PHYSICAL REVIEW E 67, 062102 (2003
Air parcel random walk and droplet spectra broadening in clouds
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We study the effect of turbulent flow on the droplet growth in a cloud during the condensation phase. Using
the air parcel model, we describe analytically how the size distribution of droplets evolves at the different
stages of parcel movement. We show that turbulent random walk superimposed on an accelerated ascent of the
parcel makes the relative width of droplet distribution to grow initiallyt%sand then decay as 2
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The growth mechanism of small water droplets in clouds Advection and diffusion of passive fields in turbulent fluid
is the condensation of water vapdr]. While the dynamics is usually described by the Kraichnan modste, e.g.[6]).
of droplet growth is well understood, no consistent statisticaiAccording to this model, the velocity field can be considered
theory exists yet for describing the evolution of droplet spec-as a stochastic Markovian process. The stochastic description
tra in the cloud—see Ref1,2], and the references therein. is valid when the fluid motion is chaotic. This is true in the
The main difficulties in this task are that a consistent theonygase of fully developed turbulence, which corresponds to
should describe the interaction of at least four fields in thdarge values of Reynolds numbjet]. In real clouds, the ob-
cloud: vapor concentration, temperature, droplet distributionServed Reynolds number is of the order oFREP—10° [1],
and velocity. For sufficiently small droplets, the concentra-Which is certainly enough to assume air velocity field sto-
tion inhomogeneities due to droplet inertia are neg|igib|echastic. The validity of the zero correlation time assumption
[3-5]. In cloud cores, vapor concentration and temperaturds proved by the following arguments: correlation times of
can also be considered as smooth functions of position, sgelocity fluctuations do not exceed?8, while the duration
here we shall only consider their vertical dependence. It i®f the condensational stage lasts’ K0or more[1]. Thus, a
the velocity field which has a turbulent nature and can bdnore realistic model, which takes into account the finite cor-
considered as a stochastic variable. The statistical descriptidglation times would give a small correction not exceeding
of random interacting fields belongs to the class of field-10%. In this paper, we focus only on the vertical motion of
theoretical problems which are generally unsolvable. In oug particle, because horizontal inhomogeneities have fluctuat-
case, neglecting the spatial fluctuations of concentrations arigg hature and will not lead to any new qualitative effect. We
temperature, one can turn the problem into that of a randora!so neglect collisions and coalescence of droplets by con-
walk superimposed on a regular drift in the prescribed envisidering the initial stage of growth, when droplets are small
ronment. Three limiting cases of this problémith no drift, ~ and the only relevant droplet growth mechanism is the con-
permanent-velocity drift, and permanent-acceleration )drift densation of water vapdr]. Using all these assumptions,
are solved here analytically. This might provide a useful op-one can write the following set of equations describing the
portunity for a comparison with the data of observations andlynamics of a single droplét,2]:
numerical simulations. We use the concept of an air parcel

[1], which means that we consider a macroscopic volume of d_A:d_aZ =s(z,t) 1)
air, which is moving through the cloud with the droplets dt dt e

within it. Together with the deterministic motion and growth,

the parcel participates in a turbulent random walk, which can dz

be modeled as brownian motion on a timescale larger than azu(t)ﬂ’(t)- 2

the velocity correlation time. We examine how the form of
the droplet size distribution changes with time. It is shownHerea is the droplet radiusA=a? is a variable, proportional
that the dynamics of the form of the distributiéspectrum  to the droplet surface area, asds the local supersaturation
strongly depends on the deterministic motion. The relativelefined ass=n/n,— 1, wheren andn, are the local vapor,
spectral width decreases, while the parcel is moving upwargespectively and the concentration of saturated vapor corre-
either with constant acceleration or with a constant velocityspondingly. We have set the coefficient of proportionality to
When there is no vertical driftthe parcel comes into me- 1, which can always be achieved by using the proper dimen-
chanical equilibrium with its environment and wanderssjonal units. For any given droplet, the supersaturation
around a fixed height the relative width of the distribution changes with time because the air parcel containing this
begins to grow. The form of the spectrum increases in widthdroplet moves up and is being cooled along the way. The
We also show that the distribution of droplets over sizes isyertical velocity of a parce(2) consists of two components:
asymmetric; power law at small sizes part is determined byhe deterministicu(t), which corresponds to the macro-
the activation of new nuclei, while the large sizes part isscopic updraft flow, and the randon(t), which is due to
exponential. turbulent velocity fluctuations. We will consider the random
velocity to be Gaussian and short correlated
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In the following, we will analyze the dynamics of the droplet nism. The parcel is accelerated until the velocity reaches
distribution P(A,z,t). The quantityP(A,z,t)dAdz repre- some stationary value due to the drag force. During the mo-
sents the fraction of the droplets, which are located in thdion, the temperature of the parcel changes because of droplet
area ¢,z+dz) and have the surface area in the intervalgrowth and heat exchange. When the parcel temperature be-
(A,A+dA). As long as we do not take into account the comes equal to the ambient temperature, its velocity de-
interaction of the droplets, the dynamical equation governingreases to zero and it stays at this steady height. One can
the evolution of the spectrum is the Liouville equation thatanalyze such a movement by considering three limiting
corresponds to the single droplet dynam(ts): cases: when the parcel is acceleratedi@)=uy+ at; when
the parcel’s velocity is constant(t) =u; and when the par-
{ats(zt)dat[ut) +v(t)]dfP(A,z1)=0. (4  cel has reached its steady height, and its velocity is zero,
u(t)=0. In the following sections, we will analyze these
Shree cases and show that these correspond to the different
types of behavior of the size distribution function.
{&t+s(z,t)&A+u(t)az—%Daﬁ}P(A,z,t)=0. (5) We start from the simplest case of zero velocity. As al-
ready mentioned, this case is important when analyzing the
The second and third terms describe the advection of thkast part of the parcel's movement. On this part the distribu-
droplets in phase space due to deterministic terms in @ys. tion center has already moved froA=0 and its width is
and(2). These are responsible for the motion of the distribu-also finite. However, if the steady stage lasts for a long time,
tion center. The third term comes from the stochastic part othe initial conditions are forgotten, and one can treat this
the velocity and its main effect is the spectrum broadeningproblem with the initial conditionsA(0)=0 and 6A(0)
We assume that the initial droplet size is small so that we carr 0. The solution of this problem was introduced in the Eq.
set P(A,z,0)= 8(A)8(z). This equation can not be solved (6), and one obtainsz,(t)=0, Aq(t)=set, and SA%(t)
for a general supersaturation fiedz,t). However, it has an =Ds2t%/3. Thus, for the relative width, one finds
analytic solution for a stationary linear profiEgz,t)=s,
+s,z, which we consider as a reasonable local approxima- S1
tion of the real supersaturation field. The expression for ézfz‘/D_E’gotl/z' ©
P(A,zt) is rather bulky. However, the size distribution
P(A,t)=[dzP(A,z,t) is described by the simple expression Therefore, the distribution is being broadened with a ¢éate
=t at this stage. Turning to the radius distributi®g(a,t),
1 B (A—Ag(1))? one can say that its relative width is increasing with the same
\/mex 26A2(1) rate da/ax £xtY/? for small timest<s3/s?D, but asé be-
comes large enough according to E§), its growth rate
Here,Ao(t) =[5t [So+S;2,(t')] andz,(t) is a determinis-  changes tasa/ax &Y%t The radius distribution is broad-
tic parcel trajectory:z,(t)=fgdt’u(t’). The distribution ened slower than that of the surface area. It is worth noting
width is A%(t)=Ds?t%3. Usually one is interested in the that in strgtiform clouds, where 'the detgrministjc parcel
distribution of radiusa; from Eq. (6), we see that it will be Movement is small, the zero velocity case is most important.
substantially non-Gaussian in our case d&(a,t) Ve see that one should observe strongly broadened distribu-
=2aP(a?t). Nevertheless, it will still have the bell-form tons there.

and can be described by its cengg(t) = VA, and width Next we consider the c02nstant velocity cagg(t) =ut,
Ag(t) =Ag(0)+spt+ (s,u/2)t“. Again, at large enough

SA times, the distribution forgets about the initial conditions
_ (7) (which were formed during the acceleration stagad the
Ao+ 5A+ A last term in Ay(t) will become dominant, s0A,

=(s,u/2)t?, 6A%=(Ds?/3)t3. Therefore, the relative distri-

; At ot — 12 i
can be narrowed, even if it is broadened for the varigle b?“ﬁn \é\{|dthbls_slowlyddgcreaslr}gioct .d'hWh'Ie the qenter_ h
The growth rate of the distribution width can be described b>P the distribution and its absolute width are growing wit

- - - 12
the variablet= 5A/A,. The relative width of the distribution He ateSo=VAg~t, da~ JAgéxt™. .
over radii is then Finally, we consider a uniformly accelerating parcel.

Here, one findss(t) =s(z,(t))=so+ S Ut +s;at?. If initial

Applying the standard procedure of averaging over the whit
noise(3), one obtains the Fokker-Planck equation

P(At)= (6)

sa(t)= Ay + sA— JA,=

One can see that in some situations, the distributioa in

Sa £ droplets sizes are small, we can easily find the dynamics of
—_—= (8) the center of drops surface area distributidy(t) =Syt
J1+é+1 + (s,Ug/2)t?+ (s,a/6)t3. The relative width behaves like

The right-hand side of this relation is a monotonic function, 27532

so the relative width of the distribution ovarbehaves quali- = oA = Dsy/3t _ (10)

tatively similar to that of the distribution ove§. Even the Ao spt+(S1Upl2)t%+ (s,a/6)t3

regular (nonturbulent part of the parcel motion in a real
cloud can be very complicated. At the beginning, the parceAt the very small times, the relative width is growing with
is being lifted up the cloud because of the convection mechathe rate¢ct*?, as in the zero velocity case. At large times,
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FIG. 1. An example of the parcel deterministic velocity trajectory together with the relative and absolute distribution width for arbitrarily
chosen parametetg, ugy, andr. The three curves in each plot correspond to different cases: parcel with constant accelsoitidine),
parcel with constant velocitydashed ling and parcel with zero velocitidotted ling.

when the parcel has accelerated enough, the relative widtihe left part. Assuming the distribution to be narrow enough,
tends to zero agxt~ 2 Therefore, there is a time when the one can have the following approximation to the small drop-
relative width has a maximum. The position of the maximumlet part of the spectrurrn(ao—Aa,t)~no(t*), wheret* is
is determined by the values of,a. It can be estimated as determined by the condition th&,(a,t*) should be cen-
trmax~MiN[So/(S1Ug),\/So/(S18) ]. The value of the maximum tered ata—Ag. For example, for the acceleration stage
iS i this Case&ma~ VDS /S It is interesting to note, that  S(t) =Sot+s1at°/2, and the center position is given by
; — AVITE Aok | Ao(t)=sot+s;at®/6et3. Thus,ag(t)<t>% From the defini-
Fhe absplute widthda= VAy(V1+&—1)~JAyé is a!ways jon of t*, we find t—t* o (ag— Aa)?® so t*<a2’—(a
increasing, and approaches a constant asymptotic value e on. 13 I 0 ' li r? 0
large times. The particular value of this width is a compli- _Aff? > Aa for small Aa<a,. Recaz'”th atmno(t)
cated function of all the parameters. *s’, we find thatn(ap—Aa,t)x(sp+cAa’) " We can

Figure 1 shows the qualitative behavior of the absolute>€® that the left part will have a rather wide power law tail

and relative width for the three analyzed cases. The pictureXStinct from a narrow exponential right tail. This is also an
important result, which might be observed in real clouds.

should not be considered as a prediction for some particular To conclude, we have shown that the evolution of size

cloud, but as an example, which shows how different veloc-,. . = ~_ L : ,
ity trajectories can affect the distribution parameters. distribution of droplet spectra can be divided into three dif-

So far, we have analyzed the situation where small drop]l;eurg(r)\rt1 St)tggg\s/égtaiig? disr:agti, é?f?eilrinvﬁvxﬂgﬁgtﬁe ?(I)svt/g
lets are injected into the cloud only once, at the beginning. In 9 P -9

. 1/2 . .
real clouds, the situation is certainly different. New nucleiWlth a rate¢et” " at the zero velocity stage, and decays with

-112 -312 T,
are activated all the time, and their activation surely aﬁectéhe Ia_wsgoct , 6ot on the stages W'.th either constant
the distribution form. Nevertheless, we will show that this velocity or constant acceleration, respectively. The dynamics

effect of new nuclei activation does not change the Iarg(?Of real air parcgls IS morzlcopgpl!cateqa ?]nd thed&‘q.al-

droplet sizes part of the distribution. The droplet size distri- "> O"¢ to estimate the distribution width according to our

bution can be written as follows: model. However, f.rom physical reasoning, we see that the
real parcel dynamics can be approximated by three conse-

t quent stages, where the relative width asymptotics were

n(a,t)zf dt’'ng(t")Py(a,t—t’), (11 computed analytically.

0 We have also shown, that the left part of droplet size
spectra is mainly determined by the process of nuclei activa-
tion during the initial stage of parcel movement. In this case,
one will observe a power-law tail in the small droplets part
Pf spectrum, in contrary to exponential tail for large droplet
sizes, which is determined by the parcel’s velocity fluctua-
tions.

whereng(t)dt is the number of nuclei activated in the inter-
val (t,t+dt). Luckily, the theory of nuclei activation is well
developed 1]. The simplest model of nuclei activation pre-
dicts that the activation rate is proportional to some power o
local supersaturatiomy(t)=s™¥(t), and usuallyk>0. The
absolute widthda(t) of the distributionP,(a,t) is a growing
function, therefore the front of the real distribution will be  The author would like to thank G. Falkovich for the most
always determined by the droplets, which began to grow afruitful and inspiring discussions and M. G. Stepanov for
t=0. Nevertheless, the new droplets determine the form ofiseful remarks and technical assistance in making figures.
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