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Abstract—We present information-theory analysis of the
tradeoff between bit-error rate improvement and the data-rate
loss using skewed channel coding to suppress pattern-dependent
errors in digital communications. Without loss of generality, we
apply developed general theory to the particular example of a
high-speed fiber communication system with a strong patterning
effect.

Index Terms—Digital communication, error correction, inter-
symbol interference (ISI), information theory.

I. INTRODUCTION

PATTERNING effects due to intersymbol interference (ISI)
manifest themselves in digital communication as the de-

pendence of the transmission output for an information bit on its
surrounding pattern, i.e., the neighboring bits. ISI imposes one
of the most severe limitations in high-speed data transmission.
Patterning effects can be due to physical mechanisms of varying
nature. For instance, in fiber optic digital communication, the
pattern dependence of errors can be due to the gain saturation
in semiconductor optical amplifiers (see, e.g., recent papers [1]
and [2]), or to resonance interactions between pulses in bit-over-
lapping transmission regimes [3], [4]. An important and actively
studied example of transmission with pattern-dependent errors
is optical fiber communication at high bit rates limited by intra-
channel four-wave-mixing (ICFWM) [3], [4] through the gener-
ation of “ghost” pulses. The “ghost” pulses emerge in the time
slots carrying logical “zero” bits. They are generated by reso-
nance nonlinear ISI of periodically overlapping (due to disper-
sive broadening) pulses carrying logical “ones.” The major con-
tributions to the bit errors come from the ghost pulses arising
in “zero” time slots surrounded by symmetric patterns of log-
ical “ones.” Various techniques have been proposed and im-
plemented to suppress ICFWM. In this letter, using ICWFM
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as a key example but without loss of generality, we consider in-
formation-theory approaches to reducing pattern-dependent er-
rors. Suppression of nonlinear intrachannel effects by channel
coding was first proposed in [5] (see also [6]). The use of the
modulation codes for the prevention of ICFWM effects was pro-
posed in [7]. In this letter, we present information-theory anal-
ysis of the tradeoff between the bit-error rate (BER) improve-
ment and the loss of data rate using skewed channel coding.

Patterning effects can be partially characterized at the
receiver by analysis of error rates for the eight triplets
corresponding to the possible combinations of the nearest
neighboring bits [8], [9]. The error probabilities for the central
bit in the eight triplets can be gathered into an error vector

. Total BER of a transmitted packet
(neglecting the errors at its end points) is then given by the BER

, where is the probability of the occurrence
of a triplet with the index in the input bit string, and is the
error probability for the central digit in the triplet. An uneven
distribution of errors over offers an opportunity to reduce
the error rate by reducing the probability of the triplets that
affect the BER most, using skewed pre-encoding. Obviously,
this can only be done at the expense of the information content
of the packet, which is represented by the transmitted signal
entropy (measured in bits/digit).

II. THE SKEWED ENCODING

For illustration purposes, in the rest of the letter, we focus
on the example of an ICFWM-limited system, although our
approach is general. As shown in [2], the major contribution
to the BER in systems limited by ICFWM is from the pat-
tern “101.” In the course of extensive numerical simulations,
it was observed [2] that the probability of error for that pat-
tern is approximately 20 times (under certain system/signal pa-
rameters) that for any other triplet. To model the error distribu-
tion between the triplets, we would like to look at the example
when , with the error asymmetry
factor varying from 10 to 40. Thus, we use the error vector

. Our goal now is to quantify the
BER improvement due to a pre-encoding of transmission data
that makes certain combinations (in this example, 101) of the
input digits less frequent.

The two most important performance characteristics of a
transmission system are the BER and the channel throughput.
The former is improved by pre-encoding; the latter is wors-
ened by it. The tradeoff is consequently between the BER

0090-6778/$25.00 © 2007 IEEE



238 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 2, FEBRUARY 2007

Fig. 1. Transition graph.

improvement and the loss of data rate (or spectral efficiency)
and increase in the complexity of an encoder/decoder. The first
issue to consider is the source information content as a function
of the pre-encoding skew. We use the Markov chain shown
in Fig. 1 as a model of the encoder. The chain is a random
process that attempts to avoid the combination 101 that was
found error-prone in [2]. The vertices of the graph correspond
to the state of the process, which consists of the three last
digits up to and including the current one: . The
probability of the next digit is depicted as a transition from that
state to the next one, , with either 1 or 0, with
a probability depending on the current state . We
use dashed arrows for and solid ones for .
Those arrows are either thin, corresponding to the nonskewed
transitions with the probability 0.5, or thick, corresponding to
the skewed transitions. The latter bear the probability
leading to the “bad” state 101, and the probability
leading to a neighboring “good” state 100. Notice that each
state whose label (read as a binary number) represents quantity

has exactly two transitions from it, into states mod 8
and mod 8. From information theory, the information

content of a message of size , is given by its entropy

(1)

Here the summation is done over all possible -bit strings.
Obviously, this works out as for uncorrelated mes-

sages where the probability of each string is . For corre-
lated messages, let us split the message into the prefix of size

, and the last bit . It is easy to see that the prob-
ability

where is the process transition matrix, the binary value of

the string , and both indices of are assumed modulo 8,

so effectively, only the three last digits of the bit string matter.
Now substitute the above in (1), and assume that summation is

first over and then all ; also remembering that
, we derive

(2)

The factor is the sum of the probabilities of all
-bit strings that end in . In other words, is the prob-

ability that a string produced by the Markov chain has the last
state . Since the transition graph is fully connected (each state is
reachable from each other state), we can assume that the Markov
process is ergodic, which means that at
large , which does not depend on , and which, moreover,
equals the density of state in a very long individual bit string,
produced by the Markov process. This density can be evaluated
from the transition matrix as follows.

Due to ergodicity, the state density , which is the
number of occurrences of state in a string of length
produced by the chain, is a stationary random process as

. Let us introduce an eight-component

vector representing the stationary
values . The stationary distribution corresponding to the
Markov process presented in Fig. 1 must satisfy the condition

, where is the process transition matrix
corresponding to the graph in Fig. 1. The requirement of the
stationary process yields the following system of linear equa-
tions for state populations:

The solution of this system of equations normalized by

gives us an eight-component vector repre-
senting the stationary distribution of the triplet’s probabilities

(3)

Vector gives the number of the occurrences of the triplet
with the index in an infinite string of bits. It is clear that, in
particular, the frequency of occurrence is higher for the triplets
000, 001, and 100, and lower for 101. Now remember that the
components of the vector are exactly the values of



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 2, FEBRUARY 2007 239

Fig. 2. Redundancy R, %, versus skew parameter ".

referred to above. Coming back to (2), we are ready to quantify
the per-bit entropy which is given by

(4)

III. CALCULATION OF THE REDUNDANCY

Redundancy of the signal coding with nonuniform probabil-
ities of different patterns is defined as .

Substituting the stationary distribution into (4) yields the
per-bit entropy , and the redun-
dancy , where

We are now in a position to quantify the tradeoff between the
improvement of the error rate and the loss of the information
content (which is the effective throughput of the transmission
system) using skewed pre-encoding.

Fig. 2 displays the result in graphic form. The largest redun-
dancy corresponds to (extreme skew), where 20% of the
throughput is lost. However, under a significant skew of 25%,
the loss of throughput is only 1%, which suggests that skewed
coding could be bandwidth-efficient when used in addition to
standard forward-error correcting (FEC) codes. To quantify the
BER improvement due to the skewed code, we introduce a code
gain factor, defined as

BER BER

Note that the term “code gain” is used in a different context
compared with the standard FEC notation (which involves the
energy per bit parameter) commonly used to describe linear ad-
ditive white Gaussian noise (AWGN) channels.

Fig. 3 shows the BER improvement as a function of code
redundancy. We observe that reasonable improvement can be
achieved with a relatively small redundancy. Evidently, the
skewed coding becomes more efficient with the increase of the

Fig. 3. Code gain�G versus redundancy R, %, added by skewed coding.

Fig. 4. Code gain versus error asymmetry factor M .

parameter . Fig. 4 similarly presents code gain versus error
asymmetry factor for different values of the skew parameter.

IV. GENERAL CASE OF SKEWED CODING

In this section, we present the results of calculation of the
redundancy due to skewed coding in the general case of an ar-
bitrary imbalance in the probabilities of elementary transitions
between the triplets. The population of the Markov states in the
general case (illustrated in Fig. 5) can be determined by intro-
ducing the offsets between state transitions as follows:
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Fig. 5. Transition graph in the general case.

It is easy to observe the following relations between probabili-
ties of different triplets:

After straightforward algebra, the solution of the general imbal-

anced stationary problem is found as

where

This general solution can be further simplified by making
some assumptions regarding the encoding procedure. These
additional assumptions can be attributed to the properties
of the codes used to generate a bit stream with the required
information features. For instance, assuming that no more than
degree-2 neighbors have impact on the bit coding, we obtain
additional symmetries for state transitions

Applying these symmetry relations, the general solution given
above, is reduced to the following expressions for the probabil-

ities of the state (triplet) populations:

where the normalizing factor is

V. DISCUSSION

The analysis technique described in this paper can also be
applied to areas such as magnetic recording, where modula-
tion codes are routinely used for the avoidance of undesirable
bit patterns. The most common modulation codes in these ap-
plications are codes, and more recently, maximum
transition run (MTR) codes. The former eliminate the runs of
zeros of length less than or more than . The latter restrict
the 0-1 and 1-0 transition frequency [10]. Paper [11] is often
cited for its presentation of the principles and information-theo-
retical techniques relevant to the analysis of such types of mod-
ulation. It defines a method of calculating the redundancy of
specific codes that can be defined in graph form, but it does not
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introduce pattern-resistance properties as a function of redun-
dancy for a general modulation code. For that latter purpose,
our analysis based on a Markov chain appears uniquely suit-
able. The direct application of our results to graph codes for
recording media is easily achieved by making certain transition
probabilities of the Markov chain extremely skewed ,
while keeping others at zero skew. Our method will immedi-
ately compute the capacity of a small enough graph code (and
then a larger code would merely necessitate a larger Markov
chain). However, our method has exactly the same complexity
for analyzing soft probabilistic constraints , which
recording media applications do not employ yet; our analysis
shows that such constraints are useful in fiber optic communi-
cations. Future research may show their utility for modulation
coding elsewhere.

VI. CONCLUSION

We have presented an information-theory approach to the im-
provement of BER in systems degraded by pattern-dependent
errors. Decrease of the error rate is achieved by application of
a skewed channel coding that reduces the probability of oc-
currence for the triplets that make the main contribution to the
BER. As a particular example, we applied the theory to an im-
portant and actively studied example of transmission with pat-
tern-dependent errors, namely, high-speed (more than 40 Gb/s/
channel) optical fiber communication limited by pattern-depen-
dent ICFWM. We have quantified the tradeoff between the BER
improvement and the data-rate loss due to skewed coding.
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