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Contraction and Robustness of Continuous
Time Primal-Dual Dynamics

Hung D. Nguyen , Thanh Long Vu , Konstantin Turitsyn , and Jean-Jacques Slotine

Abstract—The Primal-dual (PD) algorithm is widely used
in convex optimization to determine saddle points. While
the stability of the PD algorithm can be easily guaran-
teed, strict contraction is nontrivial to establish in most
cases. This letter focuses on continuous, possibly non-
autonomous PD dynamics arising in a network context, in
distributed optimization, or in systems with multiple time-
scales. We show that the PD algorithm is indeed strictly
contracting in specific metrics and analyze its robustness
establishing stability and performance guarantees for dif-
ferent approximate PD systems. We derive estimates for the
performance of multiple time-scale multi-layer optimization
systems, and illustrate our results on a PD representation
of the Automatic Generation Control of power systems.

Index Terms—Primal-dual dynamics, continuous
optimization, strict contraction, robustness, hierarchical
architecture.

I. INTRODUCTION

MULTI-SCALE optimization is ubiquitous in both nat-
ural and artificial systems. Multiple time-scales have

long been viewed as a fundamental organizing principle in the
modular architecture and evolution of complex systems [1]. In
engineering, such layering provides a powerful design archi-
tecture for decomposing multiple stage decision processes in
networked infrastructure [2]. In cyber-physical networks such
as the power grid, the structure of the dynamic equations is
strongly constrained by physical laws. However, as a number
of recent works have shown, e.g., [3]–[5], the nature of these
equations admits a natural optimization based perspective. To
a large extent, the underlying ideas behind the approaches
exploited in those works can be traced back to the classi-
cal saddle point problem, and its associated primal-dual (PD)
algorithm.
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The saddle-point problem, first considered in the context of
market equilibrium in economics, appears when the system is
simultaneously minimizing a function over one set of its vari-
ables and maximizing it over the other variable set. Due to
the unique characteristic of the cost function, namely, being
convex in the first set variables while being concave in the
second, the primal-dual algorithm consists of implementing
gradient descent compatibly with the convexity/concavity of
the cost function. This algorithm was introduced in the classic
work of Arrow et al. [6]. Recently, the body of literature on
this algorithm has been rapidly growing due to its efficiency
in decentralized optimization in network applications [7]–[10].
Similar saddle point problems also appear naturally in the
context of machine learning, e.g., in support vector machine
representations [11] and in the adversarial training of deep
networks [12].

A. The PD Algorithm in a Distributed Context

In its simplest form, the primal dual (PD) dynamics mini-
mizes the function g(x) ∈ R

n → R subject to a set of linear
or nonlinear constraints h(x) = 0 with h(x) ∈ R

n → R
m. The

corresponding Lagrangian function is given by

�(x, ν) = g(x) + νTh(x), (1)

with ν ∈ R
m being the dual variables. We denote the full state

of the system by z = (x, ν) ∈ R
n+m. The continuous time

primal dual algorithm defines a dynamic system in x(t) and
ν(t) described by

ẋ = −∂x� = −∂xg − (∂xh)Tν (2)

ν̇ = +∂ν� = h (3)

There are two common applications of primal-dual dynam-
ics most frequently discussed in the literature. First, it can
be naturally applied to design distributed continuous time
optimization systems using the Lagrangian relaxation type of
approach. Within this formulation, the large-scale optimization
problem is represented in a superposition form g(x) =∑

k gk(Xk) with Xk denoting the set of variables for sub-
system k. Coupling between the subsystems is enforced by
constraining subsets of variables in different subproblems to
be equal to each other. These additional constraints are rep-
resented as h(x) = ETx, with E being an incidence matrix
of a directed graph defining equivalencies between variable
replicas. In this setting, every subproblem is coupled to com-
mon dual variables but not other subproblem variables directly.
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Every subproblem can then be solved by an individual agent,
while the dual dynamics gradually adjusts the dual variables
until the equivalence constraints are satisfied.

Another typical application arises in network flows of natu-
ral or artificial nature characterized by some conservation laws.
Assuming that some subset of variables represents the flows of
the conserved quantities, the conservation laws are expressed
as h(x) = Ex − q, with E being the incidence matrix reflect-
ing the topology of interconnection of individual subsystems,
and q the vector of external source/sink flows. In equilibrium,
the total flow on every node of the interconnection is bal-
anced. However, during the transient dynamics violation can
occur due to non-zero ν̇. These violations may be interpreted
as the accumulation of the transported quantity on the node
storage elements. In traditional circuits, the ν̇ terms repre-
sent charging of effective node capacitance. Whenever such
a formulation of physical equations exists, one can naturally
solve the distributed optimization problem complementing the
Lagrangian with additional terms representing the objective of
the controller.

Unless otherwise stated here we assume the constraints
of the form h(x) = Ex − q, which leads to the following
formulation

ẋ = −∂xg − ETν (4a)

ν̇ = Ex − q. (4b)

B. Contributions

In Section II, we establish the strict contraction of contin-
uous PD dynamics in the form given by (4), by constructing
explicitly contracting metrics and estimating the corresponding
contraction rates. Next, in Section III, we derive several new
results concerning the robustness of the PD systems includ-
ing the bounds on the long-term steady-state errors induced
by various types of disturbances, inaccurate estimations, and
multiple time-scale optimization. We dedicate Section IV to
present a relevant power systems example where we present
the AGC problem in a PD form then illustrate the error bounds
derived in Section III. Note that our results can apply to
non-autonomous PD dynamics with general objective func-
tions, while most recent related work deals with autonomous
PD dynamics [13] or quadratic objective functions [14]. The
ISS analysis in [15], which characterizes error bounds to
fixed saddle points, is relevant to the estimates derived in
this letter. However, we quantify errors relative to the time-
varying instantaneous optimum (Lemma 2), as well as those
relative to the time-varying trajectory induced by imperfect
measurements (Lemma 3).

II. STRICT CONTRACTION OF PD DYNAMICS

Throughout this letter, we use ‖ · ‖ to denote the norm in
which the considered system is strictly contracting. Similarly,
μ(A) denotes the matrix measure of A corresponding to the
discussed norm. In particular, for the 2-norm, one has μ(A) =
λmax(A + AT)/2 where λmax is the maximal eigenvalue.

We proceed by reviewing the basics of contraction analysis
for nonlinear dynamical systems. For holistic descriptions on
this topic, see [16], [17]. Let us consider a nonlinear dynamical

system ż = f (z, t) where f is a continuous and sufficiently
smooth function of the state variable z. The infinitesimal
dynamics can be given as δ̇z = ∂zf δz. Contraction analysis can
characterize the dynamics of the distance between two close
trajectories in some weighted two norm defined as: ‖δz‖ =
‖δy‖2 where we introduce a differential coordination transfor-
mation δy = �δz with an invertible metric transformation �.
The rate of change of the distance can be calculated accord-
ingly d‖δz‖2/dt = 2δyT Fδy with F = �̇�−1 + �∂zf �−1

being the generalized Jacobian. Whenever the symmetric part
of the generalized Jacobian is uniformly negative definite, i.e.,
there exists β > 0 s.t. μ(F) ≤ −β < 0, the system is
(strictly) β-contracting and all trajectories will converge expo-
nentially towards each other with a contraction rate larger or
equal to β.

The basic contraction property of the primal dual dynamics
with respect to the identity metric is simple to establish [17].
Specifically, consider a virtual displacement between the two
close trajectories characterized by the vector δz = (δx, δν).
These displacement vectors are described by:

δẋ = −Hδx − ETδν (5a)

δν̇ = Eδx (5b)

with H = ∂xxf being the Hessian of the objective function. We
further assume that the objective function is strictly convex in
x, thus its corresponding Hessian is positive definite H � 0.
One can easily see that the primal-dual dynamics described
by (4) is contracting with respect to the traditional Euclidean
norm: ‖δz‖2

2 = δxTδx + δνTδν:

d

dt
‖δz‖2

2 = −2δxT Hδx ≤ 0 (6)

Among other things, this result implies that the distance
r(z(t), z	) = ‖z(t) − z	‖ between the current point and any
equilibrium satisfying the KKT conditions is a non-increasing
function, a well-known result since the classical works on PD
dynamics [6]. Moreover, it establishes the connection between
this original result and more recent approach to PD systems
via Krasovskii type Lyapunov functions [7]. Indeed, the exis-
tence of a Krasovskii Lyapunov function implies contraction
of the system, which in turn verifies that the distance between
any point and any equilibrium only decreases.

However, this system is not strictly contracting; there may
be close trajectories that don’t eventually get closer to each
other in Euclidean metrics. This is indeed the case for trajec-
tories with the same x but different ν. Moreover, whenever
the matrix E is not full row rank, the optimum of the original
system may not be unique, and the system may converge to
different equilibria. In this case, there is no strict contraction
because the distance between two trajectories starting from
different equilibria does not change. However, for systems
with full rank E the question arises, whether strict contrac-
tion of the trajectories can be established in some other
metric.

A. Strict Contraction of PD Dynamics

In the following we shall develop a metric which certi-
fies strict contraction of PD systems. Consider a coordinate
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transformation δy = �δz with invertible “skew” metric
transformation �:

� =
[

I αET

0 (I − α2EET)
1
2

]

(7)

where I denotes the identity matrix of appropriate dimensions.
Then, for the two neighbour trajectories with the virtual dis-
placement δz, we introduce the distance ‖δz‖2

α = δyTδy =
δzT �T�δz. Following the arguments from the previous sec-
tions we arrive at the generalized Jacobian F = −�−TQ�−1

with

Q =
[

H − αETE α
2 EH

α
2 HET αEET

]

(8)

Theorem below establishes sufficient conditions for strict
contraction of the primal-dual algorithm in this metric.

Lemma 1: If α satisfies

0 < α <
1

max
{‖E‖2, ‖EH−1/2‖2

2 + ‖H‖2/4
} (9)

the primal-dual system defined in (4) is strictly contracting in
metric �, with rate β = μ2(−�−TQ�−1).

Proof: The condition α < 1/‖E‖ ensures not only that
the metric transformation � is invertible but also the distance
‖δz‖2

α is a positive definite form:

‖δz‖2
α = δzT�T�δz

= ‖δx + αETδν‖2
2 + δνT(1 − α2EET)δν. (10)

The rate of change of this form, according to (4) is given by

d

dt
‖δz‖2

α

= −2δxT(H − αETE)δx − 2αδνT EHδx − 2αδνT EETδν

= −2δxT(H − αETE − α

4
H2)δx − 2α‖ETδν + 1

2
Hδx‖2

2

Matrix H − αETE − α
4 H2 is positive definite whenever

α satisfies (9), and the system is therefore strictly con-
tracting. For the considered system, the rate of change of
the distance ‖δz‖2

α = ‖�δz‖2
2 is given by d

dt ‖δz‖2
α =

−2 δzTQδz, Q � 0. The guaranteed contraction rate is
given by β = λmin(�

−TQ�−1) which is easily proved
by noting that −δzTQδz = −(�δz)T(�−TQ�−1)(�δz) ≤
−λmin(�

−TQ�−1) ‖�δz‖2
2.

Note that, for linear and autonomous systems, the metric
�T� above is equivalent to the strict quadratic Lyapunov func-
tions for PD dynamics presented in [14]. However, the main
advantage of our approach stems from the fact that contrac-
tion analysis applies to a more general class of systems which
can be non-autonomous. Many important classes of prob-
lems are non-autonomous in nature including the optimization
framework considered in this letter.

III. APPLICATIONS

While the PD dynamics is an extremely flexible framework
applicable to a broad variety of continuous time optimization
problems, its perfect realization is not viable in most of the
practical situations. In this section, we analyze stability and
performance of quasi-PD systems that approximate the “true”

PD dynamics. Throughout the section, we adopt a number
of assumptions and definitions reviewed below. We consider
a system characterized by the Lagrangian �(x, ν, t) of the
form (1) and the “true” PD dynamics expressed compactly as

żpd = f (zpd, t) (11)

where zpd = (xpd, νpd). We assume that the system is con-
tracting with respect to the uniform metric associated with the
norm ‖z‖ = ‖�z‖ with some constant matrix � as presented in
Section II. We assume that the system is strictly β-contracting.

While many of the results can be easily extended to a more
general case of non-uniform metric � explicitly depending on
z, for the sake of simplicity we restrict the discussion only to
the uniform case. In the following, we show that the contrac-
tion rate with respect to such a metric can be naturally used to
characterize the performance of more realistic approximately
primal-dual systems.

In many practical situations, the continuous time PD algo-
rithm is utilized in a non-stationary setting where the system
is subject to constantly changing external conditions. In this
case, the PD dynamics allows the system to track the optimal
operating condition which also changes in time. For example,
in power system context, the secondary frequency control can
keep the system close to the optimal power flow solutions as
the external factors such as the load power consumption or
renewable generation change. Typically there is a time-scale
separation between the fast PD dynamics and slow changes of
external parameters. In this case, the deviations from the opti-
mum are small enough and can be safely ignored. However,
in a more general context establishing rigorous bounds on the
deviations from the optimum is essential for certifying the
safety and performance of the systems.

In the following, we assume, that the Lagrangian �(x, ν, t) is
explicitly dependent on time, and characterize this dependence
implicitly through the position of the instantaneous optimum
z	(t) = (x	(t), ν	(t)). Also, we explicitly assume that the rate
of change ‖ż	‖ of such instantaneous optimum is bounded.
Then strict contraction of the PD dynamics provides us with a
natural for quantification of the deviations from the optimum.

Lemma 2: Consider now the distance r(t) = ‖zpd(t)−z	(t)‖
between the state zpd(t) and the instant optimum z	(t). This
distance satisfies the following differential inequality:

ṙ ≤ −βr + ‖ż	‖ (12)

Proof: This result is proven by direct differentiation of r2(t)
and application of the contraction property. The term βr rep-
resents the contraction of the fixed equilibrium system, while
the term ‖ż	‖ accounts for the motion of the instantaneous
equilibrium point z	(t).

Corollary 1: In the steady state t → ∞, whenever the
rate of equilibrium point movement is bounded the “true” PD
system above is confined to the ball

‖zpd(t) − z	(t)‖ ≤ 1

β
sup

t
‖ż	‖. (13)

A. Robustness of PD Systems

Next, we consider the systems that deviate from the “true”
PD dynamics. Our primary motivation is the multi-scale
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optimization system where the decisions are made by different
layers on multiple time-scales (see [18], [19]). It is common in
this setting for the higher layers of the hierarchy to have lim-
ited observability of the lower layer states. Most commonly,
the optimization logic on higher layers either relies on imper-
fect observations or assumes that the faster lower layers have
already equilibrated. To model this setting, we represent the
approximate primal-dual dynamics by

ż = f (z, t) + d(z, t) (14)

where d(z, t) = f (ẑ, t) − f (z, t) represents the substitution of
true signal z = (zo, zu) with its estimate ẑ = (zo, ẑu). In this
section we assume that the function f is Lipschitz, so that the
following two inequalities hold:

‖d(z, t)‖ = ‖f (ẑ, t) − f (z, t)‖ ≤ ξ‖ẑ − z‖ (15)

‖f (z, t)‖ = ‖f (z, t) − f (z	, t)‖ ≤ η‖z − z	‖ (16)

We now prove the following intermediate lemma (see
also [20] and well as [19]).

Lemma 3: In steady-state, the distance rpd(t) = ‖z(t) −
zpd(t)‖ between the approximate and true primal-dual dynam-
ics systems satisfies the differential inequality:

ṙpd ≤ −βrpd + ‖d‖ (17)

Proof: Consider a trajectory z̃(t) following the original flow,
i.e., satisfying ˙̃z = f (z̃, t) and starting at time t at z(t), i.e.,
z̃(t) = z(t). Trajectory z̃(t) together with zpd(t) can be consid-
ered as two individual trajectories of the same system which is
contracting the at the rate of β. Strict contraction of the origi-
nal system implies that the distance between these trajectories
will decrease as:

‖z̃(t + dt) − zpd(t + dt)‖ ≤ (1 − βdt)‖z(t) − zpd(t)‖ (18)

where we have utilized the fact that z(t) = z̃(t) at time t. At
the same time, the distance between z̃(t) and z(t) in the same
interval has increased by at most dt‖d(z(t), t)‖. Therefore, we
have that

‖z̃(t + dt) − z(t + dt)‖ ≤ ‖d(z(t), t)‖ dt. (19)

Combining (18) and (19) via triangle inequality: ‖z̃(t+dt)−
z(t +dt)‖−‖z(t +dt)− zpd(t +dt)‖ ≤ ‖z̃(t +dt)− zpd(t +dt)‖,
and taking the limit dt → 0, yields (17).

Corollary 2: After exponential transients at rate β > 0, the
distance between the non-ideal and ideal PD can be bounded
as

‖z(t) − zpd(t)‖ ≤ ξ

β
sup

t
‖ẑ(t) − z(t)‖ (20)

Proof: From Lemma 3 one has the following when the
system settles down: ‖z(t) − zpd(t)‖ ≤ supt ‖d(z(t), t)‖/β.
Combining this relation and the inequality (15),
yields (20)

Next, we consider a setting where the actual system does
not follow exactly the primal-dual dynamics, although the PD
system is a reasonable approximation. In practice, this situa-
tion can occur for a variety of reasons, for example, due to fast
degrees of freedom in plant dynamics lacking the PD structure,
or due to imperfect observers introducing additional delays in

the system. While both settings can be modeled in the same
way, for exposition purposes we restrict the discussion only
to the case of imperfect observers. We assume, that the subset
of directly unobservable variables zu is estimated by a sepa-
rate observer system ˙̂zu = fu(ẑu, zu) that satisfies the following
conditions:

1) A subset of the observer states, ẑu is an asymptoti-
cally unbiased estimate of zu, so that for constant zu,
the observer converges to the manifold fu(ẑu, zu) = 0
satisfying ẑu = zu.

2) Dynamics of the observer is partially contracting with
respect to ẑu with a contraction rate of β̂.

The following formal results allow us to characterize the
performance of the system.

Lemma 4: Whenever β̂ > ξ and ‖z−z	‖ is upper bounded,
the long-term steady state error of the observer is bounded by

‖ẑ − z‖ ≤ η

β̂ − ξ
sup

t
‖z − z	‖ (21)

Proof: Applying Lemma 2 and the Lipschitz bounds we
obtain

‖ẑ − z‖ ≤ 1

β̂
sup

t
‖żu‖ (22a)

≤ 1

β̂
sup

t
(‖f (z, t)‖ + ‖d(t)‖) (22b)

≤ 1

β̂
sup

t

(
η‖z − z	‖ + ξ‖ẑ − z‖) (22c)

where we have used the relation ‖żu‖ ≤ ‖ż‖ ≤ ‖f (z, t)‖ +
‖d(t)‖ to arrive at (22b) from (22a). Solving for supt ‖ẑ − z‖
yields (21).

Theorem 1: Given the conditions stated in Lemma 4 and
β(β̂ − ξ) − ηξ > 0, the steady state optimal tracking error is
upper bounded

‖z − z	‖ ≤ β̂ − ξ

β(β̂ − ξ) − ηξ
sup

t
‖ż	‖ (23)

Proof:

‖z − z	‖ ≤ ‖z − zpd‖ + ‖zpd − z	‖ (24a)

≤ 1

β
sup

t

(
ξ‖ẑ − z‖ + ‖ż	‖) (24b)

≤ 1

β
sup

t

(
ηξ

β̂ − ξ
‖z − z	‖ + ‖ż	‖

)

(24c)

where we use relation (21) to arrive at the last inequality
from (24b). By solving for supt ‖z − z	‖ we obtain (23).

Note, that in the limit of perfect observer with β̂ → ∞ one
recovers the bound (13).

Corollary 3: The distance between the perturbed and “true”
primal-dual dynamics can be bounded as

‖z − zpd‖ ≤ 1

β

ηξ

β(β̂ − ξ) − ηξ
sup

t
‖ż	‖ (25)

Corollary 3 can be easily proved by combining the results
from Corollary 2 and Lemma 4.

The bounds derived in this section are illustrated with a
practical power system in Section IV. While their practical rel-
evance should be assessed in the context of specific systems
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with well-defined structural features, the bounds are tight if
one assumes that only Lipschitz constants are known. For
example, tightness of the bound (13) can be established by
considering the simple scalar ODE ż(t) = −z(t) + t with
z(0) = 0.

B. Performance of Layered Optimization Architectures

Our results could be naturally applied to multi-layer
optimization systems commonly occurring in nature and engi-
neering. In these systems, each layer typically performs its
own optimization [1], [2], [21], and interacts with other layers.
Usually, the dynamics of the layers are separated in time-
scales, so that the dynamics of higher levels is slower in
comparison to that of lower ones. In engineering systems,
the algorithms employed on the individual layers are often
designed with two assumptions in mind: that the lower layer
has converged to its optimal equilibrium, and that the higher
layer inputs can be assumed to be constant. In this section, we
study a broader class of such systems, constrained only to be
Lipschitz and contracting.

Mathematically, the setting above can be expressed by
introducing the subsets of PD variables zk corresponding to
different layers of optimization. For notational simplicity, we
assume that each layer interacts directly with two neighboring
layers and the “true” PD dynamics is described by

żk = fk(zk−1, zk, zk+1, t) (26)

From the viewpoint of layer k, the function zk−1 can be con-
sidered as an exogenous factor, which affects the position of
instant equilibrium z	

k = z	
k(zk−1(t), t). On the other hand, we

assume that each layer k is designed under the assumption that
all the faster layers have equilibrated and so zk+1 is replaced
by z	

k+1(zk, t). In this case, following the same logic as in
previous section, the actual dynamics can be represented as
żk = fk + dk with

dk = fk(zk−1, zk, z	
k+1(zk, t), t) − fk(zk−1, zk, zk+1, t) (27)

Theorem 2: Consider a multi-layer optimization system
described above. Assume that fk is Lipschitz with respect
to zk and zk+1 with constants denoted as ηk, ξk respectively.
Furthermore, assume that each function z	

k(zk−1, t) is also
Lipschitz with respect to zk−1, with Lipschitz constant ρk.

Let γk = 1 − ηkτk+1ρk+1. For small enough Lipschitz
constants, such that γk > 0 and γkβk > ξk, the system is
stable and its performance is characterized by inequalities
‖zk − z	

k‖ ≤ τk supt ‖ż	
k‖ with τk given by (13) or (23) for

the lower layer, and for the higher ones by

τk = γk

γkβk − ξk
. (28)

Proof: We start by bounding the term dk. Using the
definition (27) we have

‖dk‖ ≤ ηk‖zk+1 − z	
k+1‖

≤ ηkτk+1 sup
t

‖ż	
k+1‖

≤ ηkτk+1ρk+1‖żk‖
≤ ηkτk+1ρk+1 sup

t

(
ξk‖zk − z	

k‖ + ‖dk‖
)

Fig. 1. The long-term steady-state error is upper curbed by a bound
(the red line) proportional to instantaneous optimum rate in Theorem 1.

Hence, whenever ηkτk+1ρk+1 < 1 we have

‖dk‖ ≤ ξk‖zk − z	
k‖

1 − ηkτk+1ρk+1
(29)

Next, as long as the system fk is contracting, we have ‖zk −
z	

k‖ ≤ (‖ż	
k‖ + ‖dk‖)/βk. Using (29), assuming ξk < βk(1 −

ηkτk+1ρk+1), we arrive at (28).
Note, that while multi-scale PD dynamics have been a moti-

vation for this section analysis, the results apply more broadly
to general multi-scale contracting systems, not necessarily
optimization ones. On the other hand, many practical iterative
optimization algorithms in discrete time can be viewed as per-
turbed versions of the baseline continuous dynamics and thus
admit analysis with the proposed techniques. Our multiple
time-scale results are also applicable to the virtual contracting
systems used to analyze synchronization phenomena [22]. In
particular, quorum sensing strategies [23], [24] can be used to
coordinate multiple dynamics.

IV. NUMERICAL SIMULATIONS

In this section, we illustrate the applications of the derived
bounds by considering the so-called Automatic Generation
Control (AGC) of power systems [25], [26]. There has been a
lot of interest recently in exploring the optimization perspec-
tive on the frequency control, see [3], [8] for review. As a
proof of concept, here we look at a simplified AGC model
designed to restore the frequency of the system.

The simplified rescaled AGC model can be represented in
PD form, with the Lagrangian

� = 1

2
ωTDω + ωT

(
B1/2ETpE − kuagc

)
. (30)

We define z = (ω, pE , uagc) wherein ω be the primal and
(pE , uagc) be the dual variables. The variable vector z repre-
sents the dimensionless physical states: frequency, line powers,
and AGC efforts. Matrix E describes the network topology,
B the rescaled line susceptances, D the rescaled damping
ratios, and k the secondary control gains. The PD form
ż = (−∂ω�, ∂pE �, ∂uagc�) associated with the Lagrangian func-
tion (30) recovers frequency dynamics and the simplified
AGC [14], [25].

For the perturbed system, we consider an extension of
the model with additional turbine delays modeled as ˙̂uagc =
1
T (uagc−ûagc). Such delays play an important role in frequency
transients and should be considered in any practical studies.
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In this formulation, the frequency dynamics responds to the
ûagc, rather than the AGC effort uagc. The resulting frequency
equations becomes ω̇ = −∂ω� + k(ûagc − uagc).

We implement AGC on a SMIB (single-machine infinity-bus
system) which consists of a generator and a purely inductive
line. Further, we exert on the machine a sinusoidal exoge-
nous torque which represents persistent load changes. Figure 1
compares the actual response to the estimated bound.

V. CONCLUDING REMARKS

In this letter, we establish the strict contraction of the
PD algorithm, applicable to a class of optimization prob-
lems that arise in network flows and distributed optimization.
Strict contraction allows us to characterize the performance
and robustness of the PD dynamics with respect to common
deviations from the “true” PD dynamics. In particular, we con-
sider the case of imperfect observers and also derive recursive
bounds for hierarchical multi-scale optimization systems.

While in this letter we restricted ourselves to systems with
equality constraints, future work will include more general
extensions to inequality constraints. Furthermore, saddle-node
dynamics also appear naturally in Brayton-Moser poten-
tials [27], [28], which suggests an additional path for future
research. Application-wise, we plan to explore the effect
of inductive line delays [28], [29], on the performance of
secondary controls [5] in microgrids.

In recent years, the multiple-time-scale optimization per-
spective has also taken on increased importance in natural
systems, particularly in the context of systems biol-
ogy [30]–[32]. In the brain, multiple interactions between
different functional levels occur on a broad range of
time-scales, involving weak or strong feedback interactions
between genes, transcription factors, synapse formation, and
global long-range connectivity [33]. In such systems, general
Darwinism [21], [34] can play the role of an optimization
criterion at every level [33], constrained by factors such as
energy availability. Applying the tools developed in this letter
to system modeling in such contexts is an additional subject
for further research.
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