead to the same physical results, the two
different PDFs being related by

P(1,0) = Y P(1, ¢ + k). (10)
k

In this section, we work with the periodic boundary
condition. To find the stationary PDF P (0), we rewrite
the Fokker—Planck equation as

9,U ' (0)9,U(9)Py(9) = 0, an
Uo) = eXp[%d)—giDsinzq)] (12)

Simple integration yields

N

P.(0) = %jdcpexp{ T5lo- sincpcos(cp—2¢>]},<13)
0

where o is the average rotation frequency of the poly-
mer, which is determined from the normalization con-
dition

[Pu@)do = 1
0

and is given by
0= — Dexp(ms/8D) , (14)
w1, (s/8D)I_;(s/8D)

where /;, and I_;, are the modified Bessel functions. For
s/D > 1, the PDF is localized at small angles ¢ ~
(D/s)3 < 1, and all expressions are significantly sim-
plified:

(DS2) 1/3

4.3 76)Jn

15)

W s :
Py(0) = B[doexp| - 50(9-200' - TE]. (16)
0

We see that the PDF is asymmetric in ¢, i.e., P(—)) <
P(0), which means that the polymer spends more time
above the shear axis. In addition, the PDF has algebraic
tails P(¢) o< &2, (D/s)'3 < ¢ < 1, which correspond to

very large fluctuations of the angle:

~ D 1/3ﬁ31/3
(0) = (;) 176y’ 17
1 s 2/31
P ($)~ 2) =, 18
(%) 16-31/6F(7/6)ﬁ(D) s (1%)

where ['(z) is the gamma function and the last asymptotic
formula is valid in the intermediate region (D/s)'? <
|6| < 1. The asymptotic behavior P o< ¢~ corresponds
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to a nonzero probability flux of the stationary solution.
Physically, this means that there is some preferred
direction of the polymer rotation, which is a manifesta-
tion of the tumbling effect described above. The posi-
tive value of the average angle ¢ shows that the polymer
spends most of the time in the region ¢ > 0, in agree-
ment with the general analysis presented at the begin-
ning of this section. It can be seen that the polymer
spends most of the time in the region of small angles,
and hence the only relevant velocity component is v;.
Therefore, the assumption of isotropic statistics of the
chaotic velocity component is not significant for the
qualitative results in this paper.

3.2. Tumbling Time Statistics

In this section, we calculate the PDF of the time
intervals between consequent tumblings. Such a PDF
can be directly measured experimentally. For this, it is
natural to use the nonstationary PDF %P(z, ¢). We define
the tumbling process by a polymer direction “trajec-
tory” starting at ¢ = /2 and reaching ¢ = —m/2 at time
T. In this case, the probability of finding the polymer
inside this region is given by

/2

p() = [ P(t0)do,

—m/2

where the initial condition is P(z, ¢) = 8(¢ — /2 + 0),
and hence p(0) = 1. The normalization condition for

this PDF is j “ doP(t, ) = 1. We substitute P(1, ¢) =
U"(o)¥(1, 0), where U is defined in Eq. (12). The evo-

lution of ¥ is determined by the one-dimensional
Schrodinger equation in imaginary time:

19)

oY = —-HY, (20)

2
i = _2Da§+giﬁsin4¢_ssin¢cos¢. @21

It is now possible to use the quantum mechanical

analogy. The Hamiltonian A formally describes a par-
ticle in a periodic potential with period w. The general
solution of this problem is given by

¥(0) = Y[ "P‘P"P(“’)%(g) (22)

x exp[-E,(p)t],

where p is the particle quasimomentum and rn is the
Brillouin zone number. In this potential, the classical
minima are separated by large barriers. For s > D, the
tight-binding method can be used (see, e.g., [27]). Then
the approximate relations

En(p) = En_VCOS(ﬂ:p), (23)
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¥,,(0) = D exp(inkp)y, (9 —km),  (24)
k

where y, and €, are the wave functions and energies,
hold for the spectrum near classical minima (when the
tunneling processes are neglected) and v is an exponen-
tially small bandwidth. Therefore, at large times, the
leading asymptotic form of p(¢) is determined by the
ground state energy €,:

t —> oo,

p(t) o= exp(—€gt), (25)

It is easy to verify that this energy is given by €, =
c(Ds*)'3, where ¢ is a constant on the order of unity.
Indeed, the classical minimum is situated in the region
of small angles |¢0| < 1, and we can therefore use the
Taylor expansion of trigonometric functions. After the
substitution ¢ = (D/s)'*1, we obtain the Hamiltonian

4
= (Ds 2)”3[ 28§+%—n} (26)

The operator in square brackets contains no dimension-
less parameters, and therefore its eigenvalues are on the
order of unity. The body of the PDF is also located in the
region of tumbling periods of the order of T ~ (Ds?)™'3.
The left tail of the tumbling time PDF, T < (Ds?)~'3, is
determined by rare trajectories, which turn the polymer
through angle m at small times 7. To find the optimal
form of such trajectories, we use the functional integral
representation of the transition probability:

p(T) o j@q)exp[—g—ll—)jdt(d) + ssin2¢)2}. 7)

The integration is performed over trajectories with the
boundary conditions ¢(0) = 7/2, ¢(7) = —1/2. For small
T < (Ds?)7'3, the probability is determined by the
action A on the optimal trajectory with exponential
accuracy, p(T) o< exp(-A).

Variation of the effective action leads to the follow-
ing equation for the saddle-point trajectory:

¢ = szsin3q)cosq).

This mechanical problem can easily be solved, yielding
the following relation between the tumbling time and
the effective particle energy:

(28)

/2

T = 40

,;[2 N2E+5° sin4¢

8 1/4 1 E
) - o)
EQE+5°) 2 N4E+2s

(29)
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where K(x) is the elliptical integral of the first kind. The
action is then evaluated as

sm(b
dO———"=
e
2E+s sm¢ (30)
_ET, 3ns F(1573 j_)
~ 4D 320/_E“2442 2E)

where we omit the constant term 2sj¢ sin®dr = s/8D

because it is cancelled by the normalization constant.
Because of the additional time scale s~!, there are two
different asymptotic branches of p(¢). For sT < 1, we

have s < /2FE and E = %272 In this case,

2
T

8DT"

A= (3D

In the other limit case, s~' < T < (Ds?)"'3, the energy is
given by E = 8K*(1/2)/s*T* and the action is given by

2K*(1/2)

A= .
3Ds’T’

(32)

The intermediate asymptotic form in (32) is deter-
mined by the dynamics in the region of small angles
and is therefore a function of the product Ds?T>. The
dynamics at these angles are determined mainly by the
component v,, and hence this asymptotic form is uni-
versal, in the sense that it is independent of the details
of the chaotic velocity statistics. On the contrary, the
asymptotic form (31) at small times does not depend on
s at all, because such small times can be reached only
due to very rare fluctuations of the chaotic velocity
field. Therefore, this asymptotic form strongly depends
on the assumption of isotropic velocity statistics and is
not universal.

3.3. 6-Angle Distribution

It was shown in [20] that there are two contributions
to the intermediate right tail of the 8-angle distribution,
(D/s)'3 < 0 < 1. The first comes from the deterministic
regions where ¢ ~ 1 and the angular dynamics are deter-
mined by the regular terms in Egs. (5) and (6). The
algebraic tail of the stationary PDF P(0) is then propor-
tional to 672 at © < 1. But there is also a nonuniversal
algebraic part, which comes from the stochastic region
of ¢ ~ (D/s)'" and is determined by statistical properties
of the random velocity field. In this section, we analyze
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this part and obtain a relation between the scaling expo-
nent and the entropy function of the random velocity
process. In the region 8 < 1, Eq. (6) can be easily
solved:

(1) = jdr
t ' (33)
x exp[—% j sin2¢(t‘)dt'J§e(t—r).

As we have seen, the random process ¢(?) is station-
ary and independent of Eg(7). This allows us to rewrite
the expression for 0 as

0 = jdw@%e(z), (34)
0

p(1) = %Jsinzq)(t)dt. (35)
0

To obtain the PDF P(0), we first average over the noise &g

1 0’
= —— - 36
P(8p) 21t_AeXP( 2A)’ (36)
A = 4D[drexp[-20(x)], 37)

0

where P(6]p) is the PDF of 6 for a fixed realization of
the process p(#). Because of the positive average value

(@) ~ (Ds?)'3, the dynamics are relaxational and the

body of P(0) is located in the region of small angles
0 ~ (D/s)"® < 1. The tails of the PDF are determined by
large deviations of negative p(#). Assuming that the

process p(f) reaches its most negative value at an
instant T such that p(t*) = —p* and p* > I, we can
estimate the value of A with exponential accuracy as
A ~ (Dls)"Pexp(2p*).

The characteristic correlation time of p(?) is T. =
(Ds?)™'3. Therefore, for large T* > 1., we can apply the
results of the theory of large deviations [28], which pre-
dict the scaling for the tails of the p* PDF as

P(p*|t*) = exp[—?S( %:()}

c

(38)

where S(x) is the entropy function, which is one of the
most important characteristic of the chaotic velocity.
This function is nonuniversal and strongly depends on
the statistical properties of velocity gradients. It is
impossible to find the exact expression for this function
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analytically even in the framework of our model.
Numerical computations of this entropy function were
recently presented in [17].

We can now find the most probable time T* by max-
imizing the above probability with respect to T*. This
leads to the expression T* = t,p*/x*, where x* is found
from the equation

S(x*) = x*8'(x*), (39)
where S' is the derivative of S(x) with respect to x. The
entropy function is of the order of unity, and we can
hence expect the same for x*. The asymptotic form of
the p* PDF is therefore given by

P(p*) o< exp[-p*S'(x*)]. (40)
After averaging Eq. (36) over p*, we obtain the asymp-
totic expression for the 6 PDF:
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P(®)<|0""", (D) <ol <1. @D
It follows that the tails are algebraic, as in the case of
the angle ¢, but the exponent is now nonuniversal and
depends on the statistical properties of the velocity
field. For the delta-correlated Gaussian process &, this
tail was found numerically in [17]. It was shown there
that in the stochastic region |¢| < 1, the 6-angle PDF
behaves as 8739, In our model, this contribution is small
compared to the tail from the regular region 62, but it
can be expected that the situation may be different for

some specific velocity statistics.

4. STATISTICS OF POLYMER ELONGATION

In this section, we study the polymer molecules
placed in a relatively weak flow, where the Lyapunov
exponent of the flow is smaller than the relaxation time
of the polymer. In this case, the polymer spends most of
the time in the coiled phase, and we can assume its
relaxation force to be linear. Thermal noise can be
neglected in this case, in contrast to the situation above
the coil—stretch transition discussed in the previous sec-
tions. We study only the size distribution of the polymer
for this situation. The tails of the polymer-size PDF can
be examined similarly to the analysis in Section 3.3.

The formal solution of dynamic Eq. (1) in the case
of a linear relaxation force is given by

Ri(t) = [diexpl=y(1=Wy(t, 1E,(1),  (42)
0

t

W = Texp U&(’c)d’c},

t

(43)
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where G6;; = V,v; is the velocity gradient matrix. To
obtain the polymer elongation PDF, we first average

over the thermal Langevin force &;(7):

P(R|G) exp[—%RTI_lR}, (44)

I =x j AWl (YW (e, (45)

0

where W(t) = W(t, 0) and P(R|G ) stands for the PDF
with a fixed realization of the process G (7). At large
enough times ¢ > 1., the eigenvalues of the matrix W'W
become widely separated and the absolute value of the

end-to-end vector R is determined by the largest eigen-
value I,:

R
P(R|G) o< — . 46

(RI3) = exp| 2,1) (46)
It can be easily shown (see, e.g., [29]) that for large
times, when the eigenvalues A; of the matrix W'W are
widely separated (A, > A, > A;), the dynamics of the
largest eigenvalue A, = exp(2p) are described by the
equation

o= %coszesin2¢ +6D+&, (47)

(Ep ()&, (1")) = 2Dd(1—1"),

where & is obtained from the chaotic velocity correla-
tion function (4). The eigenvalue /, is then given by the
expression

(48)

I, = Kjdrexp[zp(z) —2vt]. (49)

0

As in the previous section, p(#) is an integral of the
stationary random process with the correlation time of
the order of T, = (Ds?)~'3, and large deviations of I, are
determined by large deviations of p(7). Assuming that
integral (49) is determined by one saddle point T*, we
can estimate it as I, o< exp(2p* — 2yt*), where p* =
p(t*). The asymptotic behavior of the p* PDF for a
fixed value of T* is given by

* *Tc
P(p*|T¥)oc exp[—%Sp(pT* )},

(50)

where §,(x) is an entropy function corresponding to the
process p(T).

Exactly as in the previous section, we find the opti-
mum value T = 1.p*/x. The coefficient x satisfies the
equation

Sp(x) = XSH(x) + YTSh(x). (51)
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In the linear region below the coil-stretch transition, we
have yt,. > 1. The tail of the PDF is algebraic, as in case
of the 0 angle, P(R) << R"'~%, and the value of a can be
determined for large values of yt, > 1. Large deviations
of R are determined by the region where thermal Lan-
gevin forces can be neglected and Eq. (47) can be used.

We are interested in the asymptotic behavior of the
polymer size moments

M, (1) = (R(1)) o< exp(A,1).

The value of a is then determined from the equation
A, = 0. Integrating over the function &, we can rewrite
M, as

M, = exp(Dg’t=yqr) [d0Z,(0, 1),

Z, = {explgp(1)]3(d - 0(1))), (53)

where the angular brackets denote averaging over the
process ¢(7). The function Z, satisfies the equation

(52)

3,2, = [2Da$+sa¢sin2¢+%Ssinm]zq. (54)

The only difference from Fokker—Planck equation (9)
is in the last term. We follow the same procedure as in
Section 2.2. Substituting Z, = U(9)'¥'(z, ¢), we obtain

the imaginary-time Schrodinger equation

0¥ = -H,¥, (55)

2
i, = _zpai+;—Dsin“¢+(q— 1)ssindcosd. (56)

This equation cannot be explicitly solved in the case
q ~ 1, but the solution can be easily found for ¢ > 1.

In this case, the leading exponential asymptotic
behavior at large times is given by Z (1) «< exp[-€(q)t],
where €(g) is the ground-state energy. For g > 1, the
main contribution to €(g) is equal to the value of the
classical minimum of the potential. After some simple
algebra, we obtain

e(q)~-3-2*'psH"”, 1<qg<s/D, (57
€(q)~qsl2, q> s/D. (58)

Finally, we have
A(q) = Dg" -vq-e(q), (59)

and the critical value a depends on the dimensionless
parameter 7/s:

3

32ps?
o= (60)
%, Y > s.
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The last expression coincides with the value of the
exponent for a purely isotropic chaotic velocity,
because for y > s, large polymer-size fluctuations are
determined by rare fluctuations of the chaotic compo-
nent, when the flow has a strong elongation component
with the Lyapunov exponent A > v for a long time. On
the other hand, the top line in (60) shows that in the case
v < s, the shear component can significantly broaden
the tails of the polymer-size PDF compared to the cha-
otic flow without mean shear. This fact is nontrivial
because the regular shear component itself cannot lead
to an exponential polymer elongation and a nontrivial
exponent comes from the combined effect of the cha-
otic and regular components.

5. CONCLUSIONS

We have studied the statistical properties of the
dynamics of a single polymer molecule in a chaotic
flow with mean shear. In the framework of the velocity
flow model consisting of a stationary shear part and a
delta-correlated chaotic part, and the dumb-bell model
of a polymer molecule, we have obtained several ana-
lytically rigorous results. First, for strongly elongated
polymers, the stationary angular distribution was dis-
cussed in detail. We obtained an explicit expression for
a ¢-angle probability distribution. The asymptotic
behavior of this function formally coincides with the
results obtained for solid rods [21]. Second, we ana-
lyzed the previously unreported contribution to the
algebraic tail of the 8-angle PDF. In contrast to the uni-
versal tail coming from the regular region, which was
analyzed in [20, 21], this tail is determined by the poly-
mer dynamics in the stochastic region. In contrast to the
0-angle PDF, this asymptotic form is not universal and
depends on the statistical properties of the chaotic
velocity component. Next, we discussed the probability
distribution of the tumbling time, i.e., the time between
consequent polymer flips. We have shown that the char-
acteristic time is of the same order as the inverse
Lyapunov exponent associated with the flow. However,
the fluctuations of the tumbling time are rather strong.
The asymptotic tail corresponding to the large-time
periods between flips has a universal exponential form,
while the tail corresponding to quick flips has a far
more complicated structure, which is in general sensi-
tive to the velocity field statistics. We have also dis-
cussed the size distribution of linear polymers placed in
a strong shear flow with a chaotic component. We have
shown that the existence of the strong shear component
results in significant broadening of the size distribution
compared to the isotropic case considered in [6]. This
effect is rather nontrivial in our opinion, because the
shear component itself cannot lead to an exponential
elongation of the polymer and the distribution broaden-
ing is the combined effect of the chaotic and regular
velocity components. Finally, we mention that all the
results in this paper were obtained under the assump-
tion of an isotropic and short-correlated chaotic veloc-
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ity flow. As was discussed throughout the paper, the
first assumption is irrelevant for most of the results, but
the effect of the finite correlation time requires a more
sophisticated analysis. Comparison of our results with
the more general results in [20] shows that the delta-
correlated model reflects most of the qualitative fea-
tures of the problem. Furthermore, all rigorous results
obtained in its framework are in agreement with general
predictions in [20].
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