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Contraction Analysis of Nonlinear DAE Systems

Hung D. Nguyen, Thanh Long Vu, Jean-Jacques Slotine, Konstantin Turitsyn
Department of Mechanical Engineering, MIT, Cambridge, MA 02139 USA

This paper studies the contraction properties of nonlinear differential-algebraic equation (DAE) systems. Specifically we develop
scalable techniques for constructing the attraction regions associated with a particular stable equilibrium, by establishing the relation
between the contraction rates of the original systems and the corresponding virtual extended systems. We show that for a contracting
DAE system, the reduced system always contracts faster than the extended ones; furthermore, there always exists an extension with
contraction rate arbitrarily close to that of the original system. The proposed construction technique is illustrated with a power
system example in the context of transient stability assessment.
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I. INTRODUCTION

Differential-algebraic equations (DAE)-a generalization of
ordinary-differential equations (ODE)-arise in many science
and engineering problems, including networks, multibodies,
optimal control, compressed fluid, etc. [1]. Typically, algebraic
constraints result from multiple time-scale perturbation theory,
when the fast degrees of freedom are assumed to stay on
equilibrium manifold. In typical electrical and mechanical ap-
plications the algebraic relations represent the interconnection
constraints, which can be considered static on the time-scales
of system evolution. However, algebraic relations may be
also useful for lifted representations of the purely differential
systems. For instance, additional variables and relations can be
used to represent any polynomial nonlinearity in a quadratic
DAE form. Hence, DAE systems provide a powerful frame-
work for studying nonlinear systems of very general structure.
This work is motivated by the DAE representations of the
power system models, but the results are presented in a general
form.

The specific problem that motivates our study is the problem
of approximating the region of attraction of DAE equilibrium
points. The normal operating points of modern power systems
lack global stability because of the nonlinearities naturally
appearing in these systems. Characterization of the attraction
region and more generally assessment of the system security,
i.e. its ability to sustain all kinds of faults and disturbances,
is an essential task of modern power system operations. As
will be shown throughout the paper, the contraction provides
a natural framework for constructing the approximations of the
attraction region for a broad range of nonlinear DAE problems,
such as those arising in power systems.

Transient stability analysis is a common engineering pro-
cedure referring to the ability of the system to converge to
a stable post-fault equilibrium after being subject to distur-
bances. The incremental stability introduced in [2] suggests
an alternative way to look at the convergence of the post-
fault trajectories. In the light of contraction theory, the virtual
displacements of the states tend to zero as the time goes
to infinity, or in other words, all the trajectories shrink and
converge to the nominal one. Contraction analysis becomes a
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powerful tool for nonlinear analysis and control [2]–[5]. The
key property of the contraction is the preservation under dif-
ferent system combinations, which is advantageous in network
analysis.

In this paper we focus on the contraction analysis for
nonlinear DAE systems. Specifically we develop a practical
way of constructing the attraction regions by determining the
relation between the contraction rates of the original DAE
systems and its extension to virtual dynamics in differential-
algebraic space. The extended system can be thought of as a
virtual differential system that reduces to a given DAE after the
restriction of a subset of variables to their equilibrium mani-
fold. There can be multiple extensions of a given DAE system,
each characterized by different contraction rates. However, we
show that the contraction rate of the reduced system is always
higher, and on the other hand, there always exists an extension
with a contraction rate arbitrarily close to the original DAE
system. Our results hold for the most commonly used 1, 2, and
∞ norms, but can likely be extended to more general cases. We
use the theoretical results to develop a scalable technique for
constructing ellipsoidal inner approximations of contraction
regions from the 2 norm contraction metric. We illustrate the
technique with a practical example from power systems.

II. MAIN RESULTS

As motivated by the dynamics of electrical power systems,
we constrain ourselves to semi-explicit index 1 structural form
as below:

ẋ = f(x,y), (1)
0 = g(x,y). (2)

In this representation, vector x ∈ Rn corresponds to dynamic
state variables, y ∈ Rm refers to algebraic variables (whose
dynamics is assumed to be fast/instantaneous relative to the
dynamics of the state variables). For this class of systems, it
is impossible to obtain equivalent ODEs.

For convenience, reduction techniques are widely used to
eliminate the algebraic variables. Yet this practice may prohibit
one from exploring the underlying structure of the DAE form.
To that end a number of works in the literature concentrate on
the original systems rather than the reduced ones, for instant,
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in the context of stability analysis of the descriptor form as
below:

Eż = h(z), (3)

with zT = [xT ,yT ], hT = [fT , gT ] and E being a diagonal
R(n+m)×(n+m) matrix with Eii = 1 for i ≤ n and Eii = 0
otherwise [6]–[9].

For any given differential state x the equation (2) may have
multiple or no solutions for y. In engineering and natural
systems that motivate this study, disappearance of all the
solutions is usually an indicator of inappropriate modeling
that should be fixed accordingly, typically by introducing the
fast dynamics of the algebraic states in the model. We don’t
consider this scenario in our work, and we assume that for
every x there exists at least one solution Y(x) of the algebraic
system of equations (2). For every solution branch we can
naturally define the domain x ∈ R where such a solution exists
and can be tracked via homotopy/continuation procedure. This
domain is characterized by non-singularity of the algebraic
Jacobian:

R =

{
x : det

(
∂g

∂y

∣∣∣
y=Y(x)

)
6= 0

}
. (4)

We restrict our analysis only to such a domain associated
with a specific solution branch. For a system of differential-
algebraic equations (1), (2) we introduce the Jacobian defined
as

J(x,y) =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
. (5)

To simplify the notations we also define its restriction to the
algebraic manifold (2) as follows:

J(x,Y(x)) =

[
A B
C D

]
. (6)

One of the primary goals of this paper is to provide a
characterization of the contraction and invariant regions in
the state space of a DAE system. We formally define the
contraction domains Cp as set of differential states x for which
there exists an invertible metric θ(x) ∈ Rn×n such that the
differential equation ẋ = f(x,Y(x)) is locally contracting
with respect to this metric with some rate β > 0. Given that for
any infinitesimal displacement δx we have δy = −D−1Cδx
the standard contraction arguments presented in [2], [4] lead
to the following Proposition.

Proposition 1: The DAE system (1) (2) is contracting with
respect to the metric θ(x) in the domain Cp if for all x ∈ Cp
one has µp (Fr) ≤ −β with some β > 0 and

Fr = θ̇θ−1 + θ(A−BD−1C)θ−1. (7)

The term θ̇ in (7) represents the derivative of the metric along
the trajectory and is formally defined for DAE systems as

θ̇ =

(
∂θ

∂x

)T
f(x,Y(x)). (8)

The matrix measure µp(M) of a matrix M is defined as
µp(M) := lim

h→0+

1
h (||1 + hM ||p−1) following [10]. The

standard matrix measures as well as vector norms are listed
in Table I. The proof of proposition 1 directly follows from

Vector norm, ‖·‖ Matrix measure, µp(M)
‖x‖1 =

∑
i|xi| µ1(M) = maxj(mjj +

∑
i 6=j |mij |)

‖x‖2 = (
∑

i|xi|2)1/2 µ2(M) = maxi(λi{M+MT

2
})

‖x‖∞ = maxi|xi| µ∞(M) = maxi(mii +
∑

j 6=i|mij |)

TABLE I: Standard matrix measures

the contraction analysis for dynamical system presented in [2].
The matrix Fr appears naturally from the dynamic equation
on δv = θδx given by ˙δv = Frδv. Hereafter we refer to Fr
as the generalized reduced Jacobian matrix.

The standard contraction theory arguments suggest that
for any two trajectories x1(t),x2(t) that both remain within
the contraction region Cp during the interval [t1, t2] satisfy
d(x1(t2),x2(t2)) ≤ d(x1(t1),x2(t1)) exp(−β(t2−t1)) where
d is the distance associated with the metric θ. The assumption
that both of the trajectories stay within the contraction region
is critical for this result and can be verified only after showing
the existence of an invariant domain Ip ⊂ Cp satisfying:

x(t) ∈ Ip =⇒ ∀t′ ≥ t : x(t′) ∈ Ip. (9)

Constructing invariant regions is usually a difficult aspect
of applying contraction theory to systems which are not
globally contracting. One straightforward strategy for con-
structing invariant regions exists for systems that have an
equilibrium point x? inside the contraction domain satisfying
f(x?,Y(x?)) = 0. In this case, any ball Br = {x :
d(x,x?) ≤ r} that lies within the contraction region Cp
defines an invariant region, i.e. Br ⊂ Cp =⇒ Br ⊂ Ip. By
construction, such a ball also provides an inner approximation
for the attraction region of x? and can be naturally used in a
variety of practical applications such as security assessment of
power systems [11]. In this we develop a general framework
for constructing such invariant regions for a broad class of
nonlinearities, and we present a specific power system example
in sections III.

The key challenge in using the function Fr directly is its
highly nonlinear nature. Even for simple polynomial nonlin-
earities of f ,g the function Fr involves an inversion of the
matrix D(x). From a practical perspective, it is therefore
desirable to formulate conditions equivalent to contraction as
defined in Propostion 1 that do not involve any inversions of
matrices A,B,C,D which are nonlinearly dependent on x. In
order to achieve this goal we derive equivalent representation
of the contraction condition that doesn’t require elimination
of the local variables and is more suitable for analysis.
We introduce the generalized unreduced Jacobian matrix as
follows:

F =

[
Fr + θRTCθ−1 θRTDρ−1

QTCθ−1 QTDρ−1

]
. (10)

The generalized unreduced Jacobian F depends on the metric
θ defined as in the previous discussion, another metric ρ
associated with the y variable and two auxiliary matrices
Q ∈ Rm×m and R ∈ Rm×n. Formally, this Jacobian matrix
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may be associated with a virtual extended ODE representation
of the original system of the form

˙δv = Frδv + θRT (Cθ−1δv +Dρ−1δu), (11)
˙δu = QT (Cθ−1δv +Dρ−1δu). (12)

where δu = ρδy and so the expression Cθ−1δv+Dρ−1δu =
Cδx+Dδy = 0 defines the algebraic manifold. Whenever the
dynamics of δu can be considered fast, the restriction of the δu
variables to their equilibrium manifold results in the original
DAE systems. Therefore, this representation provides a family
of extended representations that reduce to the same original
system. It will be shown that this representation is useful for
characterization of the contraction and invariant regions.

The key property important for the analysis is defined in
the following relation:

Fδw =

[
Fr + θRTCθ−1 θRTDρ−1

QTCθ−1 QTDρ−1

] [
θδx
ρδy

]
=

[
Frθδx

0

]
+

[
θRT (Cδx+Dδy)
QT (Cδx+Dδy)

]
. (13)

where we have introduced the new variables vector δw ,[
δv
δu

]
. This observation allows us to formulate the following

central results of this work.

A. Forward theorems: from extended systems to reduced
ones

Lemma 1: Define

γ =

∥∥∥∥[δv + hFrδv

δu

]∥∥∥∥
p

−
∥∥∥∥[δvδu

]∥∥∥∥
p

− (‖δv + hFrδv‖p−‖δv‖p)

where h > 0. Then for all p ≥ 1, γ ≥ 0 if the following
condition holds.∥∥∥∥[δv + hFrδv

δu

]∥∥∥∥
p

−
∥∥∥∥[δvδu

]∥∥∥∥
p

≤ 0. (14)

The proof of Lemma 1 is as the following. For fixed δv and
hFrδv, γ depends solely on δu. Taking partial derivative of
γ with respect to |δuj | using the definition of p norm for a
vector, i.e. ‖v‖p= (

∑
i |vi|p)

1/p, yields the following:

∂γ

∂|δuj |
= |δuj |p−1

(∥∥∥∥[δv + hFrδv
δu

]∥∥∥∥p(1/p−1)
p

−
∥∥∥∥[δvδu

]∥∥∥∥p(1/p−1)
p

)
. (15)

On the other hand, the assumption p ≥ 1 leads to p(1/p−1) ≤
0. This together with (14) and (15) concludes ∂γ

∂|δuj | ≥ 0 for
all j = 1, . . . ,m. In other words, γ is indeed a monotonically
increasing function with respect to the absolute value of each
entry δuj . Moreover it can be seen that γ vanishes when δu =
0. Therefore for any non-zero δu, γ is non-negative.

For infinity norm one can prove the non-negativity of
the partial derivatives ∂γ

∂|δuj | by taking the limit as p goes
to infinity and exploiting the assumption presented by (14).
Alternatively γ can be directly evaluated using the matrix

measure expression associated with infinity norm listed in
Table I.

With Lemma 1 we introduce the first central result as the
following.

Theorem 1: For the system ẋ = f(x,Y(x)) and metric func-
tion θ(x), and contracting extended system F with µp(F ) < 0
characterized by the matrices Q,R, ρ, the following relation
holds:

µp(Fr) ≤ µp(F )νp(H). (16)

in which S = ρD−1Cθ−1, H =

[
1
S

]
, and

νp(H) = min
‖v‖p=1

‖Hv‖p . (17)

Note that for invertible H , one has νp(H) = 1/
∥∥H−1∥∥

p
.

Proof 1: The matrix induced norm definition ‖M‖ =
max
‖v‖=1

‖Mv‖ implies that for each positive scalar h, there exists

δvh with ‖δvh‖p > 0 satisfying the following equality:

‖δvh + hFrδvh‖p − ‖δvh‖p
h ‖δvh‖p

=
‖1 + hFr‖p − 1

h
. (18)

The logarithmic norm is then defined as

µp(Fr) = lim
h→0

‖δvh + hFrδvh‖p−‖δvh‖p
h ‖δvh‖p

. (19)

Lemma 1 implies that this expression can be also rewritten as

µp(Fr) ≤ lim
h→0

∥∥∥∥δwh + h

[
Frδvh

0

]∥∥∥∥
p

− ‖δwh‖p

h ‖δvh‖p
. (20)

On the other hand, applying the property defined by (13) we
have that

δwh + h

[
Frδvh

0

]
= δwh + hFδwh − h

[
θRT (Cδxh +Dδ̂yh)

QT (Cδxh +Dδ̂yh)

]
= δwh + hFδwh (21)

where δxh = θ−1δvh and δ̂yh = −D−1Cδxh. Combining
(20) and (21), we have that

µp(Fr) ≤ lim
h→0

‖δwh + hFδwh‖p−‖δwh‖p
h ‖δvh‖p

= lim
h→0

‖δwh + hFδwh‖p−‖δwh‖p
h ‖δwh‖p

‖δwh‖p
‖δvh‖p

. (22)

By definition

δwh =

[
δvh
δuh

]
= Hδvh, (23)

so ‖δwh‖p ≥ νp(H) ‖δvh‖p, and by combining this with the
assumption µp(F ) < 0, we can rewrite (22) as the following

µp(Fr) ≤ lim
h→0

‖δwh + hFδwh‖p−‖δwh‖p
h ‖δwh‖p

νp(H)

≤ µp(F )νp(H). (24)
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Q.E.D.
The below corollary of Theorem 1 provides the explicit

expression of νp(S) with p = 2.
Corollary 1: (2 norm) Assuming that all assumptions of

Theorem 1 are satisfied, the contraction rate associated with
the reduced system can be bounded as below

µ2(Fr) ≤ µ2(F )
√
1 + σ2

min(S) (25)

in which σmin(S) denotes the minimal singular value of the
matrix S.
The proof of Corollary 1 follows from Theorem 1 and note
that for p = 2, we have that ν2(H) =

√
1 + min

‖v‖=1
‖Sv‖22 =√

1 + σ2
min(S).

B. Converse theorems

Theorem 2: (2 norm) For a contracting system ẋ =
f(x,Y(x)) and metric function θ(x, t) with µ2(Fr) < 0 and
any ε > 0 there exists an extended system F characterized
by the matrices Q,R, ρ contracting with the contraction rate
satisfying µ2(F ) ≤ µ2(Fr)/(1 + ε).

Proof 2: This theorem can be proven by explicit construction
of the matrices Q,R, ρ, which ensures fast enough contrac-
tion of F . The matrix ρ is chosen to be small enough, so
that σ2

max(S) ≤ ε and R = ηD−T ρT ρD−1CP−1, Q =
−ηD−T ρT , where η = −µ2(Fr)/(1+ σ2

max(S)). This choice
of R and Q ensures that the symmetric part of F is block-
diagonal, so the following inequality follows from (13):

δwTFδw =

[
θδx
ρδy

]T [
Fr + ηSTS 0

0 −η1

] [
θδx
ρδy

]
= δvT

(
Fr + ηSTS

)
δv − η‖δu‖2

≤
(
µ2(Fr) + ησ2

max(S)
)
‖δv‖2−η‖δu‖2

= −η‖δw‖2+
(
η + µ2(Fr) + ησ2

max(S)
)
‖δv‖2

= −η‖δw‖2. (26)

Since this inequality holds true for any δw, we conclude that
µ2(F ) ≤ −η = µ2(Fr)/(1 + ε).

The counterpart of Theorem 2 for 1 norm and ∞ norm are
presented below.

Theorem 3: (1 norm and∞ norm) For a contracting system
ẋ = f(x,Y(x)) and metric function θ(x, t) with µp(Fr) < 0
and any ε > 0 there exists an extended system F characterized
by the matrices Q,R, ρ contracting with the contraction rate
satisfying µp(F ) ≤ µp(Fr)(1− ε) where p = 1,∞.

Proof 3:
Similar to proof 2 we need to construct an appropriate tuple

of matrices Q, R, ρ. Below we only present ∞ norm, but
1 norm can be considered in the same way. Choosing R =
0, Q = µ∞(Fr)ρD

−1, and metric ρ small enough so that
‖S‖∞ ≤ ε, leads to a diagonally dominant matrix F below:

F =

[
Fr 0

µ∞(Fr)S µ∞(Fr)1

]
, (27)

then we have the following relation:

µ∞(F ) = max{µ∞(Fr),

max
n+1≤i≤n+m

{µ∞(Fr) +

n∑
j=1

|µ∞(Fr)Sij |}}

≤ max{µ∞(Fr), µ∞(Fr) + |µ∞(Fr)|‖S‖∞}
= µ∞(Fr)(1− ε). (28)

Q.E.D.

C. Relation to other works

In this section we first discuss the relation to linear sta-
bility of DAE systems. The DAE systems have been studied
extensively under “descriptor” forms [6]–[9], [12] as well as
singular systems in [13]. In fact if there exists a matrix Z that
satisfies the Lyapunov inequality (31) in section III with J?
at an equilibrium z? and β = 0, then the descriptor system
is asymptotically stable. Theorem 2 not only suggests that the
existence of such matrix Z is indeed the sufficient condition
for linear stability, but also provides an explicit construction
of the certificate. The relation between the two notions of
contraction and linear stability is further discussed below.

Contraction analysis and linear stability are closely related
for autonomous systems. As discussed in section III-A if there
exists a stable equilibrium that lies within a ball-like invariant
region inscribed in the contraction region, all the trajectories
of the systems starting inside the ball will shrink towards
each other and merge to the nominal trajectory associated
with the equilibrium; hence, the system is linearly stable at
such equilibrium. In other words, if the system is linear stable
at a particular equilibrium, there exists a contraction region
centered at the equilibrium. This is true for ODEs as observed
in [14]. The converse theorems 2 and 3 provide an explicit
construction for DAEs.

From the contraction and linear stability comparability, the
inner approximated contraction region constructed below in
section III is indeed a robust linear stability region in the
variable space associated with the nominal operating point.
Speaking of robust linear stability region, any equilibrium,
if it exists and lies in such region, is a linearly stable one.
Moreover as motivated by applying contraction analysis to
the power systems which can be represented in DAE form,
incremental stability implies convergence and vice versa. For
the distinctions between the two concepts, interested readers
can refer to [15], [16].

Singularly perturbed systems are also related to DAE sys-
tems as the time constant ε → 0. [5], [17] revisit some key
results of singular perturbations using contraction tools, where
the fast and slow sub-systems are assumed to be partially
contracting. Our approach here, on the other hand, doesn’t
require the systems to be partially contracting in the algebraic
variable y. In comparison to the key theorems from [5], [17],
our results provide explicit conditions on the Jacobian matrices
that can be applied to any system. However, to our knowledge,
neither of our previously reported results on contraction of
singularly perturbed systems dominate each other.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016 5

With respect to the contraction condition, the condition
introduced in [18] can be recovered under our framework
when ε goes to 0, as follows. Consider the standard singular
perturbation system:

ẋ = f(x, y, t), εẏ = g(x, y, t), ε ≥ 0. (29)

Assume that the system (29) is partially contracting in x
and in y with respect to transformation metrics θ and ρ. For
simplicity let the transformation metrics be constant. Let’s
consider a Lyapunov function V =

∥∥[θδx ρδy]T∥∥ then the
system (29) is contracting if the generalized Jacobian Fsing =[
θAθ−1 θBρ−1

ρCθ−1/ε ρDρ−1/ε

]
has a uniform negative matrix mea-

sure. Therefore if we select Q = ρ−T /ε, R = D−TBT , then
Fsing = F . This implies that the central theorem 1 applies to
the DAE system associated to the system (29).

In [2], a similar class of systems was analyzed, where the
linear constraints were imposed on the differential systems.
The key conclusion that contraction of the original uncon-
strained flow implies local contraction of the constrained flow
is consistent with our results. However, apart from being
constructive, our results also don’t directly follow from the
observations made in [2] as in our case the contraction of the
extended system is not restricted to the algebraic manifold.

III. INNER APPROXIMATION OF CONTRACTION REGION

In this section we constraint ourself to the class of DAE
systems which can be represented by quadratic equations in
variables z. As a result the Jacobian J depends linearly on
z. As identifying the real contraction region is challenging
and even impossible in many practical situations, we intro-
duce a technique using LMI formulation for constructing an
inner approximation of contraction region centered at a given
equilibrium based on 2 norm. The approximated region has its
merits of determining transient stability in electrical systems
as shown in the application section.

Proposition 2: The DAE system (1) and (2) is contracting
in the contraction region Cp if there exists transform θ(x, t)
such that ∃β > 0, ∀x ∈ Cp, µp(F ) ≤ −β.

Proof 4: µp(Fr) is negative follows from Theorem 1. The
definition of contraction region in (7) then concludes the proof.
An important application of the Proposition 2 is to construct
the contraction region by analyzing the extended systems
where LMI formulation can be used for 2 norm. Since the
generalized unreduced Jacobian matrix introduced in (10) is
not suitable for LMI formulation, we rewrite the Jacobian
in more convenient form as below with a constant metric θ,
R = R̃+D−TBT and Q = Q̃, and ρ = 1 so that the system
contracts in y with respect to the identity metric:

δwTFδw =

[
δx
δy

]T [
PA+ R̃T R̃TD + PB

Q̃TC Q̃TD

] [
δx
δy

]
= δzTZTJ(z)δz, (30)

with a lower block diagonal auxiliary matrix Z =

[
P 0

R̃ Q̃

]
.

Such matrix Z also is used in linear stability assessment for
descriptor systems. This is discussed in details in section II-C.

With the new representation, the problem of solving µ2(F ) ≤
−β reduces to the following Lyapunov bilinear inequality in
Z and J(z):

ZTJ(z) + J(z)TZ � −β1. (31)

For any fixed Z the equation (31) defines a spectrahedral
region where the system is provably contracting. The invariant
region around equilibrium point could have been constructed
by inscribing the ball (ellipsoid) associated with the metric θ, ρ
inside this region. However, inscription of ellipsoids inside
spectrahedra is a NP-hard problem not scalable to the large
power systems. Instead, we propose an alternative procedure,
where we construct an intermediate polytopic region inscribed
in a spectrahedron in which we inscribe the contracting ball.

Due to the bilinear nature of (31) a contraction region can
be characterized iteratively, for example through the following
2-step procedure. First for a fixed point, say the equilibrium z?
which without loss of generality can be assumed zero, one sets
J(z) = J? then solves (31) for Z. Let Z? be the solution of the
first step, then the metric θ can be determined as the Cholesky
decomposition of P . Next we fix Z = Z? and perturb the
system around its equilibrium z?. The perturbation results in
a linear Jacobian matrix J(z) = J? +

∑
k zkJk where some

Jk may vanish, which implies the fact that not all states and
variables contribute to the Jacobian matrix. As long as the
inequality (31) is satisfied, the maximum admissible variations
z quantify the inner approximation of the contraction region.
Expressly the goal of the second step is to identify a region in
the variable space in which Z? is the common matrix satisfying
(31) for all inner points. This is equivalent to finding variations
z satisfying the following LMI:

J(z)TZ? + ZT? J(z) + β1 � 0. (32)

Note that (32) holds at the equilibrium. This leads to the
following:

ZT? J? + JT? Z? + β1 = −UTU � 0. (33)

Moreover for non-singular U one can symmetrize (32) by
multiplying on the left and the right by U−T and U−1,
respectively. As a result we have that

−1 +
∑
k

U−T zk(Z
T
? Jk + JTk Z?)U

−1 � 0. (34)

For each coefficient matrix Jk, using SVD decomposition,
yields the following:

U−T (ZT? Jk + JTk Z?)U
−1 =

∑
h

λkhekhe
T
kh. (35)

Then it’s sufficient to conclude that (34) holds if the following
condition satisfies:

σmax

(∑
k

zk
∑
h

λkhekhe
T
kh

)
≤ 1, (36)
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which then can be formulated as the following:

max
‖v‖2=1

∑
k

zk
∑
h

λkh(v
T ekh)

2

≤ max
k,h

|zkλkh|σmax
∑

l,h

elhe
T
lh


≤ 1. (37)

A box-type bound of the variation zk can be estimated as

max|zk|≤
1

(maxh|λkh|)σmax(
∑
l,h elhe

T
lh)
, (38)

which defines the bounds on each variable variation zk thus
identifying the inner approximated contraction region. It can
be seen that the explicit bound defined by (38) depends on
the uniform upper-bound of the contraction rate β and matrix
Z?. The bounds become more conservative for a large value
of β. Since there is an infinite number of choices of Z?
satisfying µ2(Z

T
? J?) ≤ −β, it’s essential to understand which

Z? would correspond to the least conservative bounds. The
bounds obtained from (38) can be also improved by deploying
a better estimated upper bound in (37).

A similar inner approximated contraction region can be also
constructed based on 1 norm and ∞ norm. As many practical
engineering systems require all physical quantities to be in
compliance with specified operational constraints, we propose
to use box constraint construction. We shall inscribe a box
inside the spectrahedron by allowing some variability to the
coordinates

zk ≤ zk ≤ zk, (39)

in all the directions k = 1, . . . n+m. To certify the box region
indeed lies in the contraction region we formulate a robust
linear programming showing that for all z satisfying (39), we
have that µp(ZT? J(z)) ≤ −β where Z? satisfies µp(ZT? J?) ≤
−β. Moreover one can carry on the same procedure to check
whether a ball-like region in the transformed space is inscribed
in the contraction region.

A. Invariant set construction
In this section we describe the procedure for constructing

an invariant set I2 that lies in the contraction region C2.
Assume that an inner approximation of the contraction

region, C2, constructed from section III is a convex region
defined by a set of linear inequalities eTi x ≤ bi, for i =
1, . . . , 2(n + m), and the equilibrium x? = 0. ei is a unit
vector with the non-zero element either +1 or −1 due to
the box-type constraints. bi > 0 represents the bound on
the variation along each direction, and bi is set to infinity
if the corresponding Gk vanishes. The linear transformation
with metric θ prompts a corresponding contraction region in v
space, i.e. C2v = {v|eTi θ−1v ≤ bi}, for i = 1, . . . , 2(n+m).
Then to construct an invariant set we find the largest Euclidean
ball centered at the equilibrium where v? = θx? = 0 that lies
in C2v. The problem can be formulated as the following LP:

maximize
r

r

subject to qi(r) ≤ bi; r ≥ 0 i = 1, . . . , 2(n+m) (40)

where the constraints be

qi(r) = sup
‖u‖≤1

eTi θ
−1(v? + ru)

= r
∥∥eTi θ−1∥∥2 . (41)

(41) follows from the Cauchy-Schwarz inequality, i.e. for
a nonzero vector x, the vector u satisfying ‖u‖2≤ 1 that
maximizes xTu is x/‖x‖2. It also can be seen that the LP
(40) admits the optimal solution rmax = min

i
{bi/

∥∥eTi θ−1∥∥2}.
IV. TRANSIENT STABILITY OF POWER SYSTEMS

In this section we demonstrate how the developed tech-
niques can be applied to the problem of constructing inner ap-
proximations of the contraction regions applicable to transient
stability analysis of power systems modeled in DAE forms.

A. Large-disturbance stability

Large disturbance stability or transient stability is defined as
the ability of the system to maintain synchronism after being
subject to major disturbances such as line failures or loss of
large generators or loads. Unstable systems will exhibit large
angle separation or voltage depression which lead to system
disintegration [19]. The objective of transient analysis is to
determine whether the system can converge to a feasible post-
fault stable equilibrium for a given pre-fault stable operating
point and a trajectory along which the system evolves during
the fault, the so-called fault-on trajectory. Assuming that all
operational constraints or feasibility conditions, and stability
conditions are satisfied at the post-fault equilibrium, we then
go into the convergence of the post-fault trajectory.

There are two main approaches to transient stability analysis
including time-domain simulations and energy based or direct
methods [20]. An alternative based on inner approximated
contraction region is then proposed. This doesn’t require
intensive computation efforts like the time-domain approach
while still providing a reasonably non-conservative stability
region in the state space. As long as the initial point of the
post-fault trajectory lies inside such region, the convergence
to post-fault stable equilibrium is guaranteed.

The salient features of the contraction approach include
scalibility, online analysis facilitation, and it does not require
tailored energy function construction. The heaviest compu-
tational tasks are solving Lyapunov inequalities and SVD
decomposition, which even of large scale problems, are ready
to be solved with existing algorithms in regular processors.
The contraction approach also allows the analysis be free
from post-fault trajectory numerical integration which is time
consuming and prevents online assessment. The third feature
makes a key distinction between the contraction approach
and the direct methods. Indeed the direct methods rely on
energy function construction which doesn’t have a general
form in lossy networks and there is a need for finding critical
energy levels based on which a stability region is identified.
The contraction approach, on the other hand, just requires the
transform θ and ρ under which the system is contracting. Once
the transform is found through solving Lyapunov inequalities
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a corresponding sub-region of the contraction region can be
constructed.

It’s worth mentioning that the inner approximated contrac-
tion region is also a robust linear stability region so that
the post-fault equilibrium is stable if it is an interior point.
By construction the feasibility of the constructed region is
easily validated as well. More importantly based on the inner
approximated region one can either gain insight about the
system stability “degree” or preliminarily compute “sufficient”
critical clearing time (sCCT ) which is more strict than the
actual CCT , the maximum allowed fault-on duration. Hence if
the fault is cleared before sCCT , the fault-on trajectory won’t
escape or exit the invariant region and the post-fault trajectory
will converge to a post-fault stable equilibrium inside the
invariant region. For more details on CCT one can refer to
[20], [21].

B. A 2-bus system
The applications of approximating the contraction region

are discussed above. In this section we illustrate the procedure
by constructing one for a two-bus system as shown in Figure
1 [22]. The 2-bus system includes one slack bus, and one

Fig. 1: A 2-bus system

generator bus with a load residing at the same bus. The slack
bus voltage is specified, i.e. V1 = 1.04 6 0. The generator,
modeled with a high order generator model, maintains the
voltage at bus 2 and generates active power at specific levels,
i.e. V2 = 1.025 p.u. and PG = 0.8 p.u.. The load consumes
fixed amount of powers, PL = 1.63 p.u. and QL = 1.025 p.u..
Note that hereafter we use r to denote the line resistance.

The sets of differential equations ẋ = f(x,y) which
describe the dynamics of the generator are listed below. The
details are introduced in [23].

T ′d0
d

dt
e′q2 = −e′q2 − (xd − x′d −

T ′′d0
T ′d0

x′′d
x′d

(xd − x′d))id2

+ (1− TAA
T ′d0

V2),

T ′′d0
d

dt
e′′q2 = −e′′q2 + e′q2 − (x′d − x′′d −

T ′′d0
T ′d0

x′′d
x′d

(xd − x′d))id2

+
TAA
T ′d0

V2,

T ′q0
d

dt
e′d2 = −e′d2 + (xq − x′q −

T ′′q0
T ′q0

x′′q
x′q

(xq − x′q))iq2,

T ′′q0
d

dt
e′′d2 = −e′′d2 + e′d2 + (x′q − x′′q −

T ′′q0
T ′q0

x′′q
x′q

(xq − x′q))iq2,

d

dt
sin δ′2 = 2πfn cos δ

′
2(−1 + ω2),

M
d

dt
ω2 = pm − id2vd2 − iq2vq2 −D(−1 + ω2). (42)

Algebraic equations, g(x,y) = 0, are composed of the
relations describing the generator, the network, and the load,
that can be stated as follow:

0 = −e′′q2 + x′′d2id2 + vq2,

0 = −e′′d2 − x′′q2iq2 + vd2,

0 = −vq2 + cos δ′2vx2 + sin δ′2vy2,

0 = −vd2 + sin δ′2vx2 − cos δ′2vy2,

0 = (cos δ′2)
2 + (sin δ′2)

2 − 1,

0 = cos δ′2iq2 + id2 sin δ
′
2 +

bvy2
2

+
rV1

r2 + x2

− xvy2
r2 + x2

− PLvx2 −QLvy2,

0 = − cos δ′2id2 + iq2 sin δ
′
2 −

rvy2
r2 + x2

− rV1
r2 + x2

+QLvx2 − PLvy2,

0 = v22 − v2x2 − v2y2. (43)

For the 2-bus system, the set of variables includes 6 states,
x = [E′q2, E

′′
q2, E

′
d2, E

′′
d2, sin(δ

′
2), ω2]

T , and 8 algebraic vari-
ables, y = [id2, iq2, Vd2, Vq2, V2, Vx2, Vy2, cos(δ

′
2)]

T , where
the subscript 2 indicates bus number 2. The system parameters
are given as the following: T ′d0 = 0.6, T ′′d0 = 0.02, xq =
0.8958, x′q = 0.1969, x′′q = 0.1, T ′q0 = 0.535, T ′′q0 = 0.02,
M = 12.8, D = 20, TAA = 0.002, pm = PG, r = 0.01938,
x = 0.05, b = 0.0528, fn = 60. All parameters are in p.u.
except time constants in seconds and frequency in Hertz.

A dynamic simulation and analysis package is developed in
Mathematica 10.3.0.0 taking PSAT dynamic models [23] as
the input. We also use CVX in MATLAB for solving Lyapunov
inequalities.

Fig. 2: The state sin (δ′2) of the generator simulated to 20 s

As shown in Figure 2, the system will converge to the
nominal equilibrium if the gaps between the initial values
of states, i.e. sin δ′2 in this case, and the nominal values do
not exceed the maximum distance that corresponds to the
maximum radius rmax and the metric θ as discussed in the
invariant set construction in section III-A.

Figure 3 shows the contraction region in state space which
is an ellipsoidal region corresponding to the ball-like invariant
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set as discussed in section III. The convergence of all inner
trajectories confirms that if the system starts from inside the
ball, the corresponding trajectory is contained at all times.
This can be interpreted as the following: if the post-fault
equilibrium and the initial point of the post-fault trajectory
both are a part of the region inside the ball, the system
is transient stable. It also can be seen that the constructed
invariant region touches the approximated contraction region
boundary which associates with the state sin δ′2. By assigning
non-uniform weights to variables z in (37), the invariant region
can be stretched along other directions as well.

Fig. 3: The ellipsoidal invariant region

V. CONCLUSION

In this work the contraction properties of Differential-
Algebraic Systems were characterized in terms of the con-
tracting properties of the extended Jacobian representing the
virtual differential system that reduces to a given DAE under
singular perturbation theory analysis. We established the rela-
tions between the contraction rates of the extended ODE and
reduced DAE systems and used these relations to develop a
systematic technique for constructing inner approximations of
the attraction region for quadratic DAE systems.

In the future we plan to extend our results to develop a more
accurate characterization of the contraction of systems with
strong time-scale separation and explore how the framework
can be used for systematic decomposition of complex and large
scale systems for distributed control/analysis purposes.
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