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Non-Gaussianity in single-particle tracking: Use of kurtosis to learn the characteristics of a
cage-type potential
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Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure
of their displacement probability distribution. We propose a statistical analysis technique for learning the
characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement
distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement
distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are
supported by analytical predictions. We show that the approach allows robust identification of some characteristics
of the potential for the much lower temporal resolution compared with the mean-square displacement analysis
and we demonstrate robustness to experimental errors in determining the particle positions.
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Rapid progress in video-capturing, subdiffractive micro-
scopes, and fluorescence technologies has transformed a
single-particle tracking (SPT) technology into a powerful tool
for studying the properties of biological environments and
complex fluids [1]. In a typical experiment some specific type
of biomolecule, i.e., protein or lipid, is labeled by a fluorophore
or a nanoparticle, and its motion is tracked with a camera in
subdiffractive resolution [2]. The abundance of data available
from the SPT experiments has increased the demand for data
analysis techniques that would help scientists to characterize
the interaction of particles with the environment based on
the statistical properties of particle trajectories. Many of the
currently used approaches rely on the analysis of second-
order moments, like the mean-square displacement (MSD)
[1]. The main objective of this paper is to demonstrate the
potential of other statistical properties that go beyond Gaussian
approximation and second-order correlations. In a practically
interesting example of a protein moving on the membrane
we show that many characteristics of the particle-membrane
interactions that cannot be recovered from the analysis of
MSD reveal themselves as distinct statistical signatures in the
time dependence of the kurtosis of the particle displacement
distribution. These signatures are supported by analytical
predictions. The non-Gaussianity of jumps observed during
anomalous diffusion has been recognized for many years (see,
e.g., the review [3]); however, to the best of our knowledge the
problem of connecting the non-Gaussianity with the structural
properties of the environment is still open. In addition, the
analysis of the kurtosis of the particle displacements ignoring
the time dependence gives quite limited information [4]
contrary to our approach which relies on the distinct properties
of time dependence.

The motion of proteins and lipids within biological mem-
branes plays an important role in many biological processes.
Previous assumptions that a biological membrane can be
considered as a two-dimensional fluid with freely diffusing
lipids and proteins [5,6] are now significantly altered by
the experimental observations that membranes are highly
heterogeneous [7,8]. Models of lipid rafts, pickets and fences,

protein-protein complexes, and protein islands have been
suggested [9–12]. According to these models the motion of the
location and diffusion of membrane proteins are significantly
influenced by the domains of different lipid or protein
compositions (lipid rafts, protein islands) as well as by the
interaction with the cytoskeleton and anchored transmembrane
proteins (form fences and pickets, respectively). For example,
the compartmentalization of the plasma membrane is perhaps
the best explained by the fences and pickets [10]. Inside each
compartment, proteins (lipids) experience fast diffusion (at
time scales �0.01 s [10]) which agrees well with the diffusion
in the artificial membranes (which do not have cytoskeleton).
A hopping between different compartments (jump over fences)
occurs at larger time scale τh ∼ 0.01 s (see, e.g., Table 2
in Ref. [10] for the specific values of τh for several types
of cells).

Most SPT studies have been relying on the standard video
rate (∼ 30 frames/s) [1] which does not allow a detailed
resolution of the fast diffusion inside compartments because
the intercompartment hopping rate 1/τh exceeds the video
rate. The exceptions are Kusumi [10] and Ritchie [13] groups
which use 25-μs and 1-ms temporal resolutions, respectively.
The analysis of SPT trajectories in the significant majority of
previous work has been based on the analysis of MSD [1].
It was demonstrated that SPT with the standard video rate is
not sufficient to recover any details about fast diffusion inside
compartments as well as any information about compartments
[10]. MSD uses only a small part of the information about
properties of particle trajectories. The only exception when
MSD is optimal corresponds to the pure random walk of
the particle when the probability distribution of particle
displacement is Gaussian. However, any inhomogeneity on the
plasma membrane (represented, e.g., by the inhomogeneous
potential) results in the non-Gaussianity of that probability
distribution which makes MSD nonoptimal for recovering the
properties of the system from the SPT trajectories.

In parallel to their use in biology, SPT-based approaches
have been developed in microfluidics under the name of
microrheology [14]. Tracking of the Brownian motion of
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individual particles immersed in viscoelastic fluid allows the
reconstruction of a viscoelastic modulus from the Laplace
transform of particle MSD. To the best of our knowledge, all
common variations of microrheology (including two-particle
and active microrheology) are based on the analysis of second-
order correlation functions and assume a linear response of the
viscoelastic fluid. Although microrheological settings are not
described in this paper, the methods discussed below can be
naturally applied there.

A number of other techniques have been proposed for
the identification of the potentials on biological membranes
based on the analysis of individual trajectories. The most
comprehensive approach is to solve the inverse problem
of reconstruction of U (r), r = (x,y) from the trajectories.
However, such a problem is generally ill posed [15] and needs
very large statistics of trajectories. For example, Ref. [16]
suggested to infer forces acting on the biomolecule [17]
requiring the multiple particle visits of each spatial location
which is difficult to achieve experimentally. In addition, the
potential U in living cells can slowly change with time. This
fact may limit the application of inverse problem approaches
that attempt to reconstruct the specific potential. Another
approach [10,18] focuses on identifying the potential barriers
from an MSD-based analysis. That approach is successful
but requires very high temporal resolution of trajectories.
Reference [4] used the kurtosis to analyze the displacements
relative to the center of gravity of the particle trajectory.
Such definition of the kurtosis looks only into the spatial
distribution of visited points, thus completely ignoring the time
dependence, which is in sharp contrast to the approach that we
will use. References [19–21] used a fourth-order moment to
infer the properties of anomalous diffusion. Another method
is based on the measurement of autocorrelation of SPT
trajectories and recovering of the probability distribution of
particle jumps [22] which indirectly displays the information
about the inhomogeneity of the plasma membrane. In contrast,
the technique analyzed in this paper has more modest goals of
learning the characteristic scales associated with the potential.
It does not rely on long observations of individual particles,
and can be based on the aggregation of time-series from an
ensemble of measurements of different particles in the same
class of membranes.

In this paper we propose to recover the major features of
the potential from SPT trajectories using the time dependence
of the kurtosis as the measure of non-Gaussianity. We
demonstrate by the combination of numerical and analytical
methods that the rate of ∼100 frames/s might be sufficient for
that purpose and far superior to the performance of MSD-based
methods.

The starting point of our work is the following observation.
Whenever a particle experiences nonlinear interactions, for
example, with the cytoskeleton, the probability distribution of
the particle displacement becomes non-Gaussian. Therefore,
analysis of the deviations from Gaussian distribution can reveal
new information about the nonlinear interactions. There is an
infinite number of characteristics that measure the degree of
non-Gaussianity, because the nonlinear interaction can take
an infinite number of forms. In this paper we consider only
one of the characteristics that can be accurately estimated with
a limited amount of time-series data. Kurtosis of the particle

FIG. 1. (Color online) Simulation of the trajectory of a diffusing
protein in triangular compartments of size 600 nm during 10 s with a
time resolution 10 ms. The dashed lines indicate the borders between
compartments.

displacement distribution is defined as

Kα(t) = 〈[�rα(t) − 〈�rα(t)〉]4〉
3〈[�rα(t) − 〈�rα(t)〉]2〉2

− 1. (1)

Here �rα(t) = rα(t) − rα(0) is the α component of the particle
displacement, and 〈. . .〉 denotes the time average along the
particle trajectory; it might also mean the additional ensemble
average over several simulations (when we mention that
explicitly below). If the probability distribution of particle
displacement is Gaussian, the kurtosis will be equal to zero for
any time interval t . Kurtosis of the displacement distribution
originates from the nonlinear interactions of the particle with
the environment, and as shown below, incorporates a lot of
information about the structure of these interactions.

We model the motion of the particle using the Monte Carlo
algorithm (see, e.g., [17]) as a two-dimensional (2D) random
walk on an elementary triangular lattice composed of equilat-
eral triangles with side length a = 1 nm (or a = 0.25 nm in
the case of the inset in Fig. 2). The membrane compartments
are typically modeled as equilateral triangles filling the entire
2D plane with sides of length L = 300, 150, and 600 nm. In
separate simulations we also considered random distortions of
these triangles as well as rectangles filling the 2D plane. The
potential energy on the elementary lattice site i is labeled as
Ui . Figure 1 shows the typical simulation of total time 10 s.
In each simulation step, a random closest neighbor j of site
i that is occupied by the random walker (diffusing protein) is
chosen. The move to site j from i is accepted with probability
p = min{1, exp [(Ui − Uj )/T ]}. We set the temperature T =
1. The potential of barriers between compartments is defined
as Ui(l) = H exp (−d2

i,l/σ
2), where Ui(l) is the contribution

to the total potential Ui at site i from lth barrier and di,l is the
distance from site i to lth barrier. Ui is given by the sum of
contributions from all barriers: Ui = ∑

l Ui(l). Also, H is the
height of the barrier, and the width of the barrier is 2σ . By
default the barrier parameter σ is set to 5 nm and H = 7. But
for the inset of Fig. 2, we model a higher barrier with σ =
8 nm and H = 10.
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FIG. 2. (Color online) Kurtosis of the displacements along x

for three different compartment sizes calculated with the resolution
0.1 ms. The inset shows the kurtosis scaled as 1/L for the resolution
1 μs and a function f (t) ≈ t1/2 (thin black line) which shows that the
kurtosis scales as t1/2 for small t .

We set the diffusion coefficient to D = 2.5 μm2 s−1 on
the lattice, which means that one iteration step of the MC
simulation corresponds to a time period τ = 0.1 μs for lattice
size a = 1 nm and τ = 0.00625 μs for a = 0.25 nm according
to the relation D = a2/(4τ ). Effect of the discretization is
negligible at time scales � τ which motivates our choice of
the numerical values of a.

For Ui ≡ 0 the particle experiences a Brownian motion with
〈�x2 + �y2〉 = 4Dt and K(t) = 0. However, if U is nonzero,
the kurtosis of the particle motion acquires a nontrivial shape
as shown in Fig. 2 for three different compartment sizes. The
typical length of simulation was 109 steps with every 103th
step recorded, thus corresponding to an experiment of total
length 100 s with a time resolution (i.e., inverse frame rate)
of 0.1 ms. Note that we always use the elementary time step
τ to generate particle trajectories. Experimental observations
have much lower temporal resolution than τ and to imitate
such resolution we use only a small fraction of simulation
points to calculate the kurtosis for each chosen resolution.
Figure 2 shows that the kurtosis is characterized by two peaks
separated by a local minima. The inset of Fig. 2 shows a
simulation with lattice size a = 0.25 nm, the duration 10 s
and the resolution 1 μs, which we used to test the analytical
predictions for kurtosis behavior for low times as discussed
below. The kurtosis in that inset is divided by L. The kurtosis
scales as 1/L for low times t and grows as t1/2, as expected
from our analysis. Figure 3 shows that the position of the
minima scales as L2 as also expected from our analysis below.

The kurtosis of simulations with three different temporal
resolutions 0.1, 1, and 10 ms for the compartment size
L = 300 nm are shown in Fig. 4. Already for the resolution
� 10 ms it is possible to see the characteristic features of
the kurtosis inferring compartments’ structure by comparing
with the pure diffusion case. The kurtosis curves are averaged
over five different simulation runs, each of duration 100 s
for the resolution 0.1 ms and 500 s for the resolutions 1 and
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FIG. 3. (Color online) Kurtosis for three different compartment
sizes L as a function of rescaled time t/L2 showing L2 scaling of the
position of the minima. The time resolution of each simulation was
0.1 ms and total length was 104 s.

5 ms. We also show the kurtosis for pure diffusion simulations,
which should be equal to 0 for the infinite trajectory. The
error bars show standard deviations for the five simulations
with the resolution 0.1 ms. The inset compares MSD of
pure diffusion with no barriers and two different simulations
with the resolutions 0.1 and 10 ms for L = 300 nm. While
the MSD plot with the resolution 0.1 ms shows transition
from the fast diffusion regime inside the compartment with
D = 2.5 μm2 s−1 to the slow hopping diffusion regime with
D = 0.1 μm2 s−1, the MSD plot of 10-ms resolution is able
to capture only the slow diffusion.

Figure 5 shows that the kurtosis is quite robust to the defects
of the triangular compartment lattice which we demonstrated
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FIG. 4. (Color online) Kurtosis along x for three different resolu-
tions with L = 300 nm. The kurtosis for pure diffusion (no barriers) is
also shown with the resolution 0.1 ms. Error bars correspond to 0.1-ms
resolution. The inset shows MSD for diffusion with no compartments
(short dashed line) and for simulations with the resolutions 0.1 ms
(long dashed line) and 10 ms (solid line).
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FIG. 5. (Color online) Kurtosis along x for different fractions
of randomly removed barriers for simulation of 100-s duration for
triangular compartments with L = 300 nm and 0.1 ms resolution.

by randomly removing different percentage of barriers. We
also found similar robustness when we randomly distorted
the equilateral triangular lattice by 10% in angles compare
with π/3 angles as well as when we used a rectangular lattice
instead of a triangular one. Another important measure is the
sensitivity to the experimental noise in the position of particles.
We checked that the kurtosis is quite robust for the noise up to
� 30 nm in the position of particles, as shown in Fig. 6.

Observed structure of the kurtosis time dependence K(t)
can be explained theoretically in a limiting case when the
characteristic time τd ∼ L2/D associated with the diffusion
inside the compartment is much smaller than the hopping time
τh between consecutive hopping over the barrier. To estimate
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FIG. 6. (Color online) Kurtosis along x for different levels
of the simulated experimental noise (simulated as the error in
the measurement of particle position) in position of particles for
simulation of 100-s duration and the same parameters as in Fig. 5.
The simulated noise is taken to be Gaussian with the variance γ 2.

τh we solve the Smoluchowski equation

∂tp = D∇ · [p∇U + ∇p] (2)

for the time-dependent probability density function (PDF)
p(r,t) of the particle position r. Constant-flux solution of
Eq. (2) in the adiabatic approximation ∂tp � 0 (valid because
τh � τd ) gives the relation between the flux of the probability
through the barrier ∝ −Dp′(0) and the jump p(0+) − p(0−)
of the PDF between compartments:

p(0+) − p(0−) = p′(0)P−1, (3)

where the barrier is assumed to be infinitely thin (i.e., σ/L �
1), p(0+) and p(0−) are values of p from different sides of
the barrier, p′(0) ≡ n · ∇p is the normal derivative of p at
the barrier, and n is the normal unit vector to the barrier.
For the Gaussian form of the barrier the permeabilityP is given
by P = H 1/2π−1/2σ−1e−H resulting in τh ∼ P−1LD−1 ∼
τd (σ/L)H−1/2eH .

The initial rise of the kurtosis function K(t) in the region
t � τd is related to short trajectories that experienced some
nonlinear interaction. As the only source of nonlinearity in this
model is the interaction with the barrier, they correspond to
reflections from the barrier. The short length of the trajectories
in this region of t allows one to explain this behavior via anal-
ysis of a simplified problem of one-dimensional diffusion in
the neighborhood of reflecting wall. Assuming that the random
walk takes place in the x direction, Green’s function, which is
defined as a probability density of the final position x = X(t)
assuming that the particle was at position x0 at t = 0, is
given by 2G(x; x0,t) = G0(x − x0; t) + G(x + x0; t), where
G0(x; t) = (2πDt)−1/2 exp[−x2/2Dt]. In the above we as-
sumed that the reflecting boundary is located at x = 0. The kur-
tosis can be found by calculating the expressions for moments
Cn = ∫ ∞

0 dx(x − x0)nG(x; x0,t) with n = 2,4. The moments
have to be then averaged over the value of x0, which we assume
to be uniformly distributed in the region 0 < x < L with L �√

Dt being a characteristic compartment size. Straightforward
integration yields the following expressions for the moments in
the leading order over

√
Dt/L: C2 = Dt/2 − (Dt)3/2/3

√
πL

and C4 = 3(Dt)2/4 − 4(Dt)5/2/5
√

πL2. Note that the correc-
tion to C4 is smaller than the correction to C2

2 which explains
the initial rise of the kurtosis K = 4(Dt)1/2/15

√
πL. The

numerical factors in this expression are not universal and may
depend on the actual form of the compartment. However, the
scaling laws K ∝ t1/2 and K ∝ L−1 are universal, they are
seen in the inset of Fig. 2 and can be checked experimentally.
Qualitatively the positive value of the kurtosis at small times
t � τd can be explained as follows: randomly choosing the
initial position of the particle inside the compartment we
will observe at short times the Gaussian fluctuations of the
displacement for the initial positions away from barriers
and super-Gaussian fluctuations for the initial positions near
barriers (motion downhill in the potential is super-Gaussian).

For intermediate time scales τd � t � τh the particle has
enough time to diffuse around its compartment; however, the
events of passing through the barrier are still rare. In this
regime one can calculate the value of the kurtosis by assuming
that Green’s function G(r; r0,t) = P∞(r), where P∞(r) is the
uniform distribution with support inside the compartment. This
assumption implies that the particle had enough time to explore
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the whole compartment and, moreover, that the width of the
barriers is negligible in comparison to the compartment size. If
the latter approximation is not justified, Green’s function has
to be replaced by an equilibrium Boltzmann-type distribution
G(r; r0,t) = exp[−U (r)/T ]/Z. As long as the initial particle
position is also uniformly distributed over the compartment
we obtain the following expressions for the moments of par-
ticle jumps: Cn = ∫

C
d r

∫
C

d r0(r − r0)nP∞(r)P∞(r0) which
yields K(t) = −1/10 for triangular compartments with very
thin barriers. Figure 3 shows that the position of the kurtosis
minima indeed scales as L2, i.e., as the diffusion scale.
Note that we observed from simulations that the value of
the kurtosis on these time scales is sensitive to the actual
shape of compartments and to the width of the barrier
potentials. It suggests that the kurtosis might be used for getting
experimental insight into these membrane properties. The
change of kurtosis sign shows that the first peak is observed
at the time scales comparable to τd which suggests a way of
inferring the size of the compartment from the position of
first peak (assuming that the diffusion coefficient is known
from the MSD analysis). Qualitatively the decrease of the
kurtosis for t ∼ τd can be explained as follows: t in that case
is large enough for the particle from any initial position inside
compartment to hit the barrier. However, the time t ∼ τd is
not sufficient to expect jumps over the barrier so that the
fluctuations of the particle displacement are sub-Gaussian.

The late time asymptote t ∼ τh, which is responsible for
the second peak of the observed kurtosis, is determined by
trajectories that have a finite number of hops between the
compartments. The non-Gaussianity of the jump distance
distribution is related to the discrete nature of barrier hopping
events. When the typical number of hopping events is small,
say 1 − 2, the fluctuations of the total distance traveled by a
particle are stronger than Gaussian (because after each jump
over the barrier the particle typically moves away from the
barrier), and that explains the rise of the kurtosis at t ∼ τh.
As the number of hops becomes very large for t � τh, the
distribution becomes Gaussian again, due to central limit
theorem. The kurtosis decays back to zero as τh/t . For the
analytical estimate of the position of the second peak we look
at square compartments of size L and assume that at t � τd

the density inside the initial compartment is almost constant.
We then assume that the perturbations above that constant
have a form of the quadratic polynomial in x and y with the
same approximation for the four neighboring compartments
(i.e., we neglect the probability of secondary jumps into more
distant compartments). Using the boundary condition (3)
between compartments (integrated along each boundary)
we obtain the time dependence of p in every compartment.
Calculating the kurtosis (1) from that solution we obtain the
position of the second kurtosis peak τpeak,2 as follows

τpeak,2 = P−1L

5D
ln

6

5
+ O

(
L2

D

)
, (4)

there the O(L2

D
) term could be roughly estimated as the initial

equilibration time of the particle in the compartment L2/D.
Figure 7 compares the dependence of the position of the second
kurtosis peak for the square compartments of size Lobtained
numerically with the fit to the expression (4) assuming
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FIG. 7. (Color online) Dependence of the position of the second
kurtosis peak for the square compartments of size L from simulations
(crosses connected by dashed lines line) vs the dependence (4) with
O(L2/D) = 1.216 L2/D (solid line). The default parameter values
σ = 5 nm and H = 7 are used.

O(L2/D) = αL2/D and the fitting parameter value α =
1.216. Note the applicability of the analytical expression (4)
requires that P−1L

5D
� L2/D, which is not well satisfied for

the parameters σ = 5 nm and H = 7 and typical values of
L in Fig. 4 (applicability is better for smaller values of L).
These numerical values were chosen to approach the typical
conditions for the protein (lipid) motion in compartments [10].

To conclude, we have proposed and analyzed a particle-
tracking approach for the identification of nonlinear inter-
actions. Unlike common MSD techniques, our approach is
based on the analysis of the time dependence of the non-
Gaussian characteristics of the particle dynamics, specifically
the kurtosis of the displacement probability distribution. The
functional dependence of the kurtosis on the measurement time
carries a lot of information about the nonlinear interactions
that contribute to the particle motion. For example, if a
particle is placed in a cage-type potential induced by a
cytoskeleton or transmembrane proteins, the resulting kurtosis
of the displacement is a nonmonotonic function with three
distinct regions characterized by the change of the sign of
the kurtosis slope. Specific structure of the kurtosis function
depends on the characteristics of the potential: shape and size
of the individual cells, and heights and widths of the barriers,
but the change of sign feature is quite robust to the specifics of
the potential. Also we would like to stress that the measurement
of time-independent kurtosis as was made, e.g., in Ref. [19]
would not give any essential information about compartments
because it would mean the averaging of the kurtosis over the
horizontal axis in Figs. 2 and 4 which would completely erase
the change of the sign of the kurtosis slope feature which is a
core idea of this paper.
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