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Robust Stability Assessment in the Presence
of Load Dynamics Uncertainty
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Abstract—Dynamic response of loads has a significant effect on
system stability and directly determines the stability margin of the
operating point. Inherent uncertainty and natural variability of
load models make the stability assessment especially difficult and
may compromise the security of the system. We propose a novel
mathematical “robust stability” criterion for the assessment of
small-signal stability of operating points. Whenever the criterion
is satisfied for a given operating point, it provides mathematical
guarantees that the operating point will be stable with respect to
small disturbances for any dynamic response of the loads. The cri-
terion can be naturally used for identification of operating regions
secure from the occurrence of Hopf bifurcation. Several possible
applications of the criterion are discussed, most importantly
the concept of robust stability assessment (RSA), that could be
integrated in dynamic security assessment packages and used in
contingency screening and other planning and operational studies.
Index Terms—Bifurcation, dynamics, modeling, power system

simulation, power system stability, robustness, uncertainty.

I. INTRODUCTION

L OSS of stability of power systems usually results in some
of the most dramatic scenarios of power system failure

and has played an important role in most of the recent blackout.
The dynamic of response of loads affects the voltage and to
lesser extend angular stability in most important way [1]. The
loads affect the overall system behavior and may lead to loss of
stability because of insufficient damping [2]. Typically the loss
of stability of the system occurs via Hopf bifurcation [3]–[5],
when some part of the upper branch of the nose curve becomes
unstable. The load response was shown to play a major role in
this scenario for example in [6]–[9]. Hereafter, whenever we
mention stability, we mean small-disturbance stability that as-
sociates with a particular operating point.
Loads, by definition, represent an aggregate of hundreds or

thousands of individual devices such as motors, lighting, and
electrical appliances [10]. Load modeling has been a subject of
intensive research for several decades [11]–[15]; however, it is
still a rather open subject. Even though some certain types of
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loads such as aluminum or steel plant, and pumped hydroelec-
tric storage are considered as well-identified ones [16]; due to
its natural complexity and uncertainty, load dynamics, in gen-
eral, may be never known completely in operational planning,
operation, and control [17], [18]. The lack of knowledge about
the dynamic characteristic of each individual component due
to poor measurements, modeling, and exchange information, as
well as the uncertainties in components/customers behaviors via
switching events contribute to load uncertainties. Hence, loads
are the main source of uncertainty [18] that undermines the ac-
curacy of the power dynamic models used by system operators
all over the world.
Incorporation of the uncertainty into existing models is es-

sential for improving the system security usually defined as the
ability of the system to withstand credible disturbances/contin-
gencies while maintaining power delivery services continuity
[19], [20]. The future power systems will likely be exposed to
higher levels of overall stress and complexity due to penetration
of renewable generators, and more intelligent loads, deregula-
tion of the system, and introduction of short-time scale power
markets. Secure operation of these systems will necessarily re-
quire the operator to track the voltage stability boundary with
new generation of security assessment tools providing compre-
hensive, fast and accurate assessment [21]. This work addressed
the need in “robust” security assessment tools that can provide
security guarantees even in the presence of modeling uncer-
tainty.
In [22]–[24], several techniques were developed that rely on

transversality conditions for quantifying the distance to var-
ious types of bifurcation including Hopf bifurcation in multi-
dimensional parameter space. These techniques ensure robust
stability of the equilibrium associated with nominal parameter

. Although they could be naturally extended to a uncertainty
in small subspace of parameters, there extension to situations
when the space of uncertain parameters has high dimension.
In this paper, we provide robust stability certificate in multidi-
mensional space of certain system parameters. Unlike the works
mentioned above we do without tracking the most dangerous di-
rection, rather we indicate whether such directions exist or not.
Hence, we do not attempt to find the unstable points associated
with some certain critical parameters.
The existence of robust stability certificate and whole region

of operating points that are certified to be robust stable provides
new practical alternatives for dealing with load dynamics un-
certainty. It has been noted in [25] that traditional “voltage col-
lapse” instability is not affected by the load dynamics as it corre-
sponds to saddle-node bifurcation, where the equilibrium point
disappears altogether. At the same time for the more common
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Hopf bifurcation it was argued in [26] that sensitivity analysis of
the system trajectories may provide enough information to as-
sess the risks associated with common disturbances. Moreover,
whenever the system operates in the robust stability regime,
the stability can be certified even without knowing the dynamic
characteristics of the load altogether. The stability of the system
can be certified simply by analyzing the static characteristics of
the loads in combination with well-understood dynamic models
of generators. In this sense, we argue that accurate modeling of
the loads is essential only when the system operates in the inter-
mediate regimes of the nose curves or the PV curves, between
the robust stability region and the saddle-node bifurcation on
the nose tip.
The structure of the paper and themain contributions are sum-

marized below. After introducing our modeling assumptions in
Section II-B we derive the novel robust stability criterion in
Section III. Then, we propose a practical algorithm RSA for
robust stability certification. In Section V, we perform various
simulations with several test cases from 2-bus system to WSCC
3-machine, 9-bus system and the IEEE 39-bus New England
system to illustrate the concept of robust stability and RSA.
The dynamic simulations are implemented in SystemModeler
4.0 and the computations are performed in Mathematica 10 and
with the help of CVX program, a package for convex program-
ming. Then in Section IV we discuss the proposed applications
of the algorithm, and possible extensions to other kinds of un-
certainty. Finally, the non-certified robust stability region is dis-
cussed in Section VI.

II. VOLTAGE STABILITY AND LOAD DYNAMICS

A. Voltage Stability

While the power system operates in stressed heavily loaded
regime it may be prone to subject to voltage stability prob-
lems. The secure operating region is confined by voltage sta-
bility boundary. As a common practice, static voltage stability
criteria is widely used by system operators [27], [28]. Moreover,
it has been argued that static analysis is preferred over dynamic
approach [29]. At the same time it has been reported in many
works that Hopf bifurcation may destabilize the system before
it reaches the static stability limits [4].
Under some particular conditions, Hopf bifurcation may

not occur [31] but typically, Hopf bifurcation determines the
stability margins of most common systems [4] when the system
exhibits Hopf bifurcation before it reaches the saddle-node
bifurcation point or the tip of the nose curve. This situation
can happen in the quasi-stable Hopf bifurcation region shown
in Fig. 1. The term quasi-stability used in power engineering
is related to the oscillatory behavior of the system that is
observed after the occurrence Hopf bifurcation [30]. Detecting
the loadability limits associated with the bifurcation is a much
more complicated problem in comparison to the static stability
analysis associated with the saddle-node bifurcation [32]–[34].
Some realistic examples of finding Hopf bifurcation point can
be found in [16] and related works. In this context, the key
contribution of this work is an alternative approach based on

Fig. 1. Qualitative visualization of Hopf bifurcation [30].

robust stability. Whenever the robust criterion is satisfied, the
system is mathematically guaranteed that Hopf bifurcation
cannot occur.

B. Dynamic Load Modeling

The stability of any operating point and the position of the
Hopf bifurcation on the nose curve depends on the dynamical
behavior of loads on individual buses. Traditional models of
load dynamics are based on combination of differential and al-
gebraic equations for the load state. In steady state the loads
can be characterized by their static characteristics and

which describe the dependence of the active and re-
active power consumption levels on the load bus voltage
level and system frequency . The dynamic state of the loads
is typically characterized by single state variable that repre-
sents the internal state of the system, for example the average
slip of the induction motors. Whenever the composition of the
loads on a single bus is highly heterogeneous, it may be repre-
sented by a parallel interconnection of several components char-
acterized by different models. At any moment of time the load
consuming active power and reactive power can be charac-
terized by the effective conductance and susceptance

. The first order dynamic model for the conductance
representing the dynamics of the internal state of the load can
be than written in a general form as

(1)

The right-hand side of this equation is not arbitrary and
should have the equilibrium point corresponding to the
steady state characteristic of the load. Hence whenever the
active power consumption is equal to steady rate, so

, the right-hand side of (1) should vanish,
so . Any function that satisfies
this relation can be rewritten as .
In this form, the factor generally depends on voltage and
frequency and can be interpreted as instant relaxation rate of
the load. Whenever the load is stable when connected to an
infinite slack bus, the factor can be trivially shown to be
positive, so . The same mathematical form and analysis
also apply to the load susceptance.
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This discussion allows us to conclude that for the purposes of
small-signal stability studies the first order models of the loads
can be represented as

(2)
(3)

Here the index runs over all load buses in the system, the fac-
tors represent the uncertainties in the dynamic models,
that can be also interpreted as relaxation time. The factors
and represent the voltage dependent static characteristic of
the loads.
This type of load model is also introduced in [6], [35], and

[36], typically for thermostatic loads. However as we have ar-
gued in [37] this model can naturally be used to represent the
standard models for thermostatically controlled loads, induc-
tion motors, power electronic converters, aggregate effects of
otherwise unmodeled distribution load tap changer (LTC) trans-
formers, etc. The static loads can be also naturally modeled
within this framework by taking the limit . Obviously,
the range of time constants is wide, ranging is from cycles to
minutes and can introduce a lot of uncertainty in the modeling
process.
We finish this section by comparing themodel to the two other

classical load models. Equations (2) are just another form of the
traditional dynamic load models introduced originally in [12],
[38]:

(4)

Here is the instantaneous power, that is denoted by
in our notations and is the bus voltage magnitude, re-

ferred to as in (2). The more specific form of these equations,
known as exponential recovery model was introduced in [12],
and [38]:

(5)

We can recover the model (4) from (2) by taking the derivative
of . This results in the following expression:

(6)

Another equivalent model was introduced in [14] and [39]:

(7)

(8)

where is the state; subscripts and indicate steady state and
transient values, respectively;

. This model is equivalent to
(2), (3) with and when .
The proposed load model can naturally represent the most

common types of loads, such as induction motors, thermostat-
ically controlled loads. Hence, we believe that the form of the

Fig. 2. Induction motor load model [38].

load model is rather general and can be used in a variety of prac-
tically relevant problems.
For example, belowwe show, how the induction motor model

can be embedded in our generic modeling framework.
The induction motor depicted in Fig. 2 can be described as

[38]

(9)

where is the motor slip, is the base frequency, is the rotor
moment of inertia, is the mechanical power, and is the
electric power given by

(10)

Since , from (10), we can represent the motor as
the dynamic inductance with

(11)

In normal operating regime, this relation can be also reversed
so that .
Differentiation of the two sides of (11) with respect to time

yields the following expression:

(12)

where . As long as can be expressed in terms
of , we reproduce the general form (1). Similar approach can be
applied to most of the other types of loads, like thermostatically
controlled loads, static loads behind under-load tap changers
(ULTCs), and certainly the static loads which are described in
more detail in Appendix A.
From (11) and (12), the induction motor load can be modeled

in the form of (1). More importantly, the proposed dynamic load
model not only is convenient for static analysis even in non-con-
ventional power flow regime [37] but also satisfies all funda-
mental requirements for load models in voltage stability studies
which are mentioned in [40].

III. STABILITY THEORY

In this section we address the question of the small-signal
stability of an operating point by first reviewing the classical
stability criteria applied to the problem of voltage stability of
modern power system models in Section III-A and then intro-
duce the central result of the paper: robust stability criterion in
Section III-B.
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A. Linear Stability
Most common models of power system dynamics describe

the evolution of the power system in terms of a system of non-
linear differential algebraic equations of the form

(13)
(14)

where are vectors representing the state vari-
ables, algebraic variables. The state variables can be naturally
decomposed in generator and load states .
Here and are the total number of states associated with
loads and generators, respectively. Moreover, we assume that
the subset of algebraic variables represents the bus voltages,
including the voltages on load buses.
Under the assumptions above, it is possible to represent (13)

in terms of and as

(15)
(16)
(17)

where is a diagonal matrix with the size of whose di-
agonal entries are the time constants of corresponding loads as
introduced in (2); and are the functions associate with
the sets of generators and the loads, respectively. Note that in
this representation, the functions and can be assumed
to be known and all the uncertainty is aggregated in the matrix
. This assumption is reasonable in the situations when the net-

work characteristics are known, generator models are verified
and static load characteristics are understood better than their
dynamic response which is the case in practical situations. Note,
also, that in (15) and (16), there is no direct coupling between the
dynamics of generators and loads, as the individual load compo-
nents interact only indirectly via algebraic bus voltage variables.
Small signal stability can be characterized by considering the

linearized version of the equations for the deviations of state and
algebraic variables from their equilibrium values:

(18)

where the subscripts of , and indicate the partial deriva-
tives with respect to the corresponding states and variables.
Away from saddle-node bifurcation, the algebraic variables
can be eliminated from (18), yielding

This expression can be more conveniently decomposed as
in the following form:

(19)

where is the identity matrix of size .

The key advantage of this decomposition is the separation of
the matrix in an uncertain diagonal matrix and the Jaco-
bian matrix that does not depend on the uncertain load time
constants, and depends only on the properties of the steady state
equilibrium point defined in load and generator variables.
Notably, for load models considered in this work the second

row depends only on the steady-state behavior of the load, i.e.,
it can be computed given the load levels and voltage/frequency
dependence of the steady-state active and reactive power con-
sumption.
According to the Lyapunov direct method, the system de-

scribed by is stable if and only if there exist a sym-
metric positive definite matrix such that

(20)

where superscript is used for transpose operator. However,
existence of a matrix for a given merely implies the system
stability for some specific load dynamics. In the next section,
we introduce the concept of robust stability that guarantees the
stability of the system stability for any load time constant un-
certainty, i.e., any positive definite diagonal matrix .

B. Robust Stability
As discussed previously, in this work, we assume that the

operator has reliable information about the generator models
and settings, and the corresponding Jacobian matrix row is
available for analysis. At the same time, we assume that the grid
model and all the algebraic equations characterized by are
known with high accuracy. For the load model we assume that
the matrices and describing the static characteristics
of loads are known with high accuracy, however the matrix
representing the dynamic response is not. The goal of robust
stability certificate is to guarantee that the operating point is
stable for any positive definite .
It is important to distinguish between two categories of load

uncertainties, i.e., load level uncertainty and load dynamic un-
certainty. The former relates to load level fluctuations due to
various factors such as individual consumer behavior or varia-
tions in the production output of DGs. This type of uncertainty
is considered in [18] and [41]–[44]. On the other hand, load
dynamic uncertainty concerns the unpredictability of the dy-
namic response of the load to small fluctuation in voltage and
frequency. In this work, we only focus on the latter type of un-
certainty and do not discuss the uncertainty in load variations
assuming that the operating point is known. However, the re-
gions of robust stability can be also used to account for uncer-
tainty in load consumption levels.
There are many sources of uncertainty in load dynamics.

Apart from the natural uncertainty related to composition
of power consumption devices, the level of uncertainty may
increase dramatically in coming years when more small scale
generators, i.e., DGs, are integrated to the systems, especially
on the distribution level. When the penetration level becomes
very high, the traditional static voltage stability may be insuf-
ficient to assess the system security [37], [45]. On the other
hand, the approach proposed in this work is valid, at least for
non-synchronous DGs that can be modeled as a negative loads
with dynamics in the form of (2) and (3).
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The robust stability criterion developed in the manuscript is
directly linked to the concept of D-stability [46], [47] that are
extended to model the uncertainty in a subset of state variables.
In the following theorems, we denote the set of positive def-

inite matrices of size as and set of diagonal positive
definite matrices of size as . The following theorem is
central to the robust stability certification of power systems.
Theorem 1: Assume that there exists block-diagonal positive

definite block diagonal matrix , such that

(21)

with positive definite matrix and diagonal positive
definite matrix that satisfies

(22)

for some . In this case, the system is robust stable, i.e., for
any diagonal , there exists such that

.
Proof: Consider the matrix . Due to

block-diagonal structure of , we have and at the
same time , so
.
Note that the condition (22) first reported in the framework

of D-stability [46], [47] only establishes a sufficient criterion for
robust stability. To our knowledge, no computationally tractable
necessary and sufficient criteria reported for D-stability have
been reported in the literature. The only exception is the set of
results on the so-called positive matrices [48] for which the exis-
tence of diagonal Lyapunov function is a necessary condition for
stability. Positive matrices are characterized by negative off-di-
agonal components. The question of whether they can be used
to describe power system dynamics is interesting and worth ex-
ploring, but is outside of the scope of this study.
The problem of checking whether the block diagonal matrix
exists for given and is easy and can be accom-

plished by solving the following semi-definite programming
(SDP) problem:

(23)

Here the optimization is carried over the matrices with struc-
ture defined in (21). The condition fixes the overall nor-
malization of the Lyapunov function. Whenever the resulting
value is positive, the system is guaranteed to be robust stable.
The complexity of this procedure is polynomial in the size of the
system. In recent years, mathematically similar procedures have
been successfully applied in the context of optimal power flow
approaches [49], [50], and more recently for power system se-
curity assessment purposes [51]. It has been shown in a number
of papers that even large scale systems admit fast analysis with
SDP algorithms [52].

However, from (16), one can see that the proposed robust sta-
bility criterion requires the equilibrium to be independent on un-
certain parameters, for example the time constants of the loads.
Fortunately, the standard control systems in generators and other
components normally satisfy this requirement. This can be seen
by looking at the equations for the system equilibrium point,
like load flow equations and observe that they do not depend on
the dynamic time constants of governors, AVR, and loads.
In this work, we illustrate the approach by considering the

load dynamic uncertainties. In real power systems, the dynamics
of generators and flexible AC transmission systems (FACTS)
devices are also the sources of uncertainties [53]–[56]. The gen-
erators and the system uncertainties cause much difficult in de-
signing effective power system stabilizer (PSS) and other con-
trollers [57], [58]. As mentioned before, as long as these uncer-
tainties do not alter the system equilibrium, the proposed robust
stability criterion can be applied to access the system stability.
In this case, all known dynamic components can be grouped in
set and unknown dynamic ones can be classified in set .

IV. PROPOSED APPLICATIONS

In this section, we discuss the possible applications of the
mathematical techniques explained above.

A. Dynamic Security Assessment (DSA)
DSA are used to analyze the security of power systems and

assess various types of stabilities such as voltage stability in
voltage stability assessment (VSA) and transient stability which
is assessed in transient stability assessment (TSA). The con-
figuration of the DSA integrated into the energy management
system (EMS) is discussed in details in [19]. Depending on the
purpose of the assessment and the time-scale of the function of
interest, the input of DSA may be different. Typical DSA assess
the stability of a given operating state determined either from
supervisory control and data acquisition (SCADA) or phasor
measurement unit (PMU) measurement tools or constructed in
framework of scenario analysis for planning or operation pur-
poses. Being a fundamental component of DSA toolbox, the
main goal of VSA is to certify pre- and post-contingency voltage
stability and calculate the voltage stability margin. The contin-
gency set typically includes major equipment outages such as
generator, transformer, line tripping. security set is nor-
mally of interest [19], [59], [60].
Brute-force accounting for load dynamics and other un-

certainties in traditional VSA is computationally expensive
due to large number of scenarios that need to be analyzed.
An alternative proposed here and discussed in more details in
Section IV-B is based on the worst-case scenario analysis and
relies only on the analysis of static characteristics of the loads
and well-understood dynamic characteristics of the generators.
Hence it eliminates the need for computationally expensive
dynamic simulations and stochastic Monte Carlo approached
to modeling the uncertainty.
Typically, the objective of the DSA module is to assess the

system stability margins and its behavior in major contingen-
cies. At the input, the DSA module admits a scenario which in-
cludes: 1) a power flow base case which describes a snapshot
of the system conditions; 2) dynamic data of the system; and 3)
set of critical disturbances. The output from the DSA module
is composed of the system stability and corresponding margins.
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The work [61] describes DSA in more details from the perspec-
tives of both traditional approaches in offline analysis as well as
intelligent system (IS) based one for online assessments.
It is worth to distinguish the two main classes of security as-

sessment, i.e., static security assessment (SSA) and DSA. SSA
concerns whether the operating constraints are satisfied, i.e.,
whether the post-contingency voltage lies within the acceptable
range, whereas DSA looks for the system stability. In some
cases, acceptable voltage levels may imply that the system is
stable. However, in general, this relationship is not so simple.
Therefore, the system stability needs to be assessed thoroughly
in the framework of DSA.

B. Robust Stability Assessment
The algorithms developed in this work can form the foun-

dation of a potentially more powerful technique that we call
robust stability assessment (RSA). Specifically we propose to
use RSA to develop the fast screening phase of VSA in an on-
line DSA that is required to be fast enough to either automat-
ically or manually choose the proper remedial control actions.
For an effective and powerful VSA, the accuracy and the speed
of computation are the two most crucial and challenging issues.
As previously mentioned, the accuracy of VSA is affected due
to uncertainties. RSA is able to eliminate such errors. More-
over, the fast algorithm of RSA is extremely helpful to speed up
the program, especially when it relies on deterministic method
that exhaustively screens contingency and searches for secure
limits. Even for intelligent system based VSA, RSA is still able
to help to remove a significant number of possibilities. The ef-
ficiently computational aspect of the proposed algorithm can be
easily scale to bulk systems which is impossible for traditional
dynamic approaches while rendering the meaning of dynamic
stability assessment.
Within this approach in RSA, the stability is certified not for a

single mathematical model of a system, but rather for the whole
set of systems defined by different realizations of uncertain ele-
ments. The key steps required for performing the robust stability
assessment are explained in the following:
1) Input: The input of RSA is an equilibrium configuration of

the system characterized by the levels of load consumption,
network model, and dynamic model of the generators.

2) Initialization: On the initialization stage, the algorithm
defines the model of the system by introducing the un-
certain model of the load. In the simplest approach, the
load buses are modeled as time dependent impedances as
discussed in Section II-B. In the framework of more ad-
vanced approaches, it may be reasonable to separate the
actual loads into static components, well-defined dynamic
ones (like aluminum smelters), and finally the uncertain
dynamic loads. Only the uncertain components should be
incorporated in the part of the dynamical system de-
scriptions, whereas all the other components should be
modeled as known ones and described by the vector .

3) Linearization: The dynamic model of the system is lin-
earized and thematrix is calculated for some arbitrarily
chosen load relaxation time constants matrix . As ex-
plained in previous section, the choice of initial does
not have any effect on the outcome of the analysis.

4) Optimization: The semi-definite programming problem
(23) is solved for the constructed matrix . Whenever

the resulting value is positive, the equilibrium point is
certified to be robust stable, i.e., it is provably stable for
any matrix .

5) Direct Analysis: As the condition from (23) is only
sufficient but not necessary, whenever the result of opti-
mization results in negative , nothing can be said about
the stability of the system. The user of RSA has to rely on
other probabilistic or deterministic techniques to assess the
probability of having stable system given the uncertainty in
load dynamics.

RSA can be naturally incorporated in several planning and op-
erational studies that are described below.

C. RSA for Deterministic Stability Assessment

One specific application of the RSA approach is the deter-
ministic stability assessment that is regularly performed during
power system operation. At any moment of time, the system op-
erators need to know the following [19]:
1) whether the current state is secure;
2) whether the system will remain secure after the next sev-

eral minute changes;
3) if the system is insecure, what countermeasures need to be

carried out.
The general deterministic stability assessment answers these

questions via the following sequence of steps [62].
1) Develop the power flow base cases for the study.
2) Select the contingency set.
3) Select parameters in the expected operating range.
4) Identify security constraint violations.
5) Find the security boundary.
6) Construct the comprehensive reports like plots or tables by

combining all the security boundaries.
Robust stability technique naturally fits in this process without
any adjustments to the logic. The key advantage of the RSA
is its ability to certify the stability and security of the system
even in the presence of dynamic uncertainty naturally expressed
as parameter ranges in step 3) above. The proposed robust sta-
bility criterion is compatible with both offline and online secu-
rity assessments in the presence of uncertainties. Moreover, it
may also provide additional benefits for implementing real-time
and distributed security assessment schemes which are still the
main challenge to the current technologies [60]. In this frame-
work, the assessment has to be performed without access to full
model of external entities, and the operator may represent the
dynamic response of these entities via equivalent models with
uncertain time-constants. Such a scheme is more robust to com-
munication system malfunctions and potentially reduces the re-
quirements to throughput and latency of sensing, communica-
tion and computation components. In some cases, large enough
robust stability region can be directly applied in operation pro-
cedures and used as secure regimes that are displayed to the
operators. Moreover, as mentioned before, RSA can access the
system dynamic stability simply based on static analysis (power
flow) and well-understood dynamic components, the dynamical
secure regimes can be constructed in advance. Specific demon-
stration of the usage of robust stability in VSA is presented in
Section V-B where we examine the contingency set of
WSCC 3-machine, 9-bus system.
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D. Security Indicator

The optimization problem (23) can be used not only to cer-
tify the stability of a given point but also to estimate the sta-
bility margin. Indeed, the value of is naturally interpreted as
the worst-case rate of decay of the Lyapunov function defined
by and can be thus viewed as the worst-case stability
margin. The security indicator defined by can be used for risk
monitoring purposes and can assist the system operators in de-
signing the preventive control strategies. In the latter, it is nat-
ural to optimize for control actions that ensure some minimal
level of worst-case stability margin.
With additional research effort invested, it should be possible

to modify the security indicator defined by from (23) in a way
that its value reflects the probabilities of system losing stability
in the presence of random factors, such as renewable genera-
tors. To achieve this goal, it is necessary to study the sensitivity
of matrix with respect to random factors, and modify the term

in a way that certificate that bounds from below can be in-
terpreted in probabilistic way, i.e., probability of system losing
stability bounded from above.

E. Stability Constrained Planning and Optimization

RSA and security indicator discussed in Section IV-D can be
also used for planning and dispatch purposes in the framework
of stability or security constrained optimization. In this case,
the security indicator can be used as one of the optimization
objectives or constraints. As closed form expression for does
not exist, the corresponding optimization needs to rely on some
iterative heuristics, like genetic algorithms. The algorithms may
need to be complemented with direct approaches as described
for example in [22] and [63]–[65].

V. SIMULATIONS

In this section, we report the results of application of the ro-
bust stability certification to several common models of power
systems. Moreover, RSA technique does not explicitly address
the question of feasibility of the operating point, although it
could be trivially extended with any kinds of voltage and current
constraints. As these constraints depend on the operating point,
and not on the dynamic equations, they can be checked sepa-
rately from the small signal stability. Whenever the small-signal
stability of the operating point needs to be analyzed, RSA tech-
nique allows to assess stability even in the presence of load
modeling uncertainty. As a matter of fact, in contingency anal-
ysis, it is essential to assess the system stability even when the
voltage levels are unacceptable according to normal operating
conditions.

A. A 2-Bus System

The rudimentary 2-bus system shown in Fig. 3 is adopted
from [8] and is extended with the dynamic model of the loads.
The generator consists of an internal voltage source behind the
transient reactance and an IEEE Type 1 exciter. In this work, we
do not consider angle dynamics but focus solely on voltage dy-
namics, although the extension to more general models is trivial.

Fig. 3. Rudimentary system [8].

The set of differential equations describing the generator dy-
namics are the same as described in [7] or [8]:

(24)

(25)

where and are the equivalent direct axis reactance and
transient direct axis reactance; is the direct axis transient
open circuit time constant; is the internal source voltage;

is the terminal voltage; is the reference voltage;
is the exciter output voltage (generator field voltage);

and are the gain and integral time constant associated with
exciter PI control. Generator models are described in details in
[53], [66], and [67]. The dynamics of the load is described by
(2):

(26)
(27)

where is the load time constant, is the voltage
magnitude at the load bus; and are the
desired demand levels that we assume to be constant and not
depending on the voltage; and are the instantaneous power
consumptions of the load. For the rudimentary system, the set
of state variables includes 4 states, i.e.,
which can be decomposed into 2 state vectors
and . Moreover, the diagonal matrix constituted by
the time constants of the loads is . The relations
(25) and (26) form the set of differential equations in (13).
Algebraic equations, , composed of relation de-

scribing the generator, the network, and the load can be stated
as follows:

(28)

(29)

(30)

(31)

(32)

(33)
(34)
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Fig. 4. Robust stability illustration for rudimentary system.

Fig. 5. Eigenvalues of matrix of rudimentary system encountering Hopf
bifurcation.

The internal voltage source angle is used as the reference,
i.e., . The system parameters are given as the following:

. All parameters are in p.u. except time constants in
second and scalar gain .
In Fig. 4, we show the results of stability analysis of different

points on the nose curve. The system is shown to be robust stable
up to point where p.u. at the upper branch of the
nose curve of . Saddle-node bifurcation (SNB) cor-
responding to voltage collapse occurs at p.u. The sec-
tion of the upper branch between and SNB cannot be certified
to be robust stable, and can be numerically shown to be unstable
for some load time constant at every point. For example, at
point where p.u., the system exhibits Hopf bifur-
cation (HB) with s. The eigenvalues of matrix at
point are shown on Fig. 5.
For the rudimentary system, the lower branch of the PV is

unstable for most of load dynamics.

B. WSCC 3-Machine, 9-Bus System
The WSCC 3-machine, 9-bus system with all the parameters

is plotted in Fig. 6. Bus 1 is the slack bus, and bus 2 and 3 are PV
buses with specified the active power outputs and the magnitude
of voltages at the terminals. Three loads are connected to
3 substations residing at buses 5, 6, and 8. The base power is

MVA. We assume that load bus 8 works with a
constant power factor, i.e., . All branches and
transformers data are described in Appendix B.
To characterize the stability of the system, we increase the

load at bus 8 while keeping the other parameters fixed. The
system is robust stable up to point where p.u. The
region from to SNB where saddle-node bifurcation happens
at p.u., the system may become unstable for some

Fig. 6. WSCC 3-machine, 9-bus system [7].

Fig. 7. Robust stability illustration for WSCC 3-machine, 9-bus system.

time constants. For example, fixed time constant of load 5 and 6
to be equal 1 s, the system encounters Hopf bifurcation at point

where p.u., s, or at point where
p.u., s. Voltage oscillation that corresponds

to point H2 is shown in Fig. 8.
In Fig. 7, is the voltage level when the system is stable for

the same level of power consumption, i.e., s but with
smaller time constant, say s. For less uncertain systems,
i.e., when load buses 5 and 6 have fixed , point S may
extent to higher level of active power at bus 8, p.u.
This observation is true for more general situations, i.e., the less
uncertainty presents in the system, the more stable the system
is.
Also, we consider a more realistic loading scenario with cor-

related loading condition. We consider the case when
and . Again, the curve shown in

Fig. 9 indicates the robust stability region in blue where
p.u. and the yellow region, from point S to SNB, where

the system may become unstable for some instant relaxation
times of the loads. Fig. 9 resembles Fig. 7 where no correlated
loading scenario is considered. They differ only in loading con-
ditions at the robust stable point, S, and the saddle-node bifur-
cation. The lower critical loading conditions are observed be-
cause the power transferred through power lines increases faster
when all buses are loaded at once. Different correlated loading
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Fig. 8. Oscillatory voltage instability with theWSCC 3-machine, 9-bus system
at where p.u. and s.

Fig. 9. Robust stability illustration for WSCC 3-machine, 9-bus system, cor-
related loading condition.

scenarios considered but not reported in the manuscript were
characterized by qualitatively similar results as shown in either
Fig. 7 or 9. In the follow-up Section V-C, we also report similar
studies with more realistic economic load dispatch scheme that
accounts for distribution of the load increase between different
generators [7]. The behavior observed in that scenario is also
qualitatively similar.
1) RSA for WSCC 3-Machine 9-Bus System: As mentioned

before, in this subsection, we demonstrate the application of ro-
bust stability applied to RSA within security assessment.
Different from offline assessment in which an exhaustive list of
contingencies is assessed, here we only consider a set of most
dangerous contingencies. This practice, indeed, is more suitable
for online assessment. The subset of considered contingencies
may include the lines with large power flows or the lines that
are connected to low voltage buses [68]. The base case power
flow is chosen as shown in Fig. 6 except for load bus 8, where

p.u., p.u. For the WSCC 3-machine 9-bus
system, all the voltage levels are close to 1 p.u. Therefore, we
rely on the total MVA power flows through the line to determine
the most dangerous ones.
There are two different situations in contingency analysis,

i.e., with uncertainty or without uncertainty. When there is no
uncertainty in the model, consider 3 different cases of fixed time
constants at bus 5, 6, and 8; i.e., , and
s in Case I, s in Case II, s in Case III. The abso-
lute values of the instant relaxation time are not important be-
cause the actual set of the time constants of the loads may vary
over time and may be different from bus to bus. Therefore, the

TABLE I
CONTINGENCY ANALYSIS SUMMARY TABLE

3 cases are used merely to demonstrate the performance of ro-
bust stability analysis. In contrast, we use RSA in the presence
of uncertainty. For each dangerous contingency and such time
constants, the system stability is assessed as shown in Table I.
In Table I, for RSA results, RS and NRS imply robust stable

and non-robust stable, respectively. One can observe that if the
system is robust stable, for example when line 9–3 is tripped, the
non-uncertain stability assessment also indicates that the system
is stable in all cases. In contrast, if the system is not robust stable
according to RSA results, there exists some cases or some set of
instant relaxation times cause the system unstable. This happens
when either line 1–4 or 2–7 is disconnected. Moreover, in two
considered cases, the system is stable if the line 7–8 is tripped.
For this contingency, RSA result indicates that the system is
non-robust stable. In fact, the system is unstable with
s and s where the load voltage at bus 8 collapses

around s.
In considered situations, limit cycles (LC) appear in Case II

with line 1–4 tripping and in Case III with line 7–8 tripping. The
system will exhibit voltage oscillations which are unexpected
and dangerous because they may limit the power transfers and
induce stress in the mechanical shafts [7]. In such cases, RSA
also indicates that the system is non-robust stable or potentially
unstable.
The contingency analysis results, for example in Case II and

Case III, can also be represented with time-domain simulations
as in Figs. 10 and 11 where the red dash-dot, black dash, and
blue solid trajectories correspond to the load voltages at bus 5,
6, and 8, respectively. For s and tripping the line 1–4,
the system encounters Hopf bifurcation and the voltages keep
oscillating but never go beyond the range from 0.2 p.u. to 1.8
p.u. Also, for s and tripping the line 2–7, the system
is stable but very lightly damped. The voltages settle around

s which indicates that the system is close to Hopf
bifurcation point. The first 20-s and 10-s evolutions of the load
bus voltages when tripping the line 1–4 and 2–7 for Case II are
presented in Fig. 10(a) and (b), respectively. Moreover, for Case
III, the line 2–7 is tripped, the voltage at the load bus 8 collapses
around s; hence the system is unstable. Fig. 11(b) shows
the first 20-s time evolution of the unstable voltage trajectory.
However, RSA does not require any time-domain simulation,

thus reducing the need for storages and being less time con-
suming. In addition, RSA does not provide the margin to SNB
or particular bifurcation points; instead RSA provides another
type of stability margin i.e., robust stability margin which mea-
sures the distance between the current operating point to the ro-
bust stability boundary. For example, for the contingency case
in which the line 9–3 is tripped, the security indicator discussed
in Section IV-D, , indicates that the system
will work close to the robust stability boundary after the con-
tingency. Hence, a slight change in parameters will cause the
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Fig. 10. Load voltage evolutions in time-domain simulations in contingency
analysis for Case II, s. (a) Trip line 1–4, Limit Cycle. (b) Trip line 2–7,
Stable. (c) Trip line 7–8, Stable. (d) Trip line 9–3, Stable.

Fig. 11. Load voltage evolutions in time-domain simulations in contingency
analysis for Case III, s. (a) Trip line 1–4, Unstable. (b) Trip line 2–7,
Unstable. (c) Trip line 7–8, Limit Cycle. (d) Trip line 9–3, Stable.

system move to the non-robust stable region where it may be-
come unstable. In contrast, the contingency cases with the line
2–7 tripping, even though the system is non-robust stable, the
security SI is very small, i.e., . If appro-
priate control is applied, the system will be secure in the robust
stability region. In this sense, RSA with SI can help the system
operators in designing emergency controls.
As aforementioned, it may be impossible to determine the ac-

tual values of the instant relaxation times of the loads. Without
making any assumption about the load responses, RSA is rec-
ommended to run first to screen themost dangerous contingency
set. If the RSA certifies that the system is robust stable, no fur-
ther action is needed; otherwise, deeper analysis or other proba-
bilistic-based assessments such as Monte Carlo simulations are
required. Therefore, if RSA is used as the very first screening,
the whole process of contingency analysis is expedited.

C. IEEE 39-Bus New England System
In this section, we illustrate the concept of robust stability

with the IEEE 39-bus New England system. The configuration
of the system is shown in Fig. 12. All generators are identical

Fig. 12. New England system.

Fig. 13. Robust stability illustration for the New England system, correlated
loading condition .

and have the same set of parameters as the following:
s; p.u.; p.u.; s; .
Other system parameters are adopted from [69]. In the consid-
ered scenario, all the loads have the same power factor, i.e.,

lagging; the load bus 29 is chosen as the refer-
ence load and other load levels are increased with the correlated
loading factor , i.e., , where . We
will consider the situation with identical load power consump-
tions or . The load increments were picked up by evenly
distribution among all generators.
For the given scenario, the robust stability of the New Eng-

land system is illustrated in Fig. 13 which is similar to that of
the rudimentary system and WSCC 3-machine, 9-bus system.
The system is robust stable up to point S where p.u.
SNB occurs near p.u. Therefore, the margin from S
to SNB is around 25.05%.
We also considered another loading scenario where the base

loading levels are adopted from [69]. Then for each load, the
power factor is kept unchanged while all the load consumptions
are scaled with the same scalar factor . In this scenario,
SNB happens at and the system is robust stable up to

. This means that the system can become unstable at
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TABLE II
EFFECT OF LOADING LEVELS ON S

some loading level that is above 20% of the normal operating
condition. Moreover, the margin from S to SNB is 60%.

VI. INVESTIGATION OF THE NON-CERTIFIED
ROBUST STABILITY REGION

In Figs. 4, 7, 9, and 13, the non-certified robust stability re-
gions are in yellow and lie between the robust stable point S
and the saddle-node bifurcation point SNB. Different from the
robust stability region, the non-robust stability one is mostly af-
fected by the load dynamic uncertainty. The system dynamics
and behavior may be very different and complicated because
of more pronounced nonlinearity. When the system is stressed
or is subject to disturbances, the system is likely to operate in
those regions. Therefore, it is important to explore the non-ro-
bust stability regions which may help the system operators to
have better understanding of the system. We will address two
important questions in this section, i.e., which parameter deter-
mines the robust stable point S and how the system behaves in
the non-certified robust stability region.

A. Robust Stable Point S

The position of point S as well as the robust stability region
characterizes the level of “robustness” of the system. For the
same configuration, the size of robust stability regionmight vary
from case to case, from scenario to scenario.
1) Effect of Loading Levels: We reconsider the scenario with

correlated loading condition, i.e., and
where is the correlation factor. Table II il-

lustrates how the system loading levels affect the robust sta-
bility region. The margin in % measures the distance between
point S and SNB compares to the maximum loading level cor-
responding to SNB.
From Table II, one can see that an increase in the correlation

loading factor resulted in an decrease in the maximum loading
level where SNB happens. However, increasing may not nec-
essarily lead to the change in the robust stable point S in such a
way that extends the margin between S and SNB.
2) Effect of Load Power Factors: Various power factors were

considered in Table III. One can see that as the load power fac-
tors change from lagging to leading, the relative distance be-
tween the robust stable point S and SNB increases. This means
that the more lagging the power factor is, the wider the ro-
bust stable region becomes. Therefore, injecting more reactive
powers into the network may shorten the robust stability region
relatively.
3) Effect of Exciter Gain : The model of exciter is de-

scribed in (25). In this section, effect of exciter gain is an-
alyzed in Table IV. As observed in [7], the sufficient increase of
the exciter gain may lead to instability even for normal loading
level. With robust stability analysis, we now can determine at

TABLE III
EFFECT OF POWER FACTOR ON S

TABLE IV
EFFECT OF EXCITER GAIN ON S

which loading level the exciter gain cannot affect the system
stability by considering as an uncertain parameter.
As expected, the changing in does not affect the maximum

loading level at SNB point. However, surprisingly, an increase
in tends to extend the robust stable region as pushing point
S closer to SNB point. When goes to infinity, point S does
not change much and the system is robust stable up to circa

p.u. This indicates that exciter gain may affect the
system stability in a rather complicated manner which depends
on the interactions between exciters and generators with other
dynamic devices/components; as well as depends on the consid-
ered conditions/scenarios.

B. System Behavior in the Region Between S and SNB

Since dynamic voltage stability is normally studied by
monitoring the eigenvalues of the linearized system [7], we
investigate how these factors alter the system eigenvalues in
the s-plane. The rudimentary system results are demonstrated
as follows.
1) Effect of Loading Levels: For s, the trajec-

tory of the critical eigenvalue pair, - - - - , is plotted in
Fig. 14 as the load power increases from zero to the maximum
loading level. Note that the enclosed alphanumerics indicate that
the corresponding eigenvalues belong to the same system ma-
trix which is related to the same power level consumption .
In Fig. 14, the pair of critical eigenvalues starts at with zero
power level consumption and move to the right half plane in the
s-plane. When the trajectory crosses the imaginary axis at
where p.u., the system encounters Hopf bifurcation.
This is also illustrated at point H in Fig. 4. The eigenvalues as-
sociated with the power level at robust stable point S in RSA
are marked with which is close to . As the load power con-
tinues increasing, the two critical complex eigenvalues coalesce
at on the real axis of the s-plane and become a pair of real
eigenvalues. Then the pair of critical real eigenvalues diverge
following the two arrows towards . As soon as the one that
moves to the left reaches at the origin, the SNB occurs. Since
the load power cannot exceed the maximum loading level, the
trajectory ends here at . The similar trajectory is also described
in [7].
For the WSCC 3-machine, 9-bus system and the considered

scenario with s, s, s; the crit-
ical eigenvalue trajectories, - - - are plotted in Fig. 15.
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Fig. 14. Critical eigenvalue trajectory under the load changes in the rudimen-
tary system, s.

Fig. 15. Critical eigenvalue trajectory under the load changes in the WSCC
3-machine, 9-bus system.

In this case, as the load level increases from zero to the max-
imum loading level, the critical eigenvalue trajectory starts at
or the point at ( , 0) which is far to the left, then follows the
arrows direction to the origin or . The critical complex eigen-
value pair also crosses the imaginary axis to the right half plane
then returns to the left half plane without coalescency. Along the
trajectory, the system encounters Hopf bifurcation twice. At
where the critical real eigenvalue reaches the origin, SNB hap-
pens. Interestingly, there is a small region between the second
Hopf bifurcation and SNB where the system is stable. However,
in that region, low damping causes the system to oscillate under
the effect of a disturbance. The corresponding time-domain sim-
ulation also indicates that the initial condition needs to be close
to the equilibrium state values to ensure that the systemwill con-
verge to that equilibrium. This implies that the equilibrium has
a small stability region. The trajectories in Fig. 14 and 15 are the
two typical transients from Hopf bifurcation to SNB that can be
observed when scaling the loading level. They may be different
in the region between and , but in the end, one single real
eigenvalue reaches the origin at .
The time-domain trajectories of the load voltages for cor-

responding power levels along the trajectory - - - are
shown in Fig. 16 where we use the same color code for the load
voltages as in Section V-B1. Fig. 17(a) shows the load voltage
levels at the load level between and the second Hopf bifurca-
tion point, i.e., p.u. For p.u., the system en-
counters Hopf bifurcation again and the corresponding voltage
trajectories at the loads are recorded in Fig. 17(b). In this case,
the system loses stability via Hopf bifurcation.

Fig. 16. Load voltage evolutions in time-domain simulations at different
loading levels from to of the WSCC 3-machine, 9-bus system. (a)
Stable. (b) Stable. (c) Limit Cycle. (d) Unstable (SNB).

Fig. 17. Load voltage evolutions in time-domain simulations at
p.u. and the second Hopf bifurcation of the WSCC 3-machine, 9-bus system.
(a) p.u., Unstable. (b) Second Hopf bifurcation, Unstable.

TABLE V
EFFECT OF POWER FACTOR ON THE CRITICAL EIGENVALUES

In the considered scenario, as the loading level increases be-
yond where Hopf bifurcation occurs, the stable limit cycle
shrinks and disappears at p.u. Then if the loading
level continues increasing, the system may collapse as shown in
Fig. 17(a) or may converge to another stable equilibrium point
if there is one. This is so because the eigenvalue analysis char-
acterizes the stability of the linearized system corresponding to
the considered equilibrium, but multiple stable equilibria can
coexist at the same time. However, the latter case in which an-
other stable equilibrium coexists is rather rare in the real power
systems so the collapse scenario is more likely to happen. In
general, in the non-certificated robust stability region between
S and SNB, the system may exhibit different types of bifurca-
tion such as Hopf bifurcation, transcritial bifurcation, and SNB
[4], [70].
2) Effect of Load Power Factors: Qualitatively, the load

power factor does not change the trajectory of the critical eigen-
values of the system within S-SNB. It mostly pushes the point
on the real axis where the critical complex eigenvalues pair
merges to the right and widens the distance between the two
points on the imaginary axis at . The effect on is recorded
in Table V for s.
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Fig. 18. Critical eigenvalue trajectory under the load changes in the rudimen-
tary system, s.

3) Effect of the Time Constants of the Loads: For s, the
trajectory - - of critical eigenvalues of the system is plotted
in Fig. 18. In this case, Hopf bifurcation will not happen while
increasing the loading level , and all eigenvalues lie in the
left half plane of the s-plane. At , the system encounters SNB
or static voltage collapse. Moreover, the whole upper branch of
the nose curve is stable up to SNB.
When the instant relaxation time of the load increases to a

large enough value, for example s, the trajectory of
the critical eigenvalues is similar to that in Fig. 14 except point
on the real axis moves to the right. At the same time, also

moves towards on the imaginary axis but it never reaches
. This phenomenon can be explained as when the load time

constant increases, the system may become unstable right after
the robust stable point S. In this sense, if RSA cannot certify the
system robust stability, the system is indeed non-robust stable.
From our simulations, we found that, if other parameters of

the system are kept unchanged, the system is prone to be un-
stable if the instant relaxation times of the loads increase. This
phenomenon can be understood as the larger time constants of
the loads add more delay to the system which in turn reduces the
phase margin [71], finally causing the system to be unstable. In
the s-plane, one can see that increasing the loads time constants
pushes the critical eigenvalues to move close to the imaginary
axis. When the critical eigenvalues cross to the right-half plane,
the system is likely unstable.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have addressed the problem of uncertainty
of load dynamics and its effect on the stability of the system and
in particular on the occurrence of Hopf bifurcation. RSA devel-
oped in this work allows to certify the stability of the power
system without making any assumptions on the dynamic re-
sponse of the load. Whenever the system is certified to be ro-
bust stable, the system is guaranteed to be stable for any dy-
namic responses of the loads involved. The algorithm relies
on convex optimization and can be applied even to large-scale
system models. The regions that are certified to be robust stable
are surprisingly large for models considered in the manuscript
which suggest that robust-stability regime can be enforced in
planning and operation without compromising efficiency and
other economic factors.

Fig. 19. Tap-changer and static load combination [38].

There are several ways of extending the algorithm that we
plan to explore in future works. First, we plan to extend the types
of uncertainties that can be handled to uncertainty in static char-
acteristic, load levels, and allow for using the range bounds on
the time constants. Second, we plan to develop algorithms that
certify the robust stability of whole regions in parameter space,
eliminating the need for repeating the procedure for every oper-
ating point candidate. Finally, we are interested in applying the
algorithm to practical problems like stability constraint reme-
dial action design, stability constraint planning, and others.

APPENDIX A
GENERIC DYNAMIC LOAD MODEL

In this Appendix, we reproduce ULTCs and heating load
models presented in [38] using the proposed generic dynamic
load model. It is effective and convenient to represent the
considered loads in the general form of (1). To illustrate this,
we only present the models for active powers.

A. ULTC Dynamics

We consider the ULTC depicted in Fig. 19.
ULTC characteristics is adopted from [38] as follows:

(35)
(36)
(37)

where is the voltage set-point, for example
p.u.; represents the speed of tap changing; is

the transformer ratio; and is the power consumption level.
Combining (37) with (35) yields

(38)

where is the equivalent conductance, , then

(39)

From (36) and (39), we have

(40)

Since , (40) can be rewritten to yield (1):

(41)
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Fig. 20. Room model [38].

TABLE VI
WSCC 3-MACHINE 9-BUS SYSTEM BRANCH DATA [7]

TABLE VII
WSCC 3-MACHINE 9-BUS SYSTEM TRANSFORMER DATA [7]

B. Heating Load Dynamics

Consider the heating load model in Fig. 20 [38]. The heating
load's characteristics are given as

(42)

where the power demand is the losses.
The load conductance can be computed as

(43)

Differentiating the two sides of (43) yields

(44)

Substituting (42) into (44), we have

(45)

If linear resistance characteristic is applied, i.e., ,
(45) becomes

(46)

Since , (46) represents the proposed generic dy-
namic load model (1).

APPENDIX B
THE WSCC 3-MACHINE 9-BUS SYSTEM DATA

Table VI lists the WSCC 3-machine 9-bus system branch
data, and Table VII lists the WSCC 3-machine 9-bus system
transformer data.
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