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Air parcel random walk and droplet spectra broadening in clouds
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~Received 24 September 2002; published 25 June 2003!

We study the effect of turbulent flow on the droplet growth in a cloud during the condensation phase. Using
the air parcel model, we describe analytically how the size distribution of droplets evolves at the different
stages of parcel movement. We show that turbulent random walk superimposed on an accelerated ascent of the
parcel makes the relative width of droplet distribution to grow initially ast1/2 and then decay ast23/2.
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The growth mechanism of small water droplets in clou
is the condensation of water vapor@1#. While the dynamics
of droplet growth is well understood, no consistent statisti
theory exists yet for describing the evolution of droplet sp
tra in the cloud—see Ref.@1,2#, and the references therei
The main difficulties in this task are that a consistent the
should describe the interaction of at least four fields in
cloud: vapor concentration, temperature, droplet distributi
and velocity. For sufficiently small droplets, the concent
tion inhomogeneities due to droplet inertia are negligi
@3–5#. In cloud cores, vapor concentration and temperat
can also be considered as smooth functions of position
here we shall only consider their vertical dependence. I
the velocity field which has a turbulent nature and can
considered as a stochastic variable. The statistical descrip
of random interacting fields belongs to the class of fie
theoretical problems which are generally unsolvable. In
case, neglecting the spatial fluctuations of concentrations
temperature, one can turn the problem into that of a rand
walk superimposed on a regular drift in the prescribed en
ronment. Three limiting cases of this problem~with no drift,
permanent-velocity drift, and permanent-acceleration dr!
are solved here analytically. This might provide a useful o
portunity for a comparison with the data of observations a
numerical simulations. We use the concept of an air pa
@1#, which means that we consider a macroscopic volume
air, which is moving through the cloud with the drople
within it. Together with the deterministic motion and growt
the parcel participates in a turbulent random walk, which c
be modeled as brownian motion on a timescale larger t
the velocity correlation time. We examine how the form
the droplet size distribution changes with time. It is sho
that the dynamics of the form of the distribution~spectrum!
strongly depends on the deterministic motion. The relat
spectral width decreases, while the parcel is moving upw
either with constant acceleration or with a constant veloc
When there is no vertical drift~the parcel comes into me
chanical equilibrium with its environment and wande
around a fixed height!, the relative width of the distribution
begins to grow. The form of the spectrum increases in wid
We also show that the distribution of droplets over sizes
asymmetric; power law at small sizes part is determined
the activation of new nuclei, while the large sizes part
exponential.
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Advection and diffusion of passive fields in turbulent flu
is usually described by the Kraichnan model~see, e.g.,@6#!.
According to this model, the velocity field can be consider
as a stochastic Markovian process. The stochastic descrip
is valid when the fluid motion is chaotic. This is true in th
case of fully developed turbulence, which corresponds
large values of Reynolds number@7#. In real clouds, the ob-
served Reynolds number is of the order of Re;105– 108 @1#,
which is certainly enough to assume air velocity field s
chastic. The validity of the zero correlation time assumpt
is proved by the following arguments: correlation times
velocity fluctuations do not exceed 102 s, while the duration
of the condensational stage lasts 103 s or more@1#. Thus, a
more realistic model, which takes into account the finite c
relation times would give a small correction not exceed
10%. In this paper, we focus only on the vertical motion
a particle, because horizontal inhomogeneities have fluct
ing nature and will not lead to any new qualitative effect. W
also neglect collisions and coalescence of droplets by c
sidering the initial stage of growth, when droplets are sm
and the only relevant droplet growth mechanism is the c
densation of water vapor@1#. Using all these assumptions
one can write the following set of equations describing
dynamics of a single droplet@1,2#:

dA

dt
5

da2

dt
5s~z,t !, ~1!

dz

dt
5u~ t !1v~ t !. ~2!

Herea is the droplet radius,A5a2 is a variable, proportiona
to the droplet surface area, ands is the local supersaturatio
defined ass5n/n021, wheren andn0 are the local vapor,
respectively and the concentration of saturated vapor co
spondingly. We have set the coefficient of proportionality
1, which can always be achieved by using the proper dim
sional units. For any given droplet, the supersaturat
changes with time because the air parcel containing
droplet moves up and is being cooled along the way. T
vertical velocity of a parcel~2! consists of two components
the deterministicu(t), which corresponds to the macro
scopic updraft flow, and the randomv(t), which is due to
turbulent velocity fluctuations. We will consider the rando
velocity to be Gaussian and short correlated

^v~ t !v~ t8!&5Dd~ t2t8!. ~3!
©2003 The American Physical Society02-1



et

th
a
e
in
a

hit

th
.
u

t o
ng
ca
d

a
fo
n
n

e

n

b

n

l
ce
h

hes
o-
plet
be-

de-
can

ing

ero,
e
rent

al-
the
u-

e,
his

q.

e

me

-
ing
el
nt.

ribu-

ns

-

th

el.

s of

h
s,

BRIEF REPORTS PHYSICAL REVIEW E67, 062102 ~2003!
In the following, we will analyze the dynamics of the dropl
distribution P(A,z,t). The quantity P(A,z,t)dAdz repre-
sents the fraction of the droplets, which are located in
area (z,z1dz) and have the surface area in the interv
(A,A1dA). As long as we do not take into account th
interaction of the droplets, the dynamical equation govern
the evolution of the spectrum is the Liouville equation th
corresponds to the single droplet dynamics~1,2!:

$] t1s~z,t !]A1@u~ t !1v~ t !#]z%P~A,z,t !50. ~4!

Applying the standard procedure of averaging over the w
noise~3!, one obtains the Fokker-Planck equation

$] t1s~z,t !]A1u~ t !]z2
1
2 D]z

2%P~A,z,t !50. ~5!

The second and third terms describe the advection of
droplets in phase space due to deterministic terms in Eqs~1!
and~2!. These are responsible for the motion of the distrib
tion center. The third term comes from the stochastic par
the velocity and its main effect is the spectrum broadeni
We assume that the initial droplet size is small so that we
set P(A,z,0)5d(A)d(z). This equation can not be solve
for a general supersaturation fields(z,t). However, it has an
analytic solution for a stationary linear profiles(z,t)5s0
1s1z, which we consider as a reasonable local approxim
tion of the real supersaturation field. The expression
P(A,z,t) is rather bulky. However, the size distributio
P(A,t)5*dzP(A,z,t) is described by the simple expressio

P~A,t !5
1

A2pdA2~ t !
expF2

„A2A0~ t !…2

2dA2~ t !
G . ~6!

Here,A0(t)5*0
t dt8@s01s1zp(t8)# andzp(t) is a determinis-

tic parcel trajectory:zp(t)5*0
t dt8u(t8). The distribution

width is dA2(t)5Ds1
2t3/3. Usually one is interested in th

distribution of radiusa; from Eq. ~6!, we see that it will be
substantially non-Gaussian in our case asPa(a,t)
52aP(a2,t). Nevertheless, it will still have the bell-form
and can be described by its centera0(t)5AA0 and width

da~ t !5AA01dA2AA05
dA

AA01dA1AA0

. ~7!

One can see that in some situations, the distribution ia
can be narrowed, even if it is broadened for the variableA.
The growth rate of the distribution width can be described
the variablej5dA/A0. The relative width of the distribution
over radii is then

da

a0
5

j

A11j11
. ~8!

The right-hand side of this relation is a monotonic functio
so the relative width of the distribution overa behaves quali-
tatively similar to that of the distribution overj. Even the
regular ~nonturbulent! part of the parcel motion in a rea
cloud can be very complicated. At the beginning, the par
is being lifted up the cloud because of the convection mec
06210
e
l

g
t

e

e

-
f
.
n

-
r

y

,

l
a-

nism. The parcel is accelerated until the velocity reac
some stationary value due to the drag force. During the m
tion, the temperature of the parcel changes because of dro
growth and heat exchange. When the parcel temperature
comes equal to the ambient temperature, its velocity
creases to zero and it stays at this steady height. One
analyze such a movement by considering three limit
cases: when the parcel is accelerated sou(t)5u01at; when
the parcel’s velocity is constant:u(t)5u; and when the par-
cel has reached its steady height, and its velocity is z
u(t)50. In the following sections, we will analyze thes
three cases and show that these correspond to the diffe
types of behavior of the size distribution function.

We start from the simplest case of zero velocity. As
ready mentioned, this case is important when analyzing
last part of the parcel’s movement. On this part the distrib
tion center has already moved fromA50 and its width is
also finite. However, if the steady stage lasts for a long tim
the initial conditions are forgotten, and one can treat t
problem with the initial conditionsA(0)50 and dA(0)
50. The solution of this problem was introduced in the E
~6!, and one obtains:zp(t)50, A0(t)5s0t, and dA2(t)
5Ds1

2t3/3. Thus, for the relative width, one finds

j5
dA

A
5AD/3

s1

s0
t1/2. ~9!

Therefore, the distribution is being broadened with a ratj
}t1/2 at this stage. Turning to the radius distributionPa(a,t),
one can say that its relative width is increasing with the sa
rate da/a}j}t1/2 for small timest,s0

2/s1
2D, but asj be-

comes large enough according to Eq.~8!, its growth rate
changes toda/a}j1/2}t1/4. The radius distribution is broad
ened slower than that of the surface area. It is worth not
that in stratiform clouds, where the deterministic parc
movement is small, the zero velocity case is most importa
We see that one should observe strongly broadened dist
tions there.

Next we consider the constant velocity case:zp(t)5ut,
A0(t)5A0(0)1s0t1(s1u/2)t2. Again, at large enough
times, the distribution forgets about the initial conditio
~which were formed during the acceleration stage! and the
last term in A0(t) will become dominant, so A0

5(s1u/2)t2, dA25(Ds1
2/3)t3. Therefore, the relative distri

bution width is slowly decreasing:j}t21/2, while the center
of the distribution and its absolute width are growing wi
the ratesa05AA0;t, da;AA0j}t1/2.

Finally, we consider a uniformly accelerating parc
Here, one findss(t)5s„zp(t)…5s01s1u0t1s1at2. If initial
droplets sizes are small, we can easily find the dynamic
the center of drops surface area distribution,A0(t)5s0t
1(s1u0/2)t21(s1a/6)t3. The relative width behaves like

j5
dA

A0
5

ADs1
2/3t3/2

s0t1~s1u0/2!t21~s1a/6!t3
. ~10!

At the very small times, the relative width is growing wit
the ratej}t1/2, as in the zero velocity case. At large time
2-2
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FIG. 1. An example of the parcel deterministic velocity trajectory together with the relative and absolute distribution width for arb
chosen parameterst0 , u0, andr. The three curves in each plot correspond to different cases: parcel with constant acceleration~solid line!,
parcel with constant velocity~dashed line!, and parcel with zero velocity~dotted line!.
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when the parcel has accelerated enough, the relative w
tends to zero asj}t23/2. Therefore, there is a time when th
relative width has a maximum. The position of the maximu
is determined by the values ofu0 ,a. It can be estimated a
tmax;min@s0 /(s1u0),As0 /(s1a)#. The value of the maximum
is in this casejmax;ADtmaxs1 /s0. It is interesting to note, tha
the absolute widthda5AA0(A11j21);AA0j is always
increasing, and approaches a constant asymptotic valu
large times. The particular value of this width is a comp
cated function of all the parameters.

Figure 1 shows the qualitative behavior of the absol
and relative width for the three analyzed cases. The pictu
should not be considered as a prediction for some partic
cloud, but as an example, which shows how different vel
ity trajectories can affect the distribution parameters.

So far, we have analyzed the situation where small dr
lets are injected into the cloud only once, at the beginning
real clouds, the situation is certainly different. New nuc
are activated all the time, and their activation surely affe
the distribution form. Nevertheless, we will show that th
effect of new nuclei activation does not change the la
droplet sizes part of the distribution. The droplet size dis
bution can be written as follows:

n~a,t !5E
0

t

dt8n0~ t8!Pa~a,t2t8!, ~11!

wheren0(t)dt is the number of nuclei activated in the inte
val (t,t1dt). Luckily, the theory of nuclei activation is wel
developed@1#. The simplest model of nuclei activation pre
dicts that the activation rate is proportional to some powe
local supersaturation,n0(t)}s2k(t), and usuallyk.0. The
absolute widthda(t) of the distributionPa(a,t) is a growing
function, therefore the front of the real distribution will b
always determined by the droplets, which began to grow
t50. Nevertheless, the new droplets determine the form
-
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the left part. Assuming the distribution to be narrow enou
one can have the following approximation to the small dro
let part of the spectrum:n(a02Da,t);n0(t* ), wheret* is
determined by the condition thatPa(a,t* ) should be cen-
tered at a2Da. For example, for the acceleration sta
s(t)5s01s1at2/2, and the center position is given b
A0(t)5s0t1s1at3/6}t3. Thus,a0(t)}t3/2. From the defini-
tion of t* , we find t2t* }(a02Da)2/3, so t* }a0

2/32(a0

2Da)2/3}a0
21/3Da for small Da!a0. Recalling thatn0(t)

}s2k, we find thatn(a02Da,t)}(s01cDa2)2k. We can
see that the left part will have a rather wide power law t
distinct from a narrow exponential right tail. This is also a
important result, which might be observed in real clouds.

To conclude, we have shown that the evolution of s
distribution of droplet spectra can be divided into three d
ferent stages. At each stage, the relative width of the dis
bution behaves according to different power laws: it gro
with a ratej}t1/2 at the zero velocity stage, and decays w
the lawsj}t21/2, j}t23/2 on the stages with either consta
velocity or constant acceleration, respectively. The dynam
of real air parcels is more complicated, and the Eq.~6! al-
lows one to estimate the distribution width according to o
model. However, from physical reasoning, we see that
real parcel dynamics can be approximated by three co
quent stages, where the relative width asymptotics w
computed analytically.

We have also shown, that the left part of droplet s
spectra is mainly determined by the process of nuclei act
tion during the initial stage of parcel movement. In this ca
one will observe a power-law tail in the small droplets p
of spectrum, in contrary to exponential tail for large drop
sizes, which is determined by the parcel’s velocity fluctu
tions.
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