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Abstract—This paper addresses an issue of obtaining an
optimal equilibrium for a Lur’e-type system which can guarantee
the stability under some given disturbance. For this purpose, a
new optimization framework is proposed. In this framework,
the dynamic constraints, i.e. the differential algebraic equations
(DAEs), are properly converted into a set of algebraic constraints.
The existing methods formulate the stability by discretizing the
DAEs, which is computationally intractable for large-scale Lur’e
systems like power grids. Dissimilarly, the proposed approach
generates the algebraic constraints of stability through Lyapunov
theories rather than the discretization of the DAEs. In a transient
stability-constrained optimal power flow (TSCOPF) problem of
power systems, researchers look for a steady-state operating point
with the minimum generation costs that can maintain the system
stability under some given transient disturbances. The proposed
approach is applied to develop a scalable TSCOPF framework
for power systems. The TSCOPF model is tested on the IEEE
118-Bus power system.

Index Terms—Lur’e system, Power system, Quadratic Lya-
punov function, Stability-constrained optimization, TSCOPF.

I. INTRODUCTION

STABILITY and optimality are two important aspects of
an engineering system that pursued by system operators.

On one hand, a basic framework for optimization problems
consists of an algebraic objective function which represents
the indices to be optimized and a set of algebraic constraints
whose solutions (or equilibria) form the feasible set (or the
set of condidate equilibria) [1]. Optimization technologies are
attractive since the solutions of an optimization problem imply
the ”best performance” with respect to some given indices
[2]. On the other hand, the system dynamics is generally
formulated by a set of differential algebraic equations (DAEs).
Stability, in brief, describes the system’s ability of converging
to a stable equilibrium after the disturbance disappears [3].
The connection between stability and optimality is that the
equilibrium chosen by the optimization algorithm provides
an initial point for the dynamic system trajectories. It is a
consensus that, for a given fault, the stability of the system
relies heavily on the initial point. An intuitive interpretation is
that, with an equilibrium located close to the stability margin,
the system is very easy to loss stability. This connection
raises an important issue: how to obtain an equilibrium with
some indices optimized which can also maintain the system’s
stability under some given disturbances?
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To obtain such a stability-guaranteed optimal solution,
one needs to incorporate the stability criteria as constraints
into the optimization framework. Unfortunately, the distinct
gap between two mathematical processes prevents the direct
implementation of stability constraints in the optimization
framework. Consequently, most of the former researches in-
vestigated these two problems separately. A few of researchers
have attempted to incorporate the DAE constraints into the
steady-state optimization framework [4] and [5]. The general
idea of these existing methods is discretizing one DAE into a
set of algebraic equations with respect to small time steps,
which is considered to be computationally intractable for
large-scale dynamic systems.

To mitigate this problem, for Lur’e-type dynamic systems,
this paper presented a novel framework of stability-constrained
optimization which is independent from the basic principle
of the existing methods. The proposed approach casts the
system’s dynamics into algebraic constraints in the steady-state
domain based on a recent development of quadratic Lyapunov
functions for Lur’e systems using the sector nonlinearity
approach and the semidefinite programming (SDP) technique
[6]. To better illustrate the proposed idea, we also introduce
an application case in power systems, the transient stability-
constrained optimal power flows (TSCOPF) [5] and [7].

Transient stability is the ability of the power system to
maintain synchronism when subjected to a severe transient
disturbance [8]. In transient stability assessment (TSA) of
power systems, fault type, location, and clearing-time are
pre-determined factors. Hence, what determines the system
stability is the initial state. TSCOPF is an attractive technology
to obtain an optimal power flow (OPF) [9] solution that
can guarantee stability when the system suffers a transient
disturbance. Aggressive introduction of renewable generation
increases the overall stress of the power system [10], so the
stability constraints will likely become the main barrier for
transition to clean energy sources. Despite many decades of
research, stability assessment is still the most computationally
intensive task in power grid operation process. It is even
more computationally intractable when stability constraints are
considered in optimization problems.

In the past decade, the TSCOPF issues have attracted
continual research efforts. In general, the existing TSCOPF
methods are based on either DAE-discretization [5], [7], [11],
and [12] or iterative algorithms where an independent TSA
is required for each iteration [13] and [14]. However, these
approaches are still not practical in real-time application due
to the heavy computational burden they incur. We found that
the developed framework is applicable for constructing an
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effective TSCOPF model if the dynamic model of power
grids can be reformulated into the Lur’e form. Fortunately,
our former work shows that it is possible to reformulate the
dynamic power system model, which is described by the clas-
sical generator model with transfer conductance considered
[15] and network preserved [16], into a classical Lur’e form.

The rest of the paper is organized as follow: In Section II,
the proposed stability-constrained optimization framework is
presented. Section III discusses the application of the proposed
approach in TSCOPF of power grids. The novel TSCOPF
framework is tested on the IEEE 118-bus system in Section
IV. The novelty and limitation of the proposed approach as
well as the future research are discussed in detail in the last
section.

II. THE STABILITY-CONSTRAINED OPTIMIZATION

A. Original Problem Formulations

For a steady-state nonlinear system (1b), we are usually
interested in operating it at a point that some given index
(1a) is optimized. For instance, power engineers pursue the
solutions with the minimum generation costs in the OPF
problems. The general formulation for such an optimization
problem can be given as (1). Note that additional constraints
may be needed due to actual requirements.

min
x

f(x) (1a)

s.t. g(x) = 0 (1b)
x ≤ x ≤ x, (1c)

where x denotes the steady-state variable.
If the dynamic behaviors of the nonlinear system (1b) can

be captured by the following Lur’e-type autonomous system
with a nonlinear term of vanishing disturbance (2), we will
develop a novel optimization framework for (1) to guarantee
that the obtained solutions are locally asymptotically stable.

ẏ = Ay +Bφ(Cy) +

{
0 (t = t−0 , t

+
c →∞)

u(y) (t = t+0 → t−c )
, (2)

where y is a function of time t representing the dynamic-state
variable with x as the origin, such that y(t0) = 0, g(y+x) =
Ay − Bφ(Cy), and φ(0) = 0; u(y) = v(y + x) and v(·)
is a derivable funciton; the nonlinearity φ : R → R can be
bounded by some local sectors. The nonlinear function φ is
said to be in sector [γ, β] if, for all q ∈ R, p = φ(q) lies
between γ and β as shown in Fig. 1.

B. Quadratic Lyapunov Function for the Nominal System

The first step of developing the novel stability-constrained
optimization framework is to construct a quadratic Lyapunov
function for the nominal system of (2). For this purpose,
we extend the classical circle criterion [3] and the related
approaches presented in [6] to the case where the sector [γ, β]
is valid for bounding the nonlinearity φ in the the polytope
P = {y|z ≤ Cy ≤ z}.

Lemma 1. The Lyapunov function W (y) = yTPy is
decreasing along the trajectory of the nominal system of (2)

Fig. 1. The concept of sector bounds.

whenever y(t) is in the set P , if:
a) the nonlinearity φ satisfies the sector condition (φ(Cy) −
γCy)T (φ(Cy)− βCy) ≤ 0 for all y ∈ P;
b) the positive definite matrix P satisfies the following linear
matrix inequality (LMI)[

ATP + PA− CT γβC PB + 1
2 (γ + β)CT

BTP + 1
2 (γ + β)C −I

]
� 0. (3)

Proof : See Appendix A. �
Note that, to obtain a uniform Lyapunov function for the

whole feasible set rather than a single equilibrium, the chosen
sector [γ, β] should be valid for all y ∈ P . If φ(q) =
[φ1(q1), . . . , φk(qk)]T represents multiple nonlinearities, one
can customize the sector for each nonlinearity such that
β = diag(β1, . . . , βk) and γ = diag(γ1, . . . , γk).

If the obtained local quadratic Lyapunov function satisfies
the following condition

P ⊆ R = {y |Ẇ (y) ≤ 0},

it is reasonable to search for the the minimum boundary energy
Wmin along the boundaries of polytope P . We introduce
a highly scalable technique of calculating Wmin, which
can be incorporated into the optmization framework, in this
subsection. The original searching procedure of Wmin can be
described as

Wmin = min
i

Wmin
i

Wmin
i = min

y
yTPy

s.t. CTi y = zi
(4)

where CTi is the i-th row of matrix C, and zi = zi or
zi. According to the first-order optimality conditions [17],
the optimization problem (4) has a trivial solution y∗ =
ziP
−1Ci/(C

T
i P
−1Ci). Consequently, Wmin can be obtained

through the following simpler way

Wmin = min
i
{

min
{
z2
i , z

2
i

}
CTi P

−1Ci
}.

Generally, in the y-coordinates, zi = ∆l and zi = −∆l,
where ∆l is positive. zi = CTi x + ∆l and zi = CTi x − ∆l
in the x-coordinates. Hence, we can search for Wmin in the
x-coordinates though

Wmin = min
i
{

min
{

(CTi x+ ∆l)2, (CTi x−∆l)2
}

CTi P
−1Ci

}. (5)
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C. A Scalable Stability-constrained Optimization Framework

At t = t0, system (2) suffers a disturbance and its trajectory
y(t) starts deviating from the origin (i.e. the equilibrium point).
Let y(tc) denote the state when the disturbance is cleared.
After the disturbance is cleared, the condition for that the
system trajectory y(t) can converge back to the origin is
explored in this subsection. Based on the minimum Lyapunov
value Wmin obtained in the previous step, we introduce the
stability certificate of the nominal system in (2) by applying
LaSalle’s invariant principle.

Lemma 2. For any fault-cleared state y(tc) within the set
Ω which is defined by

Ω = {y(tc) ∈ P |W (y(tc)) < Wmin}, (6)

the system trajectory of the nominal system (2) starting from
y(tc) stays in the set Ω for all t ≥ 0 and eventually will
converge to the origin.

Proof : See Appendix B. �
If the fault clearing time tc is sufficiently short, we can

calculate the fault-cleared state using the following Taylor’s
series

y(tc) = y(t0) +
ẏ(t0)

1!
tc +

ÿ(t0)

2!
t2c + · · ·

= 0 +
v(x)

1!
tc +

ġ(x) + v̇(x)

2!
t2c + · · · , (7)

where Ay(t0)−Bφ(Cy(t0)) = g(x) = 0 and u(y(t0)) = v(x)
as defined in Subsection II-A.

Constraints (5)-(7) together represent the dynamic stability
certificate in the x-domain, i.e. the steady-state domain. By
adding constraints (5)-(7) to problem (1), we have a stability-
constrained optimization model for the nonlinear system (1b),
which is denoted as (P1). Due to constraint (5), model (P1) is
a bilevel optimization problem which is highly intractable. To
overcome this issue, we proposed the following optimization
model which is denoted as (P2)

min
x,Wmin

F (x,Wmin) = f(x)− εWmin (8)

s.t. (1b), (1c), (6), (7), andW
min ≤ (CT

i x−∆l)2

CT
i P

−1Ci

Wmin ≤ (CT
i x+∆l)2

CT
i P

−1Ci

. (9)

Theorem 1. Optimal solution of (P2) is also optimal to
optimization problem (P1).

Proof : See Appendix C. �
The theorem 1 implies that one can obtain an exact locally

optimal solution of problem (P1) by solving (P2) which is a
single-level optimization problem and much easier to solve
than (P1). Note that both (P1) and (P2) are nonconvex.
Therefore, only locally optimal solutions can be guaranteed.

D. A Less-Conservative Convex Relaxation

It is a consensus that the Lyapunov-based methods for
stability assessment are more or less conservative. Inequalities
(9) are concave which are a special type of non-convex
constraints. To reduce the computational burden introduced by

(9) and the conservativeness of the proposed Lyapunov-based
method, we relax the concave set (9) into its convex hull.

Theorem 2. Set Ψ is the convex hull of set ψ, where

ψ =

(x,Wmin)

∣∣∣∣∣∣∣∣
Wmin ≤ ((CT

i x−∆l)2

CT
i P

−1Ci

Wmin ≤ (CT
i x+∆l)2

CT
i P

−1Ci

CTi x ≤ CTi x ≤ CTi x



Ψ =

(x,Wmin)

∣∣∣∣∣∣∣∣∣
Wmin ≤ (CT

i x−2∆l)CT
i x+∆l2

CT
i P

−1Ci

Wmin ≤ (CT
i x+2∆l)CT

i x+∆l2

CT
i P

−1Ci

CTi x ≤ CTi x ≤ CTi x

 ,

where Wmin is nonnegative and −2∆l ≤ CTi x ≤ 0 ≤ CTi x ≤
2∆l.
Proof : See Appendix D. �

Remark 1. A pictorial interpretation of the proposition
is given in Fig. 2 from which we can observe that set Ψ
is the convex hull [18] of ψ. Compared with the concave
constraints in ψ, the linear constraints in Ψ are easier to
compute. Searching for the optimal solution over set Ψ will
result in a slightly bigger Wmin, which will reduced the
conservativeness of the Lyapunov method.

Fig. 2. The convex hull relaxation of concave constraints (9). The shaded
area denotes set ψ while the area with green boundaries is set Ψ.

As a result, the proposed stability-constrained optimization
frame for nonlinear system (1b) is given by

min (8)

s.t. (1b), (6), (7), and Ψ.
(10)

Remark 2. The constraint (6) is convex while Ψ is a convex
polytope. If there exist convex relaxations for the original
system, i.e. equation (1b), v(x), v̇(x), and f(x), it is straight
forward to develop a convex stability-constrained optimization
model for system (1b).
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III. APPLICATION IN POWER GRIDS: TSCOPF

In this section, we apply the framework (10) to power
systems to obtain a novel optimization model for the transient
stability-constrained optimal power flow. It has been verified
in [15] and [16] that the procedure of obtaining quadratic
Lyapunov functions introduced in Subsection II-B is valid
for the power grid when its angle dynamics is described
by the classical generator model with the network preserved.
Based on this dynamic power system model, this paper further
considers the transfer conductances of transmission lines. Note
that, being different from the previous works, the quadratic
Lyapunov function of the dynamic power system constructed
in this section is valid for the whole feasible set rather than
just a given post-fault equilibrium.

A. Steady-state Model of Power Grids

Let NG, NL, N , and B denote the sets of generator
buses, load buses, all buses, and all branches of the network
respectively. V and θ are the vectors of bus voltage magnitudes
and phase angles respectively in the steady-state domain. Let
x = [V T θT ]T and Y denote the vector of steady-state
variables and a set of alterable parameters, the steady-state
power network model, i.e. power flow model, is given by

pG − pL − gp(x, Y ) = 0 (11a)

qG − qL − gq(x, Y ) = 0 (11b)

where

gpi (V, θ, Y ) = Vi
∑
j

Vj(Gijcos(θi − θj) +Bijsin(θi − θj))

= Vi
∑
j∈Ni

Vj |Yij |sin(θij + αij)

gqi (V, θ, Y ) = Vi
∑
j

Vj(Gijsin(θi − θj)−Bijcos(θi − θj)).

Gij and Bij are the conductance and susceptance of line ij
respectively, and Yij = Gij + jBij , αij = arctan(Gij/Bij),
i ∈ N . Note that the rotor velocity ω of a generator is assumed
to be constant in steady domain with a uniform value of nearly
1 per unit. Consequently, it is not considered as a variable in
the steady-state power flow model.

B. Lur’e-form Dynamic Model with Multiple Nonlinearities

In this subsection, we introduce the dynamic model of
power systems and its Lur’e-form reformulation with multiple
nonlinearities. In the dynamic domain, let δ and ω denote the
vectors of bus phase angles and rotor velocities respectively.
They are functions of time and δi(t0)=θi, ωi(t0) ≈ 1 (i ∈ N ).
The dynamic model of angle stability is given as

δ̇i = ωi − ωi(t0), i ∈ NG (12a)

diδ̇i = −pLi − g
p
i (V, δ, Y ), i ∈ NL (12b)

miω̇i = pGi − g
p
i (V, δ, Y )− di(ωi − ωi(t0)), i ∈ NG (12c)

where pGi and pLi represent generator output and load at bus i
respectively; mi denotes the generator moment of inertia and
di represents the damping coefficient of generator or load.

The transient disturbances that a power system may en-
counter include faults on transmission facilities, loss of genera-
tion, and loss of large loads [8]. Generally, the disturbance will
be cleared after a short period. Hence, each type of disturbance
corresponds to the variation of some parameters with respect
to time, of which the details are given by

(Gij , Bij) =


(G′ij , B

′
ij) t = t−0

(G′′ij , B
′′
ij) t = t+0 − t−c

(G′′′ij , B
′′′
ij ) t = t+c −∞

(13a)

pGi =

{
pGi (t = t−0 , t

+
c →∞)

0 (t = t+0 → t−c )
(13b)

pLi =

{
pLi (t = t−0 , t

+
c →∞)

0 (t = t+0 → t−c )
, (13c)

where t−c =∞ if the fault is permanent.
In dynamic system (12), the classical model is adopted for

generators and the network is preserved with transfer con-
ductance considered. A important assumption of the classical
generator model is that the voltage V keeps constant during
transient. Hence, we only need to consider δ and ω as state
variables in the dynamic domain. To mitigate the inaccuracy
of the classical generator model, we only require the voltage
magnitude to remain constant during the fault-on transient and
obtain the post-fault equilibrium by solving the power flow
equations (11). Let the vectors [V T θT ] and [V ∗T θ∗T ] denote
the solution of steady-state system (11) with the pre-fault
and post-fault parameters respectively. They are considered
as the pre-fault and post-fault equilibrium points respectively
for the dynamic system (12). If the typology of the power
system can be restored after the fault is cleared, we have
[V ∗T θ∗T ] = [V T θT ]. Considering the post-fault system as
the nominal system, we re-define the dynamic state variables
as the deviations of rotor angles and velocities from the post-
fault equilibrium, i.e. y = [δ1−θ∗1 , . . . , δ|G|−θ∗|NG|, δ|NG|+1−
θ∗|NG|+1, . . . , δ|N | − θ

∗
|N|, ω1 − 1, . . . , ω|NG| − 1]T . Let E be

the incidence matrix of the directed graph G(N ,B), so that
E[δ1, . . . , δ|N |]

T = [(δi − δj){i,j}∈B]T . Let the matrix C be
E[I|N |×|N| O|N |×|NG|]. Then

Cy = E[δ1 − θ∗1 , . . . , δ|N | − θ∗|N|]
T = [(δij − θ∗ij){i,j}∈B]T .

Based on the dynamic variable vector y defined above, we
can rewrite the dynamic model (12) in the form of (2) and
first have

A =

 O|NG|×|N| I|NG|×|NG|
O|N |−|NG|×|N| O|N |−|NG|×|NG|
O|NG|×|N| −M−1

1 D1

 ,
and

B =
[
O|NG|×|B|; S1M

−1ET ; S2M
−1ET

]
,

where S1 = [O|N |−|NG|×|NG| I|N |−|NG|×|N|−|NG|],
and S2 = [I|NG|×|NG|O|NG|×|N|−|NG|]; M1 =
diag(m1, . . . ,m|NG|), D1 = diag(d1, . . . , d|NG|) and
M = diag(d|NG|+1, . . . , d|N |,m1, . . . ,m|NG|) represent the
matrices of moment of inertia, frequency controller action on
governor, and frequency coefficient of load respectively.
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Then, consider the vector of nonlinear interactions φ in the
simple trigonometric form

φk(Cky) = V ∗i V
∗
j |Y ′′′ij |(sin(δij + αij)− sin(θ∗ij + αij)),

where Ck is the kth row of C and the terms (V ∗i V
∗
j |Y ′′′ij |) can

be regarded as parameters for any given post-fault equilibrium
during fault-on transient. In next subsection, we will show that,
by defining the nonlinear interactions φ in this way, one can
customize sector bounds for each nonlinearity and obtain valid
quadratic Lyapunov functions for the whole feasible region
rather than a single equilibrium point.

Finally, based on the time-variant parameters given in (13),
the perturbation term can be expressed as

Vi
∑
j Vj(∆B

′
ijsinθij + ∆G′ijcosθij) t = t−0

Vi
∑
j Vj(∆B

′′
ijsinθij + ∆G′′ijcosθij) t = t+0 − t−c

0 t = t+c −∞{
0 t = t−0 , t

+
c →∞

−pGi t = t+0 → t−c{
0 t = t−0 , t

+
c →∞

pLi t = t+0 → t−c
,

where ∆G′ij = G′ij − G′′′ij , ∆B′ij = B′ij − B′′′ij , ∆G′′ij =
G′′ij − G′′′ij , and ∆B′′ij = B′′ij − B′′′ij . Note that, if the system
typology can be restored after the fault is cleared, we have
(G′′′ij , B

′′′
ij ) = (G′ij , B

′
ij).

C. Lyapunov Functions and Fault-on Trajectories

In traditional transient-stability analysis of power systems,
the Lyapunov function is constructed based on a given post-
fault equilibrium point [15] and [16]. However, the Lyapunov
function obtained in this way is not valid for the TSCOPF
framework since the post-fault equilibrium is a solution of
TSCOPF which is unknown before solving the TSCOPF.
This subsection aims at constructing an effective common
Lyapunov function for the whole feasible region in the steady-
state domain by carefully designing the sector bounds.

Fig. 3. The designed sector bounds for the nonlinearities in system (12).

We can observe from Fig. 3 that, within the polytope P =
{δij | − π − θ∗ij − 2αij ≤ δij ≤ π − θ∗ij − 2αij , (i, j) ∈ B},
the nonlinear terms φk(Cky) (k ∈ B is the serial number
corresponding to branch (i, j) in the branch set B) are bounded
by the sectors [0, βk] regardless of the post-fault equilibrium
if βk = V̄ 2|Y ′′′ij |. It has been pointed out in [16] that, for the
structure-preserving model, both γk and βk (∀k) should be
nonzero since the matrix A is not strictly stable for this case.
As a result, we use a small positive value ξ for γ instead of
0. By recalling the LMI (3) with multiple nonlinearities, we
have the following LMI for the dynamic model (12) of power
systems[

ATP + PA− CT γβC PB + 1
2 (γ + β)CT

BTP + 1
2 (γ + β)C −I|B|×|B|

]
� 0,

(14)
where P is a (|N | + |NG|) × (|N | + |NG|) positive definite
matrix, matrices A, B, and C are defined in Subsection II-
B β = diag(β1, . . . , βk), and γ = diag(ξ, . . . , ξ). By solving
the LMI (14), one can obtain a common quadratic Lyapunov
function of dynamic system (12) which is valid for all potential
post-fault equilibia within the polytope P .

Substitute the parameters of system (12) into expression (7)
and neglect the terms whose orders are higher than 3, we have
the approximate fault-on trajectories of power grids:

δi(tc) = θi −
dit

2
c

2!Mi
Ki, i ∈ NG (15a)

δi(tc) = θi −
2! + t2c

2!di
Ki, i ∈ NL (15b)

ωi(tc) = 1 + (
dit

2
c

2!M2
i

− tc
Mi

)Ki, i ∈ NG, (15c)

where Ki = Vi
∑
j Vj(∆Bijsinθij + ∆Gijcosθij), ∆Gij =

G′′ij −G′ij , and ∆Bij = B′′ij −B′ij . For the sake of simplicity,
the 3rd-order term in (15b) is also omitted. Note that, with
high-speed relays, the fault can generally be cleared within
6 cycles (i.e. 0.1 s). Therefore, a 3rd-order Taylor’s series is
considered sufficiently accurate for approximating the fault-
on trajectories of power systems. Based on the approximation
of fault-on trajectories (15) and the dynamic state variable
vector y defined in the third paragraph of Subsection III.B, we
can cast the fault-clearing state (point) y(tc) in the dynamic
domain into a function of the pre- and post-fault equilibira
x, x∗ in the steady domain

y(tc) = h(x, x∗). (16)

D. A Novel TSCOPF Framework for Power Systems

Based on the definitions and preparations in Subsections
III.A-C, we develop a novel TSCOPF framework for power
grids by applying the stability-constraint optimization frame-
work (10) proposed in Section II. The developed TSCOPF
model can be expressed as
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min
pG,Wmin

f =
∑
i

(ai1(pGi )2 + ai2p
G
i )− εWmin (17a)

s.t. (6), (16), and

pG − pL − gp(x, Y ′) = 0 (17b)

qG − qL − gq(x, Y ′) = 0 (17c)
S(x, Y ′) ≤ S̄ (17d)
V ,E[θ] ≤ V,E[θ] ≤ V̄ , Ē[θ] (17e)

pG − pL − gp(x∗, Y ′′′) = 0 (17f)

qG − qL − gq(x∗, Y ′′′) = 0 (17g)
S(x∗, Y ′′′) ≤ S̄ (17h)
V ,E[θ] ≤ V ∗, E[θ∗] ≤ V̄ , Ē[θ] (17i)

pG, qG ≤ pG, qG ≤ p̄G, q̄G (17j)W
min ≤ π(π+2θ∗ij+2αij)

CT
i P

−1Ci

Wmin ≤ π(π−2θ∗ij−2αij)

CT
i P

−1Ci

, (17k)

where Sij(x, Y ) = Y 2
ijV

2
i V

2
j (i, j ∈ N , ij ∈ E) representing

the apparent power in transmission line ij. The summation
term in (17a) is the generation costs which are to be minimized
in an OPF problem. Constraints (17b)-(17e) and (17f)-(17i)
denote the power flows of pre- and post-fault systems respec-
tively. Constraints (17k) is the specialization of its general
form Ψ for power systems. One of them is redundant if
the system restores after the fault is cleared. The algebraic
constraints (6), (16), and (17k) on the steady-state variable
x together depict the stability region of a given transient
disturbance.

Remark 3. All variables in the TSCOPF model (17) are
in the steady-state domain. Consequently, it is reasonable to
consider the region specified by constraints(6), (16), and (17k)
as the projection of the transient stability region with respect
to a given fault onto the steady-state domain.

Remark 4. There exist some convex relaxations for the
power flows (17b)-(17c) and (17f)-(17h), for instance the
quadratic convex relaxation presented in [19]. Since the Ki in
(15) has the same form as the power flow equations, it is easy
to extend the convex relaxations of power flows to constraint
(16). We can obtain a convex TSCOPF model by replacing the
nonconvex constraints (16), (17b)-(17c) and (17f)-(17h) with
their convex relaxations.

IV. CASE STUDY

A. Introduction to the Test System

We test the proposed TSCOPF framework (17) on one of the
most commonly used test transmission grids, the IEEE 118-
bus system, which consists of 19 generators, 35 synchronous
condensers, 177 lines, 9 transformers, and 91 loads [20] as
shown in Fig. 4. The dynamic data, i.e. generator moment
of inertia mi (i ∈ NG) and the damping coefficient di (i ∈
NG∪NL), comes from [21]. The system is stable under a wide
range of transient faults with the original load profile. To create
two heavy-loaded test cases, we scale up the demand at each
load bus by factors of 1.6 and 1.9 respectively.

Fig. 4. IEEE 118-bus test system.

B. Case Design and Results

The results of two scenarios are compared to evaluate the
effectiveness of the proposed TSCOPF framework. In the first
scenario, we solve the problem (18) to obtain a solution of the
original OPF while problem (17) is considered in the second
scenario. Note that constraints (16) and (18b)-(18e) are related
to a specific fault. In this case study, we consider a symmetric
bus-to-ground fault at Node 8 since a symmetric fault is the
most severe type of fault involving the largest current.

min
pG

f =
∑
i

(ai1(pGi )2 + ai2p
G
i )

s.t. (18b)− (18e), and (18j)

(18)

The accuracy of the fault-on trajectory approximation (15)
relies on the fault duration. To assess the sensitivity of the
proposed TSCOPF model to the fault clearing time, we
consider fault clearing times of 0.167s (i.e. 10 cycles) and
0.100s (i.e. 6 cycles) for the 1.6 times and 1.9 times load cases
respectively. The optimal solutions, including the required
CPU times, of the original OPF and the TSCOPF are tabulated
in Table I. Problems (18) and (17) are solved by the nonlinear
solver IPOPT (version 3.12.4) [22] through the optimization
package JuMP in Julia (version 0.5.2) [23]. Before that, we
obtain a uniform quadratic Lyapunov function for (17) using
a MATLAB toolbox YALMIP [24] by calling the SDP solver
MOSEK (version 7.1.0.34) [25]. A MAC computer with a 64-
bit Intel i7 dual core CPU at 2.40 GHz and 8 GB of RAM
was used to solve the optimization cases.

TABLE I
OPTIMAL SOLUTIONS

Load factor Scenario Objective value
(k Dollars)

CPU time
(secs)

1.6 Original OPF 2341.0998 8.986
TSCOPF 2350.5974 15.815

1.9 Original OPF 2895.7271 9.571
TSCOPF 2909.8168 18.298
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With the initial solutions (i.e. the optimal solutions) obtained
in the previous step, transient stability analysis is conducted
using DSA Toolbox [26] in a Windows computer with a 64-bit
Intel i7-7700 4 cores CPU at 3.60 GHz and 16 GB of RAM.
The system responses of the two scenarios are plotted in Fig.
5 and Fig. 6 respectively.

(a) Original OPF

(b) TSCOPF

Fig. 5. System Responses of the case with load factor of 1.6.

(a) Original OPF

(b) TSCOPF

Fig. 6. System Responses of the case with load factor of 1.6.

C. Analysis

Based on the numerical results obtained in Subsection IV-B,
we have the following observations:

(1) The system remains stable after the fault is cleared if it is
operated at the equilibrium obtained by solving the proposed
TSCOPF. The solution of the original OPF can not guarantee
the stability even though the bus-to-ground fault at Bus 8 is
cleared very fast.

(2) One can obtain a stability-guaranteed solution by solving
the TSCOPF with the cost of a higher (however not sig-
nificantly higher) computational time, since only a limited
number of nonlinear and nonconvex constraints need to be
added to the original OPF to construct the TSCOPF. Compared
with the existing methods, this is one of the most significant
advantages of the proposed TSCOPF framework. To be more
precisely, the added constraints include a set of power flow
equations (18f)-(18i) with respect to the post-fault equilibrium,
the approximation of fault-on trajectories (16) which has a
similar form as the power flows with a much smaller size,
and some linear or convex constraints (18k) and (6).

(3) The feasible set of TSCOPF is a subset of that of the
original OPF. Consequently, it is direct to know that the cost,
namely the optimal objective value, of the TSCOPF is higher
than that of the original OPF. As shown in Table I, the costs are
increased by less than 5%, which can be claimed acceptable.
Due to the convex relaxation (18k), the conservativeness of
the proposed approach is effectively reduced.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a stability-constrained optimization
framework for a type of nonlinear systems whose dynamics
can be described by a Lur’e system. Unlike the existing
methods which are based on either DAE-discretization or
iterative algorithms where an independent stability assessment
is required for each iteration, the introduced framework is
developed based on Lyapunov stability theories. One of the
primary advantages of the developed approach is more com-
putational tractable than the existing methods. To illustrate
the application values of the proposed framework, it has
been successfully applied in power grids to develop a novel
TSCOPF model.

The numerical study on the IEEE-118 test system demon-
strates that the prosed TSCOPF framework can effectively
obtain a stability-guarantee optimal solution with acceptable
computational burden. However, There are many directions
can be pursued to push the introduced stability-constrained
optimization framework to the online application level. First
and foremost, methods of constructing uniform quadratic
Lyapunov functions for the nominal system of (2) with less
conservativeness need to be explore. Although the quadratic
form Lyapunov fucntions are computationally effective, they
may be conservative for stability assessment of many dynamic
systems. It is necessary to customize the procedure introduced
in Subsection II-B for specific dynamic systems to construct
quadratic Lynapunov functions with less conservativeness.

The non-convex nature of many Lur’e type systems prevents
the application of powerful convex optimization approaches.
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It is valuable to explore effective convex relaxations to make
the stability-constrained optimization framework more com-
putationally tractable for the purpose of online application.
From the perspective of power grids, the dynamic system
with higher-order generator and load models is no longer
of Lur’e type and have multi-variate nonlinear terms. It is
also necessary to extend the construction from sector-bounded
nonlinearities to more general norm-bounded nonlinearities
[27].

APPENDIX A
PROOF OF LEMMA 1

The derivative of W along the trajectories of the nominal
system in (2) is given by

Ẇ (y) = ẏTPy + yTP ẏ

= yT (ATP + PA)y + yTPBφ+ φTBTPy

=

[
y
φ

]T [
ATP + PA PB

BTP 0

] [
y
φ

]
.

Denote the above block matrix as BM1. The sector bound
condition (a) is equivalent to[

y
φ

]T [
γβCTC − (γ+β)

2 CT

− (γ+β)
2 C I

] [
y
φ

]
≤ 0.

Denote the above block matrix as BM2. By observing the
LMI in (3), we realize that LMI(3) = BM1 − BM2 � 0,
which means BM1 � BM2 � 0. As a result, Ẇ (y) ≤ 0.

APPENDIX B
PROOF OF LEMMA 2

Suppose y∗ is a point on one of the edges of the polytope
P . Due to the definition of Wmin, we have W (y∗) ≥Wmin.
Hence, the system is not able to evolve from the fault clearing
point y(tc) to y∗ since W (tc) ≤ Wmin ≤ W (y∗). The
Lyapunov function value W (y) can only decrease along the
system trajectory since Ẇ ≤ 0 within polytope P . as a result,
the system trajectory will stay within the region Ω or even
converge to the origin as t goes to infinity.

APPENDIX C
PROOF OF THEOREM 1

Assume that s̃ = [x̃ W̃min]T is an optimal solution of (P2):
i. s̃ is feasible to (P1).

First, we will show that any optimal solution of (P2) is
optimal to problem (4). Suppose that W̃min does not make
equal sign hold in any of (9), which means s̃ is not feasible
to (4). It suffices to show there exists another feasible solution
of (P2), ŝ = [x̃ W̃min + ∆W ]T , where ∆W is an arbitrarily
small positive value. We have

F (ŝ)− F (s̃) = −ε∆W ≤ 0,

which contradicts the optimality of s̃. In other words, for any
solution s̃ in which no equal sign holds in any inequality
of (9), one can always choose a ∆W to construct another
feasible solution ŝ of (P2) with a smaller/better objective value
until equal sign holds in one of the equalities of (9). Such an

solution is exactly the optimal solution of problem (4). Optimal
solution s̃ of (P2) being optimal to (4) implies that it is feasible
to (P1) since (P1) is a bilevel optimization problem with (4)
as the lower-level problem.
ii. s̃ is also optimal to (P1).

Suppose s̃ is not optimal to (P1), then there exist a feasible
solution to (P1), ŝ = [x̂ Ŵmin]T , that is in the vicinity of s̃
satisfying

f(x̂)− f(x̃) ≤ 0.

It is easy to verify that ŝ is also feasible to (P2) and satisfies

F (ŝ)− F (s̃) = f(x̂)− f(x̃) + ε(W̃min − Ŵmin) ≤ 0. (19)

Note that ε is an arbitrarily small value. Hence, it is reasonable
to assume that the term ε(W̃min - Ŵmin) is not comparable to
(f (x̂) - f (x̃)), which means (F (x̂) - F (x̃)) has the same sign
as (f (x̂) - f (x̃)). Condition (19) contradicts the optimality of
s̃ to (P2). Namely, s̃ is an local minimum of (P1) if it is an
local minimum of (P2).

So far, the theorem has been proved by contradiction.

APPENDIX D
PROOF OF THEOREM 2

For the sake of convenience, we replace the terms CTi x
and CTi P

−1Ci with X and 1/λ respectively. The notation
CONV (A) means the convex hull of set A.
i. CONV (ψ) ⊆ Ψ.

For any X∗ ∈ [X, 0], we have

ψ(X∗) = {Wmin|0 ≤Wmin ≤ λ(X∗ + ∆l)2}
Ψ(X∗) = {Wmin|0 ≤Wmin ≤ λ((X + 2∆l)X∗ + ∆l2)}.

It is direct to know that ψ(X∗) ⊆ Ψ(X∗) since (X∗+∆l)2 ≤
(X + 2∆l)X∗ + ∆l2). Similarly, for any X∗ ∈ [0, X], we
have the same conclusion, which implies ψ ⊆ Ψ and that Ψ
is a convex relaxation of ψ. Since convex hull is defined as
the intersection of all convex relaxations of a non-convex set
[18], we have CONV (ψ) ⊆ Ψ.
ii. CONV (ψ) ⊇ Ψ.

If a linear inequality is valid for a given set ΩA, it will also
be valid for any subset of ΩA. Note that a linear inequality
is valid for a set means the inequality is satisfied by all its
feasible solutions [28]. On the other way round, according to
the properties of supporting hyperplanes [29], ΩB is said to be
a subset of ΩA if ΩA is convex and any valid linear inequality
of ΩA is also valid for ΩB [30]. Let s = [X Wmin]T and
suppose that αs ≥ β is any valid linear cut for CONV (ψ),
this cut should be also valid for all the points in ψ. To prove
that CONV (ψ) ⊇ Ψ (i.e. Ψ is a subset of CONV (ψ)), we
try to show that αs ≥ β is valid for all the edges of Ψ.

The convex set Ψ has five edges of which the formulations
are given as

Ψ1 =

(X,Wmin)

∣∣∣∣∣∣
Wmin = λ((X − 2∆l)X + ∆l2)
Wmin ≤ λ((X + 2∆l)X + ∆l2)
X ≤ X ≤ X

 ,

Ψ2 =

(X,Wmin)

∣∣∣∣∣∣
Wmin ≤ λ((X − 2∆l)X + ∆l2)
Wmin = λ((X + 2∆l)X + ∆l2)
X ≤ X ≤ X

 ,
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Ψ3 =

(X,Wmin)

∣∣∣∣∣∣
Wmin ≤ λ((X − 2∆l)X + ∆l2)
Wmin ≤ λ((X + 2∆l)X + ∆l2)
X = X

 ,

Ψ4 =

(X,Wmin)

∣∣∣∣∣∣
Wmin ≤ λ((X − 2∆l)X + ∆l2)
Wmin ≤ λ((X + 2∆l)X + ∆l2)
X = X

 ,

Ψ5 =

{
(X,Wmin)

∣∣∣∣ Wmin = 0
X ≤ X ≤ X

}
.

As an example, we show that the cut αs ≥ β is valid for
edge Ψ1 in this paragraph. It is easy to verify that the two
points s1 = (0, λ∆l2) and s2 = (X,λ(X∗−∆l)2) are located
in both ψ and Ψ1. That means the cut αs ≥ β is valid for
these two points and we have αs1 ≥ β and αs2 ≥ β. Let s∗ =
(X∗,W ∗min) denote any given point in set Ψ1. For any given
s∗, there exists a value c (0 ≤ c ≤ 1) satisfying s∗ = cs1 +
(1 − c)s2). It suffices to verify this statement by substituting
s∗ = ((1− c)X, cλ∆l2 + (1− c)λ(X∗ −∆l)2) into the first
equation in Ψ1. As a result, we have

αs∗ = cαs1 + (1− c)αs2 ≥ cβ + (1− c)β = β,

which means the linear cut is also valid for any given point
in Ψ1 and, consequently, valid for Ψ1.

Using the same method, the readers are able to prove that
the linear cut αs ≥ β is valid for all the other four edges of Ψ
and, consequently, valid for the whole convex set Ψ. Hence,
CONV (ψ) ⊇ Ψ.
iii. Ψ = CONV (ψ).
CONV (ψ) ⊆ Ψ and CONV (ψ) ⊇ Ψ together imply Ψ =

CONV (ψ).
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