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Abstract—In future distribution grids with high penetration of
distributed generators more stable solutions may appear because
of active or reactive power reversal. The systems can operate
at very different states, and additional control measures may
be required to ensure that it remains at the appropriate point.
Under typical scenarios such as subjected to disturbances or
load shedding, the system may be trapped at another stable
equilibrium without violating any voltage constraints. In other
words, the stable equilibrium is viable. This paper aims to analyze
how the distribution system converge to the second stable and
viable equilibrium. The dynamic simulations are carried out
using Wolfram SystemModeler. The results are then analyzed and
explained from various viewpoints giving better understanding of
the system dynamics. In order to prevent undesired situations,
new policies such as regulating reactive power compensations
have been proposed. Moreover, a generic dynamic load modeling
is developed to capture the essential dynamic characteristics of
most of popular loads in power systems.

Index Terms—Voltage stability, multistability, power reversal,
dynamic load modeling, distributed generation

I. INTRODUCTION

Renewable energies may help reducing the fossil fuels con-

sumption, but it also introduces various technical challenges to

power systems. In particular the power flow reversal produced

by distributed generation may cause the distribution systems to

operate in very different conditions. There is a need to revisit

voltage stability of the systems under such unconventional

conditions.

The strong nonlinearities present in the power system de-

termine the existence, multiplicity, and stability of the viable

operating points [1], [2]. The nonlinear control loops inside

individual system components are responsible for the volt-

age collapse [3]–[5] and loss of synchrony phenomena [6]

that have caused some of the most severe blackouts in the

recent history. Generally, the power flow equations that are

commonly used for the description of steady states of the

power system [7] may have multiple solutions [8], but in

typical operating conditions, there always exists a high voltage

solution that is considered a normal operating point [9].

The power flow equations solutions manifold has been

studied rather extensively in the context of transmission grids.

The existence of multiple solutions has been probably first

identified in [10]. Series of works in the 80s have explored the

relation between the solution manifold and voltage stability of

the system [11], [12]. Efficient continuation-type algorithms
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for finding the solutions have been proposed in [8]. The most

advanced approaches towards the transient stability problem

known under the name of “direct methods” are based on

the analysis of saddle-node type of solutions of power flow

equations [13]. However, most of the works focusing on

multiplicity of solutions and their properties have targeted the

transmission grids. There was little effort in understanding the

solution manifold of distribution grids because vast majority

of these networks operate in the conditions when only two

solutions coexists for a given set of parameters. The structure

of the manifold is very well captured by the textbook two-bus

system used to describe the well-known nose-curve.

The structure of the solution manifold in distribution grids

in reversed power flow regime is however poorly understood,

although there are reasons to believe that it will be very dif-

ferent from the classical nose-curve type manifold. Although

the direction of the power flow does not affect the quali-

tative properties of the solutions in linear (DC power flow)

approximation, it becomes important when the nonlinearity is

strong. The symmetry between the normal and reversed power

flow solutions is broken because the losses that are the major

cause of nonlinearity in the power flow equations are always

positive. In traditional distribution grids the consumption of

power and the losses have the same sign, while in the situation

with reversed flows the processes of power injection and

thermal losses are competing with each other. This competition

may manifest itself in the appearance of new solutions of

power flow equations that do not exist in the non-reversed

power flow regime. From power engineering perspective this

phenomena can be understood with the following argument.

In the presence of power flow reversal the voltage is supported

to be high enough for low voltage solutions to appear. This

phenomena was observed by one of the authors in a recent

work [14] but has not been explored in greater details since

then.

Even for the traditional nose-curve scenario, the second low

voltage solution may be stable under some conditions. This

has been recognized for a long time [15]–[17]. Moreover,

Venkatasubramanian in [17] noted that the situations in which

the systems gets trapped at the second stable equilibrium have

been observed. However, the relevance of the low voltage

stable equilibrium did not draw much attention and/or has

not been studied extensively because this stable equilibrium

is neither viable nor convincingly verified numerically due to

modelling difficulties. The main problem in the assessment of

the stability is the highly complex nature of the load dynamics.

The dynamic behavior of the loads are a result nonlinear

interactions of millions of heterogeneous components that are
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poorly understood and not fully known to the operator of any

given grid. At the same the time the dynamic behavior has a

direct effect on the stability properties that cannot be directly

assessed via static power flow analysis [15]. In this work we

attempt to address this problem by introducing a new form

of the load models that is consistent with existing models in

normal conditions but does not suffer from the convergence

problems in abnormal situations.

The paper is organized as follows. In part II introduce the

Gröbner basis technique for characterization of the global

solution manifold. This technique does not suffer from the

convergence problems and is a convenient way of the manifold

analysis at least for small enough systems. We use this

technique to demonstrate the appearance of new load flow

solutions under power flow reversal. In part III we introduce

and explain the extension of the traditional load models

applicable in the abnormal operating conditions. The load

model is used to show the linear stability of some of the new

solutions. In section IV we peform dynamic simulations on a

three-bus model that illustrate the effect of multi-stability and

possibility of system entrapment in undesirable low voltage

states. The simulations illustrate both the stability of some

regions of low voltage part of the nose curve as well as the

effect of multi-stability at high loads.

II. CHARACTERIZE POWER FLOW SOLUTION MANIFOLD

A. Power flow solution branches

Traditional approaches for analysis of power flow solutions

based on iterative methods like Newton-Raphson, continuation

power flow, and their variations [7] are not suitable for

identification of all branches of the solution manifold. By

construction these methods find only one solution for given

set of parameters. There is no systematic way of adjusting

the initial conditions that would guarantee that all solutions

branches are found. Several techniques have been introduced

in the literature for identification of all power flow solutions,

the optimal multiplier based method [18], and more recently a

holomorphic embedding method [19]. An alternative approach

proposed in this manuscript is based on the Gröbner basis

technique applicable to any systems of polynomial equations.

The introduction to the Gröbner basis approach can be found

in [20], [21], while here we introduce the well-known Buch-

berger’s algorithm for solving the set of polynomial equations.

To our knowledge this techniques has been applied to power

flow equation only in [22]–[24] but has not received wide

adoption in the community.

In the following, we use the rectangular form of power flow

equations. For the simplicity of explanations we restrict the

discussion to radial configurations of n buses as shown in

Figure 1. In this grid, the bus 1 is slack bus with voltage

V1 = 1∠0.

At bus i, 2 ≤ i ≤ n, let i) Pi and Qi be active and reactive

power consumed or generated at bus i (so Pi > 0 corresponds

to generation); ii) Vi = ViRe + jViIm be the rectangular form

Fig. 1: A radial network

of bus voltage. The power flow equations can be expressed as

follows [24]:

Pi =
n
∑

k=1

Gik(ViReVkRe + ViImVkIm)

+

n
∑

k=1

Bik(VkReViIm − ViReVkIm);

Qi =

n
∑

k=1

Gik(VkReViIm − ViReVkIm)

−

n
∑

k=1

Bik(ViReVkRe + ViImVkIm)

(1)

where Yik = Gik + jBik is an entry of the bus admittance

matrix, Y .

For well-defined system of polynomial equations the Buch-

berger’s algorithm transforms the system of equations in trian-

gular form where the first equation is univariate polynomial,

that can be solved using a wide range of single-variable

polynomial solution techniques. Second equation expresses the

second variable as a polynomial of the first one, the third

equation provides a similar expression for the third variable

and so on.

The Buchberger’s algorithm is implemented in Wolfram

Mathematica [20], [24] and other computer algebra software

systems. We use the Mathematica software to transform the

power flow equations into the following form:

∑N

k=0 a1kx
k
1 = 0

∑N

k=0 a2kx
k
1 + b2x2 = 0

. . .
∑N

k=0 ajkx
k
j−1 + bjxj = 0 (2)

. . .

where x2j = V(n−j)Re and x2j+1 = V(n−j)Im and N = 2n−1.

The coefficients ajk depend in general on the system parame-

ters, specifically the active and reactive power consumptions,

so the first equation establishes the algebraic relation between

the voltage magnitude and power consumption levels.

As described above, these equations can be solved one by

one to get the voltage components on all the buses. There are

many techniques to find all solutions of univariate polynomial

equations that allow us to identify all the branches of the

power flow equations. The first equation of (2) is first solved

for all possible solutions of x1 = VnIm. Substituting each

of the solutions VnIm into the second equation of (2) allows

to solve it for VnRe. The iteration procedure continues until
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V2Re is found. Finally, the voltage magnitude of any bus can

be determined as:

|Vi| =
√

V 2
iRe + V 2

iIm (3)

III. DYNAMIC LOAD MODEL

The stability of the different solution branches depends on

the dynamical behavior of loads on individual buses. Load

modeling is a mature field that has been developed for several

decades [25]–[28]. Traditional models of load dynamics are

based on combination of differential and algebraic equations

for the load state: The algebraic equations in those systems

describe the so-called constraint manifold and represent the

equilibrium manifold of fast degrees of freedom that relax to

equilibrium on time scales below the model resolution. Typ-

ically the fast degrees of freedom describe the instantaneous

response of the network to the changing loading conditions.

In most of the reported models describing the slow dynamics

of the system on the tens of seconds-minutes timescales,

the instantaneous response of the network is modelled via

nonlinear load-flow equations similar to (1). The state of the

loads in those models is described by the values of active

and reactive power consumption that change according to

some dynamic law. Although these models are actively used

in the community and have been validated in wide range of

normal operating conditions, they are not always applicable

to abnormal situations when the solution of algebraic power

flow equations does not exist. Similarly, this model can be

ill defined in a situation when power flow equations have

multiple solutions. These problems are purely mathematical

and arise when the implicit modeling assumptions about the

dynamics of fast and slow degrees of freedom no longer

hold. In order to overcome these problems we introduce an

alternative representation of load models that is equivalent to

the standard models in normal operating conditions but does

not suffer from convergence problems in abnormal situations.

Within our modeling framework the state of each individual

load k is described by its instantaneous conductance gk and

susceptance bk values. The instantaneous values of active and

reactive power consumption levels are equal to pk = gk|Vk|
2

and qk = bk|Vk|
2. The steady state (static) consumption

levels of the loads are given by the functions P s
k (|Vk|, t)

and Qs
k(|Vk|, t) that may represent arbitrary dependence on

bus voltage. The explicit dependence of time here represents

the change in active/reactive power demand of the load.

Also, for renewable generators it may represent the changing

environmental conditions, like wind or solar irradiance. We

assume that the dynamics of instantaneous conductance and

susceptance levels gk(t), bk(t) is described by first order

differential equations that depend only on local values of

voltage magnitude |Vk| and :

ġk = fg
k (gk, |Vk|), (4)

ḃk = f b
k(bk, |Vk|). (5)

The steady-state value of active and reactive power imply that

the zeros of the functions fg
k , f

b
k have to satisfy the following

conditions for any value of the bus voltage |V |:

fg
k (gk =

P s
k (|V |, t)

|V |2
, |V |) = 0, (6)

f b
k(bk =

Qs
k(|V |, t)

|V |2
, |V |) = 0. (7)

Moreover, we assume that the equilibria pk = P s
k , qk = Qs

k

are stable for fixed values of bus voltage |Vk|, which implies

that ∂fg
k/∂gk, ∂f

b
k/∂bk < 0 for pk = P s

k , qk = Qs
k. This

implies, that each individual load is stable when connected to

a fixed voltage slack bus. Note, that this conditions do not

imply the overall stability of the operating point.

One simple example of the load model that satisfies all the

conditions above and used throughout this paper is presented

below:

τg k ġk = −(gk|Vk|
2 − P s

k ), (8)

τg k ḃk = −(bk|Vk|
2 −Qs

k). (9)

where τg k and τb k are time constants correspond to the load

at bus k.

One can easily check that this model satisfies the equi-

librium and stability conditions described above. The main

advantage of the proposed model is the simple form of the

network equations that have unique solution for any state of

the system. This form of network equations is based on the

implicit assumption that the instantaneous levels of the load

admittances change slower in comparison to the electromag-

netic transients in the network. In this case one can model

the electromagnetic dynamics of the networks with a simple

equilibrium Kirchhoff laws. This assumption naturally holds

for most of the known loads and generators, except, probably

fast power electronic devices like inverters. However, these

devices can be also incorporated in the model by introducing

dynamical equations with small time constants.

Note, that our model is just another form of the traditional

dynamic load models introduced originally by [26], [29]:

Ṗd + f(Pd, V ) = g(Pd, V ) V̇ (10)

Here Pd is the instantaneous power, that is denoted by pk =
gk|Vk|

2 in our notations and V is the bus voltage magnitude,

referred to as |Vk| in equations (4,12). The more specific form

of these equations, known as exponential recovery model was

introduced by Karlsson and Hill in [26], [29]:

Tp Ṗd + Pd = Ps(V ) + kp(V ) V̇ (11)

We can recover the model (10) from equation (8) by taking the

derivative of gk|Vk|
2. This results in the following expression:

ṗk +
pk − P s

k (|Vk|)

τg k

|Vk|
2 = 2

pk
|Vk|

d

dt
|Vk| (12)

IV. DYNAMIC SIMULATIONS OF A THREE THREE-BUS

NETWORK

In this and the second sections, we perform dynamic sim-

ulations of two simple networks to show that the two stable

equilibria of load dynamic equations may coexist at the same
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time, and that the distribution system may become entrapped

at the lower voltage equilibrium.

First, we consider a three-bus network as shown in Figure 2

with bus 1 being the slack bus and buses 2 and 3 representing

the dynamic loads with distributed generation exporting reac-

tive power. This system could represent the future distribution

grids with the inverters of PVs panels participating in voltage

regulation (see [30] for further discussions of this proposal).

Alternatively, it could represent highly capacitive grid, for

example involving long underground cables.

Fig. 2: A three-bus network

The dynamic equations for the loads have the following

form:

τ1ġ = −(p− P s) (13)

τ2ḃ = −(q −Qs) (14)

We assume that the steady-state active and reactive power

levels don’t depend on the bus voltage, so that P s and Qs

depend only on time. In other words, the loads can be classified

as constant power loads, that attempt to achieve the given

power demand levels P s(t), Qs(t). This assumption is clearly

a simplification of the real loads. However, it is a common

assumption in most of the classical voltage stability studies,

and also may be a good approximation of power systems with

agressive VAR compensation or power grids interconnected

through fast voltage source converters (VSC).

In our simulations we use τ1 = τ2 = 0.07 s for the load at

bus 2 and τ1 = τ2 = 0.03 s for the load at bus 3. The actual

values are not very important, we chose them for convenience

of presentation, but physically the fast dynamic loads could

correspond to power electronics regulating the voltage levels

on consumer side. Both of the power lines between buses

1 − 2 and 2 − 3 have the same values of resistance and

inductance: r = 0.1464 p.u. and x = 0.5160 p.u. The load

power consumption levels are defined as: Pi = PG i+PL i and

Qi = QG i +QL i; where i is the load number, i = 2, 3. PG i

and QG i are the active and reactive powers produced from

distributed generators at bus i, whereas, PL i and QL i are the

active and reactive powers consumed at bus i. The power levels

have negative values if the bus is generating power, whereas,

positive values indicate that the bus is consuming power.

A. The transient from the high voltage equilibrium to the low

voltage one

We consider the following scenario that leads to the entrap-

ment of the system in low voltage equilibrium.

E
H

E
L
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(a) p2 − V2 curve
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(b) p2 − V3 curve

Fig. 3: Voltage multi-stability in a three-bus network

The bus 3 has base demand level P s
3 = −0.75 p.u. and

Qs
3 = −0.45 p.u. which corresponds to a capacitive load

producing active power. The base active and reactive power

demands of load 2 are also given as P s
2 = −0.7 p.u.,

Qs
2 = −0.9 p.u. While keeping Qs

2 , P
s
3 , Qs

3 fixed to equal

to the base level and changing the active demand level at bus

2, P s
2 , we can plot different PV curves as in Figure 3 with two

stable equilibria. In these plots, the blue dot segments represent

stable equilibria and the red dot segments - the unstable ones,

all observed for different values of P s
2 . The large blue dot

represents the high voltage stable equilibrium, EH , and the

large red one marks the low voltage one, EL. The following

scenario initiates the transition of the system from the high

voltage equilibrium to the low voltage one.
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Fig. 4: The power demands at bus 2 and bus 3 during the first

disturbance

Assume that initially the system is operating at the high

voltage equilibrium, EH . In the dynamic simulation, the

preferred operating condition can be reached by choosing

appropriate initial conditions in the neighborhood of the steady

state. A suggested initial condition is g2 = −0.324 p.u.,
b2 = −0.416 p.u., g3 = −0.269 p.u., b3 = −0.161 p.u. The

transient of the system is shown in Figure 5 following the blue

arrows.

After the system reaches the high voltage equilibrium, a

large disturbance occurs, i.e. distributed generation partly is
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lost. For example it could represent the cloud covering the

PV panels with a shadow. Therefore, the loads change their

modes from generating to consuming both active and reactive

powers as in Figure 4. As a result, the system starts to diverge

from the high voltage stable equilibrium, EH , and approach

the low voltage one, EL. This progress is recorded in Figure 5

following the red arrows. The transient dynamics of the system

dies out around t ≈ 20 s.

Later, at td = 20 s the second disturbance in P s
2 occurs that

changes the demand P s
2 to some lower value P s

2 = −0.56 p.u.
for 2 s. As shown in Figure 6, the system first moves away

from the low voltage equilibrium following the blue arrows

then returns back to the same equilibrium following the

blue dashed arrows. Our numerical experiments with several

disturbances with different amplitudes and durations indicate

that the low voltage equilibrium is nonlinearly stable.

Fig. 5: The PV curve at bus 2, t < 20 s
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Fig. 6: The PV curve at bus 2, 20 s ≤ t ≤ 30 s

Figure 7 shows how the voltage at bus 2 and bus 3 illustrates

changes between two voltage levels.

B. Recovering to the high voltage stable equilibrium from the

low voltage one

In this section, we introduce another scenario which shows

how the system can be forced back to the desirable working

conditions at the high voltage equilibrium, EH after being

entrapped at the low voltage stable equilibrium, EL.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

t HsL

V
2
Hp

.u
.L

(a)

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

t HsL

V
3
Hp

.u
.L

(b)

Fig. 7: Voltages at bus 2 and bus 3 for the small second

disturbance, t ≤ 30 s

From section IV-A, the system is entrapped at the low

voltage equilibrium at t ≈ 20 s. After that, the second large

disturbance happens cause active power demand level at bus

2, P s
2 , to increase for 2 s. The similar disturbance can hap-

pen when PVs generation reduces. Consequently, the system

returns to the high voltage equilibrium with the trajectory

shown in Figure 8. The instantaneous power consumptions

and voltages at bus 2 and bus 3 are shown in Figure 9 and

Figure 10.

Fig. 8: The PV curve at bus 2, 20 s ≤ t ≤ 30 s

V. CONCLUSION

In this work we have shown that distribution grids with

active or reactive power flow reversal can have multiple stable

solutions of the power flow problems. We proposed a novel

technique for characterization of all the solution branches

based on the Gröbner basis approach. The stability of the

low voltage solution branches has been demonstrated with

the dynamic simulations based on the new representation

of the standard load models that does not suffer from the

divergence problems. More analysis is required to establish

new regulations that prevent the entrapment in future power

grids with high penetration of DG and power electronics.

In the future works we plan to extend the Gröbner basis

approach to large systems with the help of reduction and ap-

proximation techniques. The extension of this approach could

be useful for development of nonlinear dynamic equivalents of

large-scale distribution grids and the effects of distributed con-

trols on the overall system stability. Incorporation of dynamic
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Fig. 9: The power consumptions at bus 2 and bus 3, t ≤ 30 s
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Fig. 10: Voltage at bus 2 and bus 3 for the large second

disturbance, t ≤ 30 s

stability analysis in the planning stage decision making process

may require new stability criteria that guarantee the stability

in the presence of load uncertainty. The sufficient criteria can

be developed with the help of the more general D-stability

framework and will be reported in the future works.
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