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Abstract—This paper introduces a micro-nexus of water and
energy which can be considered as one of the physical in-
frastructures of the future building/city/village systems. For the
electricity side, an alternating current (AC) power flow model
integrated with battery energy storage and renewable generation
is adopted. The nonlinear hydraulic characteristics in pipe
networks is also considered in the proposed micro water-energy
nexus (WEN) model. Integer variables are involved to represent
the on/off state of pumps. Base on the proposed nexus model,
a co-optimization framework of water and energy networks is
developed. The overall co-optimization model is a mixed-integer
nonlinear programming problem which is tested on a water-
energy nexus which consists of the IEEE 13-bus distribution
system and a 8-node water distribution network. The simulation
results demonstrate that the cost-efficiency of the co-optimization
framework is higher than optimizing two systems independently.

Index Terms—Microgrid, smart building, smart city, smart
village, water-energy nexus

I. INTRODUCTION

The smart building/city/village/ are development visions of
buildings/cities/villages of which an essential function is to
improve the efficiency and security of various services by
integrating some emerging technologies (such as Internet of
Things, optimization, information, communication, and con-
trol) [1]]- [4]). In a smart building, city or village, many physical
systems are interconnected, which enables co-operation or co-
optimization of these systems. The water and energy networks
are two of the most important physical systems in almost
all types of communities, including cities, remote villages,
as well as buildings, since efficient and secure water and
energy services are considered as life necessities. Therefore,
it is reasonable to consider an intelligent infrastructure of
water and energy as one of the foundations of the smart
buildings/cities/villages. In fact, refs. [2] and [3] have demon-
strated the importance of a smart energy grid for the smart
building/city/village.

It is no coincidence that water and energy systems are
tightly intertwined. On one hand, most of the services provided
by the water system consume energy. Water supply, seawater
desalination, groundwater pumping, and wastewater treatment
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even account for a considerable amount of total energy con-
sumption in some area like Middle-East and North Africa
(MENA). Many countries in MENA consume 5-12% or more
of total electricity consumption for desalination [5]. On the
other hand, the intermittent renewable energy resources and
electro-mobility introduce critical uncertainty in achieving the
balance of supply and demand in the power system [6]. The
services of water systems can be considered as a source of
grid flexibility to harness such uncertainty [8]. The energy-
water nexus has attracted substantial research efforts recently
as more and more researchers realized the mutual influence of
water and energy systems [8] - [9].

Demand side management (DSM) offers promising mea-
sures to mitigate the imbalance between electric supply and
demand by utilizing the flexibility of loads. To explore the
potential of water distribution systems (WDS) in providing
demand response capability, we introduce a micro-nexus of
water and energy on the demand side. A new mathematical
model needs to be developed in order to better capture the in-
teractions between water and electric distribution systems. The
optimal pump scheduling problem (OPS) has been studied for
decades in the water sector [[10]]. In this problem, researchers
and engineers pursue an operation schedule of pumps that can
satisfy the requirement of water supply with the minimum
energy consumption. No electricity networks are considered
in this problem. Recently, the interactions between the water
and energy systems start receiving researchers’ attentions.
Ref. [7] defines a supply side water-energy nexus (WEN)
assuming that water transmission systems couple with power
transmission grids only at the co-generation plants. The DC
power flow model and linear pipe network model considered in
[7]] are not valid for the distribution-level nexus. A recent paper
[8]] explores the opportunities for WDS to provide frequency
response services through pump scheduling. In essence, the
approach proposed in [§] is still an optimal pump scheduling
problem without considering the electricity network.

The micro water-energy nexus introduced in this paper com-
prises microgrids and micro-WDSs which are directly con-
nected with customers. Nonlinear network models with high-
fidelity are considered for both water and power systems. Such
a nexus model lies a solid foundation for many future research
interests such as optimal water-DSM schemes, co-optimization



of water and energy systems, and co-security/reliability of
micro-WEN. It is also beneficial for developing a coordinated
islanding scheme of electric and water networks under emer-
gencies.

II. DESIGN OF THE MICRO WATER-ENERGY NEXUS

A. Background of Water Distribution System

Water distribution systems deliver water to consumers with
acceptable quality, appropriate pressure, and the required
quantity, which are considered as the backbone of the society
since water is one of the prime needs of humans. Within
the next decade, approximately 1.8 billion people worldwide
will be living in areas of absolute water scarcity. Such a
situation requires that the function of a future WDS is not just
the distribution of water through pipe networks. It involves
water treatment, water recycling, water purification, cooling,
metering/monitoring, funds/revenue generated, etc [11]. That
means the water and energy systems will be more strongly in-
tertwined in the future. The integration of intelligent metering
systems generates the ideal of “intelligent” or “smart” WDS
[12]. It enables the strategic co-operation of all facilities in a
WDS. SWAN|defines a smart water network as a collection of
data-driven components helping to operate the data-less physi-
cal layer of pipes, pumps, reservoirs and valves. Water utilities
are gradually deploying more data-enabled components. It is
up to us to make the most out of them, by turning the discrete
elements into a cohesive “overlay network”.

B. Micro Water-Energy Nexus

Similar to the microgrid, a micro-WDS is also a cyber-
physical system. Therefore, it is reasonable to design a micro-
nexus of water and energy in which the physical layers of
the two systems are interconnected, so that they could share
the main parts of the cyber layers as shown in Figure [I}
Microgrid technologies, like battery energy storage systems
(BESS), high-inertia synchronous generators, various power
electronic devices, and electric vehicles (EV), are also consid-
ered in the micro-WEN which is applicable to many types of
communities.

Remote Villages. The micro-WEN of a smart village is
generally off-grid and its energy consumption mainly comes
from renewable generation. High-inertia synchronous gener-
ators like diesel generators serve to maintain the stability of
the system frequency rather than provide electric energy. The
water source may be wells, or sea water desalination plants if
the remote village is located on the coast.

Blocks in cities. In the development vision of cities, re-
newable energy accounts for a considerable portion of energy
consumed. The micro-WEN of a block in a city is connected
to the power grid via the point of common coupling (PCC)
under normal condition and operated off-grid when the service
of main power system is not available. The water source is pri-
marily the higher level water supply system. The micro-WEN

ISWAN: The Smart Water Networks Forum (www.swan-forum.com).
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Figure 1. Schematic of a smart micro-WEN.

needs to have sufficient capability to support EV chargers no
matter in the grid-connected mode or the islanding mode.
Buildings. The case in buildings is similar to that of blocks
in cities. The Physical structure of the water network in a
building is different from those in a village or a city block.
However, they share the similar mathematical model.

III. MODELING OF THE MICRO WATER-ENERGY NEXUS

NOMENCLATURE
Parameters
A Incidence matrix
aj Coefficient of pump characteristics in pipe )
B;; Susceptance of line ij
bi; Coefficient of pump characteristics in pipe 7j
c Locational marginal price at PCC
C1 Coefficient of the first-order term in the cost function

of diesel generator at bus ¢

C2,i Coefficient of the second-order term in the cost func-
tion of diesel generator at bus ¢
ElEOS Initial state of charging of BESS at bus ¢

Gi;  Conductance of line ij
h; Elevation at node 7 of the water network

PE Active electric load at bus i

PﬁE Active power output of renewable at bus ¢

QZ—Lt Reactive electric load at bus %

Qf%tE Reactive power output of renewable at bus ¢
rBatt Loss coefficient related to the battery of BESS
r&vt  Loss coefficient related to the converter of BESS
Rf; Head loss coefficient of pipe ¢j

Sets
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Figure 2. A physical structure of the micro water-energy nexus.

Ew Edge set of the water network

Nw  Node set of the water network

N§ Set of nodes connected to a tank

Er Edge set of the electricity network

51,113, Set of pipes with a pump installed

Ng Bus set of the electricity network

NE  Set of bus with controllable generations

NE Set of bus with a pump connected

Ng  Set of bus with a BESS connected

Variables

QFS  Reactive power of the BESS at bus i

Qf . Reactive consumptions of the pump at bus i

Qg Binary variable denoting the on/off state of the pump
in pipe %

€t Real part of voltage at bus ¢

fi+  Imaginary part of voltage at bus i

LES  Active power loss of the BESS at bus i

Pié; Active power of diesel generator at bus ¢

PES  Active power of the BESS at bus i

Pft“mp Active consumptions of the pump at bus ¢

P;;:  Active branch power in line ij

th Reactive power of diesel generator at bus ¢

Qij+ Reactive branch power in line ij

w, Water flow injected from the water source in pipe ¢

wft Water flow to the water tank at node ¢

Ty Vector of water flow in pipes

Yt Vector of water head at nodes
Head gain imposed by the pump in pipe ij

This section develops a mathematical model of the intro-
duced physical layer of micro-WEN as shown in Figure 2] The
problem considered in this paper is of multi-period. Unless
otherwise stated, the subscript ¢ denotes the time period. For
the AC-microgrid, we use the quadratic AC power flow model
with renewable generation and batteries integrated to
describe the electricity network. The detailed model is given

as

G RE Pump
Pi,t + Pi,t - Pi,t

_Pi]?t_Pz‘%S :Zpij,t
J

L-QFF =) "Qiy (b
J

Pij+ = Gij(eirejs + firfie) — Bijleisfis + firejr) (1c)
Qijr = Gij(firejr —eirfis) — Bijleireje + firfie) (1d)

(1a)

G RE Pump
T Qi — Qi —

P2, +Q%, <5 (le)
Vi<el 42 <V, (1)
P¢ < pg, <Py, (1g)
Q% <Qf, <Qy, (1h)

where i,j € N, ij € Eg, and k € NS. Constraints (1a) and
(1b) describe the nodal balance of active and reactive power
respective; (1c) and (1d) stem from the Ohm’s law; (1e)-(1h)
are system constraints.

The following nonlinear model of battery energy storage
unit is adopted for the mathematical model of micro-WEN.
Please refer to for more details about this BESS model.
For Vi € NS, we have

(rPet + Ticm)(PftS)Z + Ticvt(ths)Z = Lfts(ez‘z,t + szt)
(2a)
ES\2 ES\2 <oES\2

(P7) + Qi) < (S ) (2b)

t
—ES

EFS < BEY - / (PES +LES)dr <E;”. (20

0

The micro-WDS in the designed micro-WEN comprises a
pipe network, pumps, water storage (i.e. tanks), and loads. For
the micro-WDS, we have the following assumptions:

1) The pipe network is a directed graph Gw = (Nw,Ew)
and, hence, A;; € {—1, 0, 1} for all pipes;

2) A pump is located in one of the pipes and it imposes a
head gain to the pipe when it is on or, otherwise, the pipe is
considered to be closed,

3) The pumps are constant-speed motors and the water head



gain introduced by the pump is a linear function of the water
flow goes through the pump which is given byE]

((i,5) € E); 3)

4) The pump converts electric power into mechanical power
at a constant efficiency of n;

G _
Yije = QijTije + bij

5) The power factors of pumps are fixed, namely
Pump Pump_
Py Qi =constant.

Under the above assumptions, the mathematical model of
the micro-WDS can be expressed as

D
Z Apijtije = w;?:t — w,f,t —wiy, (k€ Nw)  (4a)

(i,j)GSW
Yig — Yju + hi — hj = R] isgn(xij, t)xzzj,ta ((i,4) € Ew /&)
(4b)
Vit — Yje +hi —h; .
if a0 =1 o
+ymt Rz]‘fzjt o 7((273) € gII/ID/)
Tijt = 0, if it = 0
(4c)
t —
sr<sty+ [uSdr<sy (e @0
0
z<mx <7, (4e)
Yy <y <7, (4f)
w? <wf, <we, (i€ NiF) (4g)
w? <wfy WP, (i€ Ny) (4h)

where 7,j € Ny ; equation (4a) represents the mass balance
of the water network; constraints (4b) and (4c) formulate the
hydraulic characteristics of a normal pipe and the pipe with a
pump installed respectively; constraint (4d) denotes the state
of charing of the water tanks; (4e)-(4h) are system constraints;
syn(z) = =1 if < 0 or, otherwise syn(z) = 1.

The following constraints act as the mathematical link
between the microgrid ((1)-(2)) and the micro-WDS ((3)-(4))

®)

nplf?mp = Tij, fyz]t

where k € NE and (i, ) € L.

Remark: (1)-(5) together form the mathematical model of
the designed micro-WEN. The model provides a framework
in which the stochasticity of renewable generation, water
and electricity demands can be easily incorporated whenever
needed. It will not be difficult to incorporate more electric
and water appliances, such as electric vehicles and water
purification, irrigation, desalination, recycling devices, into the
developed mathematical model.

2
@ij T + bijTije,

IV. CO-OPTIMIZATION OF WATER AND ENERGY
NETWORKS

Based on the mathematical model of micro-WEN intro-
duced in Section III, this section develops a co-optimization

2The hydraulic characteristics of a constant-speed pump is generally
approximated by a quadratic function of the water flow across the pump,
ie. y = cx? 4 ax + b. Coefficient ¢ is usually very small compared with a
and b [[15]]. Hence, we simply make ¢ = O in this paper.

framework for water and energy networks. The objective of
this co-optimization problem is to minimize the total energy
cost for meeting the demands of both electricity and water.
We formulate the energy cost as

Z("tpu"' Z

ieENE /PCC

F(P) = (c1iP 4 e2i(P5)?)), (6)

where Pft denotes the power from the grid via PCC (i.e. the
serial number of PCC is 1); ¢; can be consider as the nodal
prices at PCC which are calculated as the result of security
constrained economic dispatch (SCED) by ISOs/RTOs. As a
result, the co-optimization model is

min (6)
P . (CO-OPT)
st. (D-(5)

V. CASE STUDY

To evaluate the efficiency of the proposed co-optimization
framework (CO-OPT), we compare it with an existing daily
operation scheme. We assume that this scheme comprises
two main stages. In the first stage, the water utility tries to
minimize the energy consumption by doing a day-ahead OPS
based on the day-ahead water demand forecast, which is given
by

min (> Pyi™)

t (i,j)eEl,

s.t. (3) and (4)

(OPS)

The second stage is an optimization problem which is
analogous to the unit commitment (UC) in power transmission
systems. The UC-like problem is performed day-ahead by the
power utility to minimize the total energy cost for meeting
all electricity demands based on the day-ahead forecast of
electricity demands, where the diesel generators and BESS
units are control devices. With the output of (OPS), i.e
PEY™ ((i,5) € EL), as a set of time-varying parameters

]5’ P, ' (k € NE), the second stage problem is
miGn (6)
P, : (U

s.t. (1) and (2)

The micro-WEN for the case study is composed of the IEEE
13-bus system and an 8-node WDS from the EPANET manual
[16]. The topology of the test micro-WEN is given in Figure
[3l We assume that the 13-bus microgrid is integrated with high
penetration of PV resources. The pumps deliver 45.72 meter
of head at a flow of 0.038 m®/s. The tank is 18.3 meters in
diameter and 5.1 meters in depth. The 24-hour load profile
of the 13-bus system is generated by applying a typical 24-
hour summer loadshape (please refer to Figure 41 in [17]).
For the 24-hour demand profiles of the water system, please
refer to the EPANET manual [16]]. Further details about the
PV systems and BESSs are given in Table
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Figure 3. Topology of the test system.

Table 1
PV SYSTEM AND BESS LOCATION AND CAPACITY

Penetration
36.7%

PV location (bus #) and capacity
633 (0.5 MW), 680 (0.2 MW), 684 (0.5 MW)
DES location (bus #) and capacity
684 (0.6 MW, 2.4 MWh), 692 (0.8 MW, 3.2 MWh)

This section compares the optimal solutions of two opti-
mization problems. Problem (i) is a two stage problem which
consists of (OPS) as the first stage problem and (UC) as the
one in second stage. Problem (ii) is the proposed framework
(CO-OPT). The problems are solved by the corresponding
solvers, as shown in Table[[l} through the optimization package
JuMP in Julia (version 0.5.2). It can be observed from the
results tabulated in Table[I]that the co-optimization framework
can produce higher cost-efficiency.

Table II
PROBLEM CLASSIFICATION, SOLVERS, AND RESULTS

Problem Classification Solver gptlmal
olution
. (OPS) MINLP! BONMIN [18]]
M (UC) NLP? IPOPT [19] 1445
(ii))  (CO-OPT) MINLP BONMIN 1339

TNINLP: Mixed-integer Nonlinear Programming
2NLP: Nonlinear Programming

VI. CONCLUSION AND FUTURE WORK

The coupling in the demand side of water and energy
systems is becoming stronger and stronger as the number of
electrified water devices (such as water recycling systems,
desalination facilities, and water purification devices) is in-
creasing. This paper designs a micro water-energy nexus which
can be considered as the physical foundation of smart build-
ings/cities/villages. The introduced micro-WEN is composed
of a microgrid and a micro water distribution system. A mixed-
integer nonlinear mathematical model is developed to formu-
late the behaviors of the micro-WEN. Currently, the power and
water systems are operated independently by different utilities.

A numerical study in this paper shows that a higher cost-
efficiency can be achieved by operating the water and energy
networks as a whole system. The introduced physical and
mathematical models of micro-WEN will facilitate many fu-
ture research which is related to smart cities/villages/buildings.
Following this fundamental development, we will continue
to explore effective demand response schemes of WDSs by
considering more water system services like irrigation. Means
of improving the security and reliability for micro-WENs will
be investigated by fully considering the interactions between
water and electricity systems.
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